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Lipid bodies (LBs) are universal constituents of both animal and plant cells. They are
produced by specialized membrane domains at the tubular endoplasmic reticulum (ER),
and consist of a core of neutral lipids and a surrounding monolayer of phospholipid with
embedded amphipathic proteins. Although originally regarded as simple depots for lipids,
they have recently emerged as organelles that interact with other cellular constituents,
exchanging lipids, proteins and signaling molecules, and shuttling them between various
intracellular destinations, including the plasmamembrane (PM). Recent data showed that
in plants LBs can deliver a subset of 1,3-β-glucanases to the plasmodesmal (PD) channel.
We hypothesize that this may represent a more general mechanism, which complements
the delivery of glycosylphosphatidylinositol (GPI)-anchored proteins to the PD exterior via
the secretory pathway. We propose that LBs may contribute to the maintenance of the PD
chamber and the delivery of regulatory molecules as well as proteins destined for transport
to adjacent cells. In addition, we speculate that LBs deliver their cargo through interaction
with membrane domains in the cytofacial side of the PM.
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INTRODUCTION
Recent progress in isolation procedures and proteomic approaches
expanded the protein inventory of a generalized plasmodesma
(PD), but despite this the PD-proteome is still largely elusive
(Bayer et al., 2006; Fernandez-Calvino et al., 2011; Jo et al., 2011).
The effort to understand PD functioning from PD composition is
faced with several obstacles.

Firstly, PD differ widely among the different cells, tissues
and organs of a plant. The main reason for this diversity is
the way higher plants growth and development, how they build
their body and allocate functions to various parts. Their entire
shoot system is derived from the shoot apical meristem (SAM).
Daughter cells, produced in cell lineages at the SAM, remain
connected via primary PD that are laid down in cell plates.
To maintain the necessary symplasmic unity, adjacent lineages
become connected via secondarily formed PD. These two dis-
tinct mechanisms of PD initiation define the original composition,
architecture and function of so-called primary and secondary PD
(Rinne and van der Schoot, 1998; van der Schoot and Rinne,
1999). When cells embark on a path to differentiation and spe-
cialization, PD structure and function are altered further in
correspondence to their position. Thus, rather than being unit
structures, PD reflect the functional states of the interconnected
cells.

Secondly, the highly dynamic nature of PD in general, but
particularly in meristems and developing tissues, might preclude
unambiguous establishment of a PD proteome even in a single tis-
sue system. It might turn out that the PD proteome is inherently
contingent, and many proteins that associate with PD might be
only temporary constituents and regulators, or simply passers-by.

Thirdly, PD do not function in isolation and their proteome is
intimately dependent on the regulation of distinct supply routes
that deliver components to the exterior and interior of PD. Thus,
understanding PD functioning in addition requires identification
of the pathways by which proteins are recruited to the exterior and
interior of PD, and the mechanisms by which they cooperatively
govern PD dynamics. So far, very little is known about these supply
routes and how they are coordinated.

Although PD composition and functioning is most conve-
niently investigated in the large cells of differentiated tissues, PD
functioning is likely to be most versatile and sophisticated in meris-
tematic areas, where morphogenetic signaling is expectably very
intense. For several reasons therefore, meristems are of prime
interest for the investigation of PD structure and function. Despite
their minute size, shoot apices of perennials provide a unique
and unexpected experimental opportunity to study PD that cycli-
cally change their structure and function in synchrony with the
seasons. Anticipating winter, the SAM of deciduous perennials
arrests itself in a morphogenetically deactivated and dormant state.
This state is enforced by the production of dormancy sphincter
complexes (DSCs). DSCs function as symplasmic circuit breakers
that hermetically close all PD by a precise deposition of a callosic
mixture around the PD entrance and inside the channel (Rinne
et al., 2001). Simultaneously, the isolated cells amass minute lipid
bodies (LBs) with a coat of proteins. Associated with the LB
surface is a subset of 1,3-β-glucanase (GH17-family) enzymes
(Figure 1). During chilling-induced release from dormancy these
LBs target the plasmamembrane (PM) at, or in close proxim-
ity to PD, thereby facilitating restoration of PD functionality
(Rinne et al., 2011).
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FIGURE 1 | Lipid bodies in the perennial shoot apex. (A) Shoot apex
of hybrid aspen (Populus tremula × P. tremuloides) after exposure to
short photoperiod results in the accumulation of LBs during initiation of
dormancy. LBs are visualized by Sudan Black B. Boxed areas (1–3) are
detailed on the right; 1 = Tunica, 2 = Corpus, 3 = Rib meristem/Rib
zone. (B–E) Electron microscopic images of LBs in shoot meristem of
birch (Betula pubescens) during chilling-induced release from dormancy.
(B) Immuno-gold-labeling of 1,3-β-glucanase, peripherally associated with

a LB. Arrows point to gold particles that label 1,3-β-glucanase (Form
Rinne and van der Schoot, 2004). (C) PD in the cell wall of after
removal of callosic dormancy sphincter complexes (From Rinne et al.,
2001). (D,E) Membranous inclusions, probably desmotubule-attached
cortical ER in LB that dock PD. Monolayer membranes of LBs are
visualized by Osmium tetroxide and tannic acid. Black arrowheads point
to PD (From Rinne and van der Schoot, 2004). Bars, (A) 50 mm;
(B–E) 250 nm.

In multicellular organisms LBs have emerged as signaling
platforms that deliver proteins and signaling molecules to a variety
of intracellular destinations (Murphy, 2012). It seems possible that
in plants, LBs have assumed the additional function of a vehicle
that delivers proteins to PD for cell-to-cell transport, or regula-
tion and refurbishment of the PD interior (van der Schoot et al.,
2011). If so, it would be opportune to analyze the LB proteome
and investigate to what degree it overlaps with the PD proteome.
In a morphogenetically active SAM, the amount of LBs is far
too restricted to make them amenable to biochemical analysis.
Fortunately, the dormant apex offers a unique opportunity to iso-
late sufficient amounts of LBs to analyze their proteome and test
this hypothesis. As most of our novel knowledge on LB composi-
tion and function is derived from animal systems, we first review
crucial findings from the animal literature before we address the
question if in plants LBs may contribute to refurbishing the PD
interior.

ORIGIN OF LIPID BODIES
LBs, often called lipid droplets, are of universal occurrence,
and have been observed for over a century (Murphy, 2012). In
contrast to what the latter name suggests, they are not simple
droplets. On the contrary, they are minute membrane-bound
organelles, ranging in size from about 0.5 to 2.5 μm, which
are produced by specialized areas of the tubular endoplasmic
reticulum (ER; Figure 2). It is increasingly clear that they are het-
erogeneous and dynamic entities that serve important regulatory
functions.

LBs possess a core of neutral lipids, triglycerides (TAGs) or
sterol esters, and a surrounding phospholipid (PL) monolayer
(Chapman et al., 2012; Murphy, 2012). This is a relatively stable
configuration, with PL acyl-moieties in the hydrophobic core and
the charged headgroups in the cytoplasm. TAGs are synthesized
in the ER (Huang, 1996) and deposited between the leaflets of

the ER membrane. The highly hydrophobic TAGs have low mem-
brane solubility and will “oil out” between the leaflets, forming a
lens-like structure (Olofsson et al., 2009). That LBs originate from
the ER membrane is supported by their similar PL composition
(Fujimoto et al., 2008). However, the detailed mechanism of LB
formation has remained elusive, and different models have been
proposed (Guo et al., 2009; Walther and Farese, 2009).

Most frequently LB formation is described in terms of a
“bulging and budding” model. It depicts LB biogenesis as a process
in which nascent LBs bud off from the cytoplasmic side of the ER.
As a consequence, the LB monolayer is exclusively derived from
the cytoplasmic leaflet of the ER (Figure 2). In the “bicelle” or
“hatching” model (Ploegh, 2007; Fujimoto et al., 2008), the com-
plete oil lens is cut off from the ER, resulting in a LB monolayer
that contains parts of both leaflets. In a third model, the “vesicu-
lar budding” model, minute bilayer vesicles are formed that stay
tethered to the cytoplasmic side of the ER while a shuttle mech-
anism transports neutral lipids into its bilayer. This results in
a growing LB with a minuscule inner aqueous inclusion that is
surrounded by the original luminal leaflet of the ER membrane.
This model might imply involvement of coatamers, which assist
vesicle formation in the secretory pathway, as knockdown of the
COP1/Arf1 machinery interferes with LB formation (Guo et al.,
2008). It is possible, however, that all these mechanisms are valid
and operate alongside each other. The composition of the protein
coat is strongly dependent upon the LB production mechanism,
which determines whether only the proteins of the cytoplasmic
leaflet of the ER are included or also those at the luminal ER
leaflet.

PROTEIN COMPOSITION OF THE NASCENT LB COAT
The particular structure of a LB restricts what kind of proteins
can associate with it. The normal configuration of transmem-
brane (TM) proteins, with the hydrophilic domains on opposite
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FIGURE 2 | Hypothetical model depicting two delivery paths to

plasmodesmata. Lipid bodies (LBs) deliver cargo to membrane rafts (MR)
at the inner leaflet of the plasma membrane (PM) and the plasmodesmal
(PD) channel. LBs are pinched off from specialized areas of tubular ER. Their
core of neutral lipids is covered by a protein coat composed of structural
proteins, enriched by proteins donated by interacting organelles, like
mitochondria (M), peroxisomes (P), early endosome vesicles (EV), and
possibly Golgi (G) vesicles. Some of the LBs target PM and transfer
proteins to MR that transport them to the PD cavity. In the dormant
perennial shoot apical meristem one of the LB proteins is a peripherally
associated 1,3-β-glucanase that hydrolyzes the callose plug of the
dormancy sphincter complex (DSC). The secretory path delivers cargo that
is packed in ER-derived vesicles, among which glycosylphosphatidylinositol
(GPI)-anchored 1,3-β-glucanases, that are moved through the Golgi to fuse
as exocytic vesicles with the PM, releasing their cargo to the outer side of
the PM, where selected GPI-anchored proteins are potentially recruited by
MRs for transport to the outer leaflet of the PD neck. Soluble NSF
attachment protein receptors (SNAREs) mediate endocytosis, exocytosis,
and presumably hemi-fusion of LBs with the PM.

sides of the membrane, is not feasible in the LB monolayer due
to the hydrophobic core. Instead, constitutive LB proteins pos-
sess a long hydrophobic domain that forms a hairpin-helix which
anchors the protein to the lipid core, while the hydrophilic ter-
mini are spread out at the LB surface. Examples of LB proteins
with such hairpin topology are caveolin (Martin and Parton, 2006)
and the TG- and cholesterol-catalyzing ER enzymes DGAT2 and
NSDHL in mammalian cells (Caldas and Herman, 2003; Stone
et al., 2006; Murphy et al., 2009), and oleosin and caleosin in
plant cells (Lee et al., 1994; Huang, 1996; Chapman et al., 2012;
Murphy, 2012).

Alternatively, proteins associate with a LB by embedding
amphipathic domains into the monolayer (Brasaemle, 2007; Fuji-
moto et al., 2008; Guo et al., 2009, Walther and Farese, 2009).
Mammalian examples are PAT proteins (including perilipin,
adipocyte-differentiation-related-protein [ADRP], and tail inter-
acting protein 47 [TIP47]). They are recruited post-translationally,
and are either exclusive for LBs or present in the cytoplasm as well
as at LBs. For example, ADRP and perilipin are constitutively
associated with LBs via hydrophobic domains, and in absence of
neutral lipids they are degraded. In contrast, TIP47 is a solu-
ble cytosolic protein with a terminal hydrophobic domain which

is recruited to LBs under elevated fatty acid levels (Wolins et al.,
2001), possibly requiring a change in the shape of its hydrophobic
pocket (Fujimoto et al., 2008).

An important group of LB-associated proteins are Rab GTPases,
which are involved in membrane sorting and targeting (Grosshans
et al., 2006; Bartz et al., 2007; Liu et al., 2007). They function as
molecular switches which in their active GTP-bound forms recruit
effector proteins to mediate vesicle motility, docking, and fusion
(Jordens et al., 2005; Liu et al., 2007).

KISS-AND-RUN ENCOUNTERS AND REFUGEE PROTEINS
Structural studies indicate that LBs interact with other organelles
(Binns et al., 2006; Shaw et al., 2008). This is supported by pro-
teomic studies of LBs, revealing the presence of proteins that are
characteristic of mitochondria, peroxisomes, endosomes, ER, and
PM (Figure 2; Goodman, 2008; Guo et al., 2009; Murphy et al.,
2009). Transient interactions, mediated by small GTPases, allow
the exchange of lipophilic signals and proteins that are embedded
in the monolayer or electrostatically attached to its surface (Liu
et al., 2008).

That LBs functionally dock to mitochondria (Shaw et al., 2008)
is supported for example by fluorescence resonance energy trans-
fer, which provides evidence that their membranes are in direct
physical contact (Sturmey et al., 2006; Zehmer et al., 2009). LBs
also interact with peroxisomes, to deliver lipids for β–oxidation
(Binns et al., 2006; Zehmer et al., 2009) and recruit Rab5 and
Rab11 to interact with endosomes (Frolov et al., 2000; Liu et al.,
2007). Lipid exchange might proceed in an ATP-independent
fashion, as proposed for PM–ER contact sites in yeast (Schnabl
et al., 2005), involving transient-inter-compartmental-contact-
sites (TICCS; Liu et al., 2007; Zehmer et al., 2009). Alternatively,
docking events may be followed by hemi-fusion of the LB mono-
layer with the outer leaflet of a bilayer structure (Murphy et al.,
2009). Cytoplasmic LBs may even usurp ER (Zehmer et al., 2009)
as whorls of ER, ribosome-decorated ER, and RNA were detected
in the lipid core of some LBs (McGookey and Anderson, 1983;
Wan et al., 2007; Zehmer et al., 2009).

Some LBs show Brownian movement, as if waiting for deliv-
ery orders, while others move in a coordinated and directional
fashion. In animal cells, LBs move on microtubules with dynein
motor proteins, but as actin and myosin are also present in the LB
proteome they might have ancillary roles (Turró et al., 2006; Bartz
et al., 2007; Welte, 2009). In contrast, in plants actin is the major
organelle transporter, while microtubules have an assisting role
(Collings et al., 2002; Cai and Cresti, 2012). Virtually all encounters
between LBs and other organelles are of a transient “kiss-and-run”
fashion (van Manen et al., 2005). En route along the cytoskeletal
highway, LBs may also pick up proteins and signaling molecules
that opportunistically hitch a ride to their destination. Relatively
hydrophobic proteins that do not move easily through the aque-
ous environment of the cytoplasm might piggyback on the lipid
shuttle (Welte, 2009). These accidental travelers have been referred
to as “refugee proteins” (Hodges and Wu, 2010).

As a direct result of these frequent kiss-and-run encounters
and the boarding of opportunistic passengers the LB proteome is
surprisingly rich (Welte, 2009; Hodges and Wu, 2010). Proteomic
studies of mammalian LBs show that they contain dozens, and
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perhaps hundreds of proteins (Bartz et al., 2007; Zehmer et al.,
2009). For example, a recent investigation identified 125 LB pro-
teins, including Arf1, Arf1 binding protein, coatamers of Arf-1,
small G-proteins, lipid synthetic enzymes, chaperones (HSPs),
vimentin, calreticulin-3, calnexin, spectrin, heavy-chain myosin,
actins, and tubulins (Bartz et al., 2007). As pointed out, the large
number of Rabs in these LBs, 18 in total, might indicate that
there are distinct classes of LBs with corresponding composition
and intracellular destinations (Bartz et al., 2007). Supportive of
the validity of such LB inventories is the finding that RNAi screens
identified hundreds of genes that are involved in LB biology (Beller
et al., 2008; Guo et al., 2008).

Due to the virtual absence of extensive LB-proteome inven-
tories in plants, the number of identified LB-associated proteins
is still low. However, there is no a priori reason to expect that
the situation in plants is much different from that in animals.
The number of peripherally associated LB-proteins, particularly
enzymes and signaling molecules, might be equally large. So far,
the inventory of proteins found at plant LBs includes among oth-
ers the structural proteins oleosin and caleosin (Sarmiento et al.,
1997; Tzen et al., 1997; Næsted et al., 2000), which both appear
to possess enzyme activities (Hanano et al., 2006; Meesapyod-
suk and Qiu, 2011; Parthibane et al., 2012), the stress-inducible
caleosin RD20 (Aubert et al., 2010), the sterol-dehydrogenase
steroleosin (Lin et al., 2002), a peroxygenase (Hanano et al.,
2006), a hydroxysteroid dehydrogenase (Li et al., 2007), a lipoxy-
genase (Hause et al., 2000), an acid lipase (Eastmond, 2004),
a patatin-domain lipase (May et al., 2000; Eastmond, 2006),
several non-glycosylphosphatidylinositol (GPI)-anchored 1,3-β-
glucanases (Figure 1B; Rinne et al., 2001, 2011; Rinne and
van der Schoot, 2004), the innate immune-response protein
calcium-dependent kinase CPK1 (Coca and San Segundo, 2010),
glyoxisome receptors (Hause et al., 2000), and various unidentified
proteins (Tnani et al., 2011). Many other LB-associated proteins
in animal cells have homologs in plants where they may similarly
associate with LBs.

PLANT LBs DELIVER CARGO TO PD
LBs potentially deliver proteins and other associated components
to the PD interior in two ways. Firstly, LBs may directly interact
with PD and with the cortical ER strands. Transmission electron
microscopy showed that during chilling-induced release from dor-
mancy, LB are displaced from random cytoplasmic positions to
the PD (Rinne et al., 2001; Rinne and van der Schoot, 2004) where
they can usurp membranous material, possibly from ER strands
that are continuous with the desmotubule in the center of the PD
channel (Figures 1D,E). How these LBs deliver the peripherally
associated 1,3-β-glucanases (GH17 family proteins) to the callose
deposits at the PD channels is uncertain. Secondly, overexpres-
sion of eGFP-tagged LB-associated GH17 proteins appeared to
target the PM and PD in leaf cells (Rinne et al., 2011). Whereas
GPI-anchored eGFP-tagged GH17 proteins labeled PD in punc-
tate patterns, the LB-associated GH17 proteins mostly localized
at the PM in distinct sandwich-like patches that are indicative
of delivery into some kind of PM domains (Rinne et al., 2011).
GPI-anchored proteins are produced in the ER and after post-
transcriptional modification send through the Golgi system to the

cell’s exterior, where they are anchored to microdomains at the
extrafacial leaflets of the PM (see below). It seems possible that,
in contrast, LB-associated GH17 proteins and other LB-associated
cargo are recruited to membrane rafts (MRs) or microdomains
at the cytofacial side of the PM (Rinne et al., 2011). This would
require a functional relation or organizational similarity between
MRs or microdomains and LBs.

MRs are considered special nano- or microdomains that are
composed of sphingoplids, esters and proteins (Simons and
Toomre, 2000; Lingwood and Simons, 2010). Interestingly, in
adipocytes, the LB-monolayer is covered by unesterified choles-
terol (Prattes et al., 2000) and raft-associated signaling proteins
like mitogen-activated protein (Yu et al., 1998, 2000) as well as
the raft-associated scaffolding protein caveolin-2 (Fujimoto et al.,
2001). This prompted Fujimoto et al. (2001) to speculate that LBs
function as a novel membrane domain, with caveolin residing in
raft-like domains. This “sensational proposal” (van Meer, 2001)
warrants a closer look.

MEMBRANE RAFTS AND DOMAINS
It is well-established that lipid-based rafts in the PM are ordered
domains of sterols and highly saturated sphingolipids that arise by
self-association within a more disordered environment (Simons
and Toomre, 2000; Jacobson et al., 2007). These domains, referred
to as lipid rafts (LRs; Simons and Toomre, 2000; Rajendran and
Simons, 2005) or MRs (Langlet et al., 2000) were originally con-
ceived in terms of the liquid-ordered (Lo) and liquid disordered
(Ld) phases found in purified lipid systems. These model systems
did not give a realistic picture of MRs in the PM as they also con-
tain selected TM proteins that are excluded from the Lo phase
when reconstituted in a model system (Lingwood and Simons,
2010). Isolation of detergent-insoluble (or resistant) membrane
fractions (DIMs or DRMs) yielded a large number of PM pro-
teins that seemed to be part of MRs. In plants such fractions could
for example contain leucine-rich-repeat (LRR) as well as other
receptor-like kinases (RLKs; Peskan et al., 2000; Shahollari et al.,
2004; Lefebvre et al., 2007, 2010) that are implicated in endocy-
tosis and signaling (Duncan et al., 2002; Lingwood and Simons,
2010). However, it appeared that DIMs could not be equated
with MRs, and the DIM/DRM-based raft concept has been scru-
tinized lately (discussed in Tanner et al., 2011). Nonetheless, the
existence of PM MRs is not in dispute, and their spatio-dynamic
features can be mapped by CSLM, immunochemistry and ultra-
structural studies (Berchtold and Walther, 2009; Raffaele et al.,
2009; Keinath et al., 2010; Mongrand et al., 2010). The current
consensus is that MRs are dynamic nano-scale domains, enriched
in cholesterol, sphingolipids and GPI-anchored proteins, which
act as membrane-organizing “principles” (Lingwood and Simons,
2010). Nano-sized MRs can be triggered to cluster into larger
microdomains by lipid–lipid, protein–protein and lipid–protein
interactions (Lingwood and Simons, 2010). Although the PM of
plants might differ from that in animal systems in terms of lipid
composition, similar organizational principles are likely to apply,
with MRs serving comparable regulatory and signaling functions
(Mongrand et al., 2010; Jarsch and Ott, 2011; Perraki et al., 2012).

Universally, GPI-anchored proteins are exported via the secre-
tory pathway and segregated into exoplasmic MRs, whereas doubly
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acylated proteins are recruited by inner leaflet MRs (Simons and
Toomre, 2000). The cytofacial MRs are of interest in relation
to LBs as these microdomains are thought to function as sig-
naling and docking domains. (Figure 2; Mongrand et al., 2010).
Recently, remorins a family of plant-specific proteins were iden-
tified. Members of one group associate specifically with MRs in
a sterol-dependent fashion at the inner PM leaflet, despite their
overall hydrophilic nature (Raffaele et al., 2009; Jarsch and Ott,
2011; Perraki et al., 2012). In potato, REMORIN1 (StREM1.3)
appears to possess a C-terminal lipid anchor, RemCA, which
tethers it into the MRs (Perraki et al., 2012). Remorins are sug-
gested to be scaffolding proteins that participate in the regulation
of signaling processes by recruiting PM- and cytoplasmically
located proteins into microdomains to preassemble signaling
complexes (Jarsch and Ott, 2011). These may include RLKs
(Lefebvre et al., 2010). Plant-specific sterols and sphingolipids in
MRs can also recruit specific signaling proteins, including RLKs,
G-proteins, and stress response- and dynamin-related proteins,
as well as 14-3-3 proteins (Stanislas et al., 2009; Mongrand et al.,
2010).

DO LBs CONTAIN RAFT-LIKE DOMAINS?
For mammalian systems the original suggestion of Fujimoto et al.
(2001) that LBs may represent a new “membrane domain” seems
supported by a number of findings.

For example, the scaffolding protein caveolin-2 of PM rafts
can shuttle to LBs in an identical orientation, with its long cen-
tral hydrophobic helix embedded in the monolayer and both
hydrophilic termini in the cytoplasm; significantly it is sequestered
in small clusters at the LB monolayer in domains not dissimilar to
the MRs in the PM, and it can also shuttle from the ER to LBs as
well as to the PM (Das et al., 1999; Ostermeyer et al., 2001, 2004;
Brasaemle et al., 2004; Martin and Parton, 2006; Rajendran et al.,
2007).

Notably, two PAT family proteins, adipophilin and TIP47, are
present at the PM as well as at LBs. Under normal conditions they
are dispersed in the PM of macrophages and adipocytes, but stim-
ulation of LB formation by incubation with acetylated low density
lipoprotein induces their aggregation in elevated PM domains
(Robenek et al., 2009). Although much larger than MRs, roughly
1.0–1.5 μM in diameter, these areas clearly represent membrane
domains. That LBs are closely apposed to these elevated PM
domains seems remarkable. Cytoplasmically localized TIP47 can
associate with LBs by changing its hydrophobic pocket (Fujimoto
et al., 2008), and this may also underlie its association with the ele-
vated PM domains. Interestingly, in plants the potato remorin
StREM1.3 similarly associates with PM rafts or microdomains
by changing the configuration of the short C-terminal anchor
RemCA. In the cytoplasm the anchor is unordered but in a non-
polar lipid environment it spontaneously folds into a hairpin
structure with amphipathic-helices that is inserted into the PM
(Perraki et al., 2012).

In addition, LBs can contain flotillin-1, which is regarded as
a true MR marker (Babuke and Tikkanen, 2007). Flotillin-1 and
flotillin-2 associate with the MR in the PM through acylation sites
(Neumann-Giesen et al., 2004; Morrow and Parton, 2005; Otto
and Nichols, 2011), as well as through the prohibition homology

domain (PHB) which has a putative hairpin-like topology, sim-
ilar to that of caveolins (Bauer and Pelkmans, 2006). Flotillin-1
and -2 co-assemble into stable, yet mobile complexes at the PM
that act as scaffolds, demarcation sites for targeted cargo delivery
(Stuermer, 2011), and signaling platforms (Ludwig et al., 2010).
They can also function as sensors that detect changes in mem-
brane tension (Ge et al., 2011) and may guide the budding of MRs
to emerging LBs (Neumann-Giesen et al., 2004; Rajendran et al.,
2007). Interestingly, flotillins are also present in plants at the PM,
and are required for entry of nitrogen-fixing bacteria (Haney and
Long, 2010). Similarly, MR-associated remorin of Medicago trun-
catula (MtSYREM1) is specifically induced during root nodulation
and it accumulates at rhizobia release sites (Lefebvre et al., 2010)
that were earlier characterized by presence of the syntaxin SYP132
(Catalano et al., 2007). Based on this evidence, it is tempting to
speculate that in plant cells flotillins and syntaxins (see below)
may associate with LBs that align with remorin-decorated MRs.

Interestingly, the oligomeric protein stomatin (Stom), a PM
raft-associated integral protein, localizes to the late endosomal
compartment, and when overexpressed also to LBs (Umlauf et al.,
2004). Live microscopy showed that StomGFP-tagged LBs interact
with multiple microtubule-associated vesicles, and that stomatin
and caveolin-3 may localize to distinct domains at the LB surface
(Umlauf et al., 2004). Stomatin has a topology that enables it to
associate with rafts as well as LBs. Its C-terminal domain is nec-
essary for raft formation, whereas the long hydrophobic domain
tethers it to LBs (Umlauf et al., 2004), much alike a similar hairpin
in caveolin-1 (Bauer and Pelkmans, 2006).

The above examples show that there is a relation between
LBs and PM micro domains in both animal and plant systems,
although the precise nature of that relation is unclear. In plants,
the LB monolayer may not contain cholesterol, and therefore
the monolayer might not count as a genuine MR, that is, as LR
with associated proteins. This does not preclude interaction or
exchange, as proteins could have separate domains for targeting
LBs and PM rafts, as in case of stomatin. It seems reasonable to
propose that LBs represent some kind of “membrane domain,”
the more so, as cholesterol might not always be a prerequisite
for domain formation. Recently it was shown that electrostatic
protein–lipid interactions can give rise to microdomains indepen-
dently from cholesterol or lipid phases (van den Bogaart et al.,
2011). In any case, the examples lend support to the notion
that LBs in some way interact with MRs or microdomains to
deliver or exchange proteins and lipids. Interestingly, LBs in ani-
mal systems are known to contain a number of soluble NSF
attachment protein receptors (SNAREs) that are involved in LB
fusion. For example, the SNARE syntaxin5 anchors itself in the
lipid core, SNAP23 in the LB monolayer, whereas VAMPP4 asso-
ciates with the LB surface (Boström et al., 2007; Olofsson et al.,
2009; Zehmer et al., 2009). It seems likely that LBs can also
undergo hemi-fusion with PL bilayers, such as the PM, permitting
the transfer of peripherally associated proteins, such as caveolin
(Murphy et al., 2009). Hemi-fusions are in terms of energy expen-
diture less costly than a bilayer fusion, and easier to perform
(Murphy et al., 2009). SNARE- and Rab-assisted transient hemi-
fusions between LBs and PM domains could possible explain why
some MR proteins can be transferred to LBs and vice versa. For
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example, interaction of LBs and PM caveolae may allow a transient
hemi-fusion for the exchange of the MR protein caveolin (Mur-
phy et al., 2009). Significantly, at the plant PM SNAREs might
be distributed in microdomains to mediate exocytosis of secre-
tory vesicles (Sutter et al., 2006), and it is tempting to speculate
that LBs might hemi-fuse with the PM at mobile microdomains
(Figure 2).

REFURBISHING THE PD INTERIOR: A ROLE FOR LBs?
In general, three pathways could be envisioned through which
proteins and other components reach the PD exterior and inte-
rior. A pathway that delivers proteins to the PD exterior is the
secretory pathway through which GPI-anchored proteins, pro-
duced in the ER and modified in the Golgi, reach the cell wall
and the PD. GPI-anchored proteins are delivered together with
sterols and sphingolipids to the cell exterior, like in animal cells.
At the exofacial leaflet of the PM they are anchored to MRs, the
assembly of which starts in the Trans Golgi Network (Varma and
Mayor, 1998; Lingwood and Simons, 2010). In plants, some of
these secreted GPI-anchored proteins are recruited to the exterior
of PD. Although these proteins might be released to the outside
of the PM in close proximity of PD (Oparka, 2004), they have to
move laterally to reach the PD neck (Tilsner et al., 2011). As in
animal cells MRs are considered to be relatively mobile platforms,
it seems reasonable to assume that in plant cells the MRs can move
their resident proteins through lateral displacement to PD. Sev-
eral recently identified proteins could reach the PD exterior this
way. For example, GPI-anchored 1,3-β-glucanases (GH17 family
proteins) are exported and transferred to the PD neck, where they
hydrolyse callose (Levy et al., 2007; Rinne et al., 2011). The GPI-
anchored PD-callose-binding protein (PDCB1), which possesses
the carbohydrate binding module family 43 that is also found in a

number of GH17 proteins (Rinne et al., 2011), is similarly secreted
and transferred to the PD neck to link the PD membrane to the cal-
lose deposits in the external sphincter ring (Simpson et al., 2009).
Another example is plasmodesmata located protein1a (PDLP1a),
one of the eight members of the RLK family PDLP1, which reaches
PD via the Brefeldin A-sensitive secretory pathway (Thomas et al.,
2008). PDLP1a lacks a GPI domain and instead possesses a 21
amino acid transmembrane domain (TMD) that is necessary and
sufficient to target PD (Thomas et al., 2008). The TMD is sug-
gested to contain a sorting signal that interacts with other TM
proteins during recruitment into a microdomain (Thomas et al.,
2008) and may reach the PD through lateral diffusion in the PM
(Tilsner et al., 2011). Several other TMD-containing RLKs, with
putative roles in stress response pathways, are also localized to PD
(Jo et al., 2011).

The other two pathways could deliver proteins to the PD chan-
nel, either via the PM or via the ER. Non-secreted proteins could
be collected at PD from the cytoplasm via microdomains in the
cytofacial leaflet of the PM, either after direct recruitment by
scaffolding proteins such as remorin, or after delivery to such
scaffold-microdomain clusters by LBs. Delivery of LB cargo is
by definition to the PD channel, as the different topologies of
the PM double layer and the LB monolayer prevent delivery to
the outside of the cell. LB proteins destined for the PD channel
could be either permanent residents or only temporary visitors and
passers-by to a destination in the adjacent cell. LB routing might
be guided by the actin cytoskeleton, as suggested elsewhere (Rinne
and van der Schoot, 2004). In case LBs would undergo hemi-
fusion with the PM, this would result in lateral diffusion of neutral
lipids from the LB core into the PM, and recruitment of cargo to
microdomains. Proteins that are peripherally associated with LBs
could also peripherally associate with such microdomains, either

FIGURE 3 | Lipid body oleosin localizes at the plasma membrane and

co-localizes with callose at plasmodesmata. (A–C) Confocal images of
Arabidopsis root hairs in GFP::Ole2 lines showing (A) LB marker-protein,
oleosin, GFP::Ole2, (B) in connection with lipid after staining with fluorescent
dye Nile red. (C) Overlay with bright field shows that GFP::Ole2 co-localizes

with LBs, except at the plasmamembrane, where GFP::Ole2 containing
bodies are free of lipid. (D–F) Confocal images of leaf cells of Arabidopsis
GFP::Ole2 lines showing PD-callose stained with aniline blue (D), and the LB
marker-protein GFP::Ole2 (E). (F) Overlay shows that GFP::Ole2 has low
expression in leaf cells, but co-localizes with callose at PD. Bars, 10 mm.
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by embedding amphipatic domains in the cytofacial leaflet or by
electrostatic interactions. If so, PM microdomains might shuttle
a diverse cargo of LB-delivered non-integral membrane proteins.
Most of these proteins might hitch a ride on the LB surface to reach
the PD channel for cell-to-cell transport. Alternatively, structural
proteins might become embedded in the architectural fabric of
the PD channel, a specialized membrane adhesion site (Figures 2
and 3; reviewed in Tilsner et al., 2011). Remorin, which accumu-
lates in the PD channel recruits PM- and cytoplasmic proteins into
signaling complexes, and there seems no reason why remorin or
as yet unidentified scaffolding proteins could not mediate transfer
of LB-delivered proteins to the PD chamber. Regardless the pre-
cise mechanism, recent investigations showed that LB-associated
1,3-β-glucanase (Rinne et al., 2011) as well as the LB marker
oleosin:eGFP target the PM and accumulate at PD (Figure 3).
This begs the question if oleosin is responsible for targeting LBs to
the PM and PD. Oleosin is a structural LB protein that regulates LB
size and stability, but which has enzymatic activity and may serve
targeting functions. In Arabidopsis root hairs, which are devoid of
PD except at their base, the transgenic overexpression of oleosin
induces LBs that often remain circling in the cytoplasm, but also
target the PM. In contrast, in leaf cells they are mostly found at PD,
co-localizing with callose (Figure 3). Taken together, this suggests
that PD are one of the end-destinations of LBs. Oleosin possesses a
hydrophobic hairpin that anchors it to the LB core (Huang, 1996;
Li et al., 2002). Although oleosin overexpression can induce so-
called oleosin-bodies that are unrelated to LBs, it can promote LB
formation from the ER in yeast (Jacquier et al., 2013) as well as in
Arabidopsis root hairs (Figure 3). Thus, hairpin-containing plant
proteins such as oleosin, and possibly the related LB protein cale-
osin, can induce LBs in a heterologous system. In line with this,
the LB protein steroleosin, which does not have this capacity to
induce LBs, is retained in the ER when expressed in protoplasts
(De Domenico et al., 2011).

In an alternative route, macromolecular complexes might arrive
at the PD channel via strands of ER that terminate at the desmo-
tubule of the PD (Epel, 2009), or via the actin cytoskeleton
(Oparka, 2004). Several viruses are known to highjack these sys-
tems to reach PD. The desmotubule, centrally located in the
PD channel, could also be a potential target of LBs. For exam-
ple, the protein reticulon which can induce extreme curvature
in tubular cortical ER (Tolley et al., 2008) and which could
possibly be present at the desmotubule (Tilsner et al., 2011),
can associate with LBs (Krahmer et al., 2013). Thus, it seems
possible that LBs deliver reticulon from their site of synthe-
sis to the cortical tubular ER, as well as to the interconnected
desmotubule.

PERSPECTIVE
Originally regarded as simple depots for neutral lipids, recent
research has revealed that LBs are dynamic organelles that act
as transport vehicles, signaling devices, and moving platforms for
opportunistic travelers to various destinations, probably including
PD. Elucidating LB–PD interactions might facilitate the identifi-
cation of novel PD components as well as increase understanding
of how these components are delivered to the interior of the PD.
It could also facilitate the discrimination between structural and

modulatory PD components and accidental visitors that are pass-
ing through the channel. In the near future, LB isolation, protein
purification and sequencing is expected to generate inventories
of putative LB-associated proteins. The validity of such invento-
ries will require functional studies to confirm the putative role of
LB-associated proteins in the regulation of the PD channel. It is
anticipated that such endeavors will reveal that LBs contribute to
the functional refurbishment of the PD chamber.
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