

Norges miljø- og biovitenskapelige universitet Fakultet for miljøvitenskap og teknologi Institutt for matematiske realfag og teknologi

Masteroppgave 2014 30 stp

Vindtunnelstudie av redistribusjon av snø på flate tak med solfangere

A Wind Tunnel Study of Snow Redistribution on Flat Roofs with Solar Collectors

Markus Fredrik Molnar

Forord

Denne masteroppgaven er utført av Markus Fredrik Molnar våren 2014. Oppgaven avlegges som en avsluttende del av studiet Byggeteknikk og arkitektur ved Norges miljø- og biovitenskapelige universitet (NMBU). Arbeidet med oppgaven er utført i Ås og Coimbra, Portugal i tidsrommet 6. januar – 13. mai 2014.

En stor takk til min kjæreste Silje Thorsnes, som har vært hjelpsom underveis i prosessen og en viktig motivator. Min mor og far har bidratt med korrekturlesing og støtte under arbeidet med oppgaven, noe jeg er svært takknemlig for. Jeg retter en stor takk til Arnold Vinje Erichsen for god hjelp til bygging av skalamodell, utførelse av forsøk i vindtunnel og faglige diskusjoner tilknyttet oppgaven. Jeg ønsker også å takke Erichsen for godt selskap under oppholdet i Portugal.

Takk til University of Coimbra (UC) og forskningsinstitusjonen ADAI for tillatelse til bruk av vindtunnel i forbindelse med oppgaven. I tillegg ønsker jeg å takke Professor Almerindo Ferreira ved UC for hjelp i forbindelse med skalaforsøkene, faglig samt praktisk hjelp, og hyggelig samvær under oppholdet i Portugal.

Veileder for oppgaven var Professor Thomas K. Thiis ved NMBU. Jeg ønsker å takke Thiis for god veiledning gjennom oppfølgning på et høyt faglig nivå i forbindelse med oppgaven. Jeg vil også takke Thiis for hyggelig samvær under oppholdet i Portugal.

NMBU, Ås, 14.05.2014

Markus Fredrik Molnar

Sammendrag

I denne oppgaven er det tatt sikte på å finne modeller for redistribusjon av snø på flate tak med solfangere. Videre er fokus er rettet mot sammenligning av resultater fra forsøk i vindtunnel med metoder for beregning av formfaktor for tak i henhold til snølaststandarden NS-EN 1991-1-3. Oppgaven er avgrenset til redistribusjon av snø på tak. Det er dermed ikke er tatt høyde for nedbør, transport av snø fra terreng til takflaten eller snømetamorfose.

Forsøksresultatene er fremstilt ved skalaforsøk i vindtunnel, og det er gjennomført referanseforsøk uten paneler som sammenligningsgrunnlag. Skalaforsøkene er gjennomført ut fra tre variabler: solfangernes vertikale avstand til takflaten, antall solfangerpaneler samt solfangernes orientering i forhold til vindretningen.

Ved lavere vindhastigheter vises en økt skjærhastighet langs modellens topplate ved forsøk med solfangere enn forsøk gjort uten solfangere. Overført til bygninger i fullskala gis økte påkjenninger på takkonstruksjonen, som kan føre til skjerpede krav til taktekking.

Resultater fra forsøk med vind mot panelenes absorbatorside viser at den totale mengden sand på modellen etter endt forsøker større enn for referanseforsøket, mens forsøk med vind mot panelenes bakside viser det motsatte. Det vises også at akkumulasjon av sand i større grad konsentreres mot modellens midtpunkt enn hva som er tilfelle for referanseforsøket. For reelle bygninger vil en økt lokal konsentrasjon av snø føre til uønskede lokale snølaster.

Forsøksresultatene viser en økt erosjon av sand ved en økning i antall paneler. Den økte erosjonen for forsøkene tilsier at for reelle bygg vil snølasten reduseres. Det beregnede dimensjonerende lasttilfellet for forsøkene gir videre en reduksjon i forhold til snølaststandardens formulering for snølast på flate tak.

Det dimensjonerende lasttilfellet for forsøkene ble også sammenlignet med snølaststandardens formuleringer for snølast på flate tak med projeksjoner. Formuleringen gjelder imidlertid kun for vertikalt stilte projeksjoner direkte på takflaten. Beregningene gjort etter snølaststandardens metode gir en betydelig økt snølast med øking i antall projeksjoner. Snølaststandardens formulering anses dermed som konservativ for beregningene gjort ut fra forsøksresultatenes verdier.

Abstract

In this thesis, the aim is to determine models for snow redistribution on flat roofs with solar collectors. Furthermore, the focus is directed towards the comparison of results from wind tunnel experiments with the methods for calculation of the snow load shape coefficient presented in NS-EN 1991-1-3. Precipitation, snow transport from the surrounding terrain to the roof and snow metamorphosis is not taken into account, as the thesis is limited to snow redistribution.

The experimental results were obtained through wind tunnel experiments. Base case experiments without solar collectors were carried out for comparison. The scale model experiments are carried out through three variables: the collectors' vertical distance from the roof surface, the number of solar collectors and the orientation relatively to the wind direction.

The experiments show that the shear velocity along the rooftop for the experiments with solar collectors is larger compared to the base case experiments at lower wind velocities. For full-scale buildings, this will lead to an increase in the stress on the roof surface.

The results from the experiments with wind direction towards the solar panels' absorber side show that the amount of sand left on the model is greater than for the base case experiment. The results from the experiments with wind direction towards the backside of the panels show the opposite. It appears that the deposition of sand concentrates near the centre of the scale model. For buildings, an increasing concentration of snow leads to local snow loads.

The sand erosion increased with the number of solar collector panels. This increase in eroded sand indicates a reduction of the snow loads for buildings. The calculated load for the measured values from the experiments is less than the load for persistent design situations for flat roofs according to NS-EN 1991-1-3.

The design load calculated from the measured values from the experiments was also compared to the methods described in NS-EN 1991-1-3 for snow loads on flat roofs with projections. However, this method is only valid for projections directly onto the roof surface. The calculations according to NS-EN 1991-1-3, provide a significantly increased snow load with an increase in the number of projections. Thus the method described in NS-EN 1991-1-3 is considered conservative based on the calculated load for the measured values from the experiments

Figurer

Kapittel 2:
Figur 1. Formfaktorer ved dimensjonering for snølast på tak med projeksjoner. Gjengivelse av figur 6.1 i
Figur 2 Vekst og separasion av grenselaget i en strømning, som følge av den økende trykkgradienten
Figure Einnemore & Franzini (2000)
Figur 3 Trukkgradiender med verdi C for vind mot lo vegg (venstre) og tak (høvre) Figur: Proced m fl
(2000) (2000)
Figur 4 Luftstrømmer over bygg (2) uten og (b) med solfangere. Figur: Väsies m fl (2012)
Figur 5. Fargediagrammer av vindhastighetene ved snittplan giennom (a) vestvendt fasade. (b) midten av
modellen og (c) østvendt fasade Figur: Väsies m fl (2012)
Figur 6 Koniske virvler ved vind 45° mot bygget Figur: Väsies m fl (2012)
Figur 7 Kryp (1) saltasion (2) og suspension (3) Figur: Ramberg (2009)
Figur 8 Snøfonndannelse ved et Wyoming snøgjerde med 50 % porøsitet 15° helning medvinds og en
spalte tilsvarende 15 % av snøgjerdets høyde . Profil nr. 1 er registrert 01.11.83, nr. 2 den 30.11,
nr. 3 den 07.12, nr. 4 den 12.12, nr. 5 den 20.12, nr. 6 den 01.01.84 og nr. 7 den 07.03. Figur:
Tabler (1988)
Figur 9. Sammenligning av likevektsprofiler ved to 3,8 m høye Wyoming-snøgjerder med 15° helning medvinds, med avstand lik henholdsvis 30 cm (heltrukken linje) og 90 cm (stiplet linje) mellom snøgjerdenes underkant og underlaget. Figur: Tabler (1986)
Figur 10. Effekten på snølagring av en spalte mellom underkant snøgjerde og underlag. Figur: Tabler (1994)
Figur 11. Månedlig solinnstråling på horisontalplanet [W/m ²] for Oslo, Tromsø og Hamburg. Figur: Andresen (2008)
Figur 12. Venstre: solfangere sett fra siden. Høyre: solfangere sett ovenfra. Figur: M.F. Molnar etter Affordable Solar (Ukjent dato)
Figur 13. Vindprofil målt i vindtunnelen nær testobjektets plassering på testområdet. Figur: Ferreira & Sanchez (2009)
Figur 14. Redistribusjon av tre partikkeltyper påmodellens nedre flate. Figur: Zhou m.fl (Upublisert)26
Kapittel 3:
Figur 15. Oversikt over vindtunnelens testområde
Figur 16. Målsatt 3D-tegning av skalamodellen brukt i forsøkene
Figur 17. Oversikt over innbyrdes avstander mellom solfangerpanelene

Figur 18. Plassering av modell samt definisjon av aksesystemet brukt i forsøkene, sett ovenfra	31
Figur 19. Definisjon av modellens orientering i forhold til vindretningen (vist med piler). Til venstre:	
positiv orientering. Til høyre: negativ orientering	32
Figur 20. Til venstre vises modellen like før registrering av viftefrekvens w = 225 rpm ved forsøk	
SC_E_5_8_N. Til høyre vises hvordan de forhåndsbestemte nivåene ble registrert for å kunne	
bearbeide data videre	34

Kapittel 4:

Figur 21. Vindhastigheter ved innløpet. Den vertikale aksen vise	er vindhastighet. Den horisontale aksen
viser avstand fra innløpets nedre venstre hjørne sett fra te	estområdet mot innløpet38
Figur 22. Vindhastigheter over testområdet og i utløpet	
Figur 23. Erosjonsdiagram i plan, for forsøk SC_E_0_0	
Figur 24. Erosjonsdiagram i snitt gjennom senterlinjen, for forsø	øk SC_E_0_040
Figur 25. Erosjonsdiagram i plan, for forsøk SC_E_2_8_N	
Figur 26. Erosjonsdiagram i snitt gjennom senterlinjen, for fors	øk SC_E_2_8_N41
Figur 27. Erosjonsdiagram i plan, for forsøk SC_E_2_8_P	
Figur 28. Erosjonsdiagram i snitt gjennom senterlinjen, for forsø	øk SC_E_2_8_P42
Figur 29. Erosjonsdiagram i plan, for forsøk SC_E_2_16_N	
Figur 30. Erosjonsdiagram i snitt gjennom senterlinjen, for forse	vk SC_E_2_16_N43
Figur 31. Erosjonsdiagram i plan, for forsøk SC_E_2_16_P	
Figur 32. Erosjonsdiagram i snitt gjennom senterlinjen, for forse	۶k SC_E_2_16_P44
Figur 33. Erosjonsdiagram i plan, for forsøk SC_E_2_24_N	
Figur 34. Erosjonsdiagram i snitt gjennom senterlinjen, for fors	øk SC_E_2_24_N45
Figur 35. Erosjonsdiagram i plan, for forsøk SC_E_2_24_P	
Figur 36. Erosjonsdiagram i snitt gjennom senterlinjen, for fors	øk SC_E_2_24_P46
Figur 37. Erosjonsdiagram i plan, for forsøk SC E 3 8 N	
Figur 38. Erosjonsdiagram i snitt gjennom senterlinjen, for fors	øk SC_E_3_8_N47
Figur 39. Erosjonsdiagram i plan, for forsøk SC E 3 8 P	
Figur 40. Erosjonsdiagram i snitt gjennom senterlinjen, for fors	øk SC E 3 8 P48
Figur 41. Erosjonsdiagram i plan, for forsøk SC_E_3_16_N	
Figur 42. Erosjonsdiagram i snitt gjennom senterlinjen, for fors	øk SC_E_3_16_N49
Figur 43. Erosjonsdiagram i plan, for forsøk SC E 3 16 P	
Figur 44. Erosjonsdiagram i snitt gjennom senterlinjen, for fors	øk SC E 3 16 P50
Figur 45. Erosjonsdiagram i plan, for forsøk SC E 3 24 N	
Figur 46. Erosjonsdiagram i snitt gjennom senterlinjen, for fors	øk SC E 3 24 N
Figur 47. Erosjonsdiagram i plan, for forsøk SC E 3 24 P	
Figur 48. Erosjonsdiagram i snitt gjennom senterlinjen, for fors	øk SC E 3 24 P52
Figur 49. Erosjonsdiagram i plan, for forsøk SC E 5 8 N	
Figur 50. Erosjonsdiagram i snitt gjennom senterlinjen, for fors	øk SC E 5 8 N53
Figur 51. Erosionsdiagram i plan, for forsøk SC E 5 8 P	
Figur 52. Erosionsdiagram i snitt giennom senterlinien, for forse	øk SC E 5 8 P54
Figur 53. Erosionsdiagram i plan, for forsøk SC E 5 16 N	
Figur 54. Erosionsdiagram i snitt giennom senterlinien, for forse	% SC E 5 16 N
Figur 55. Erosionsdiagram i plan, for forsøk SC E 5 16 P	56
Figur 56. Erosionsdiagram i snitt giennom senterlinien, for fors	ok SC E 5 16 P
Figur 57. Erosionsdiagram i plan, for forsøk SC E 5 24 N	57
Figur 58. Erosjonsdiagram i snitt giennom senterlinien, for forsø	% SC E 5 24 N
Figur 59. Erosjonsdiagram i plan, for forsøk SC E 5 24 P	58
Figur 60. Erosjonsdiagram i snitt giennom senterlinien for forse	% SC E 5 24 P
Figur 61. Sandlagets høyde ved forsøk SC D 0 0 T0 og SC D	0.0 T6 (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)	0 0 10 (preist), og unteransen menom 61
Figur 62 Skalamodell etter forsøk SC D 2 8 N Vindretning i	nedenfra 62
i igai 02. Skalamodon edel totspk SC_D_2_0_11. V multuning i	

Figur 63. Skalamodell etter forsøk SC_D_2_8_N. Vindretning fra høyre
Figur 64. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_2_8_N (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)63
Figur 65. Skalamodell etter forsøk SC_D_2_8_P. Vindretning nedenfra
Figur 66. Skalamodell etter forsøk SC_D_2_8_P. Vindretning fra høyre64
Figur 67. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_2_8_P (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)65
Figur 68. Skalamodell etter forsøk SC_D_2_24_N. Vindretning nedenfra
Figur 69. Skalamodell etter forsøk SC_D_2_24_N. Vindretning fra høyre
Figur 70. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_2_24_N (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)67
Figur 71. Skalamodell etter forsøk SC_D_2_24_P. Vindretning nedenfra
Figur 72. Skalamodell etter forsøk SC_D_2_24_P. Vindretning fra høyre
Figur 73. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_2_24_P (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)69
Figur 74. Skalamodell etter forsøk SC_D_3_8_N. Vindretning nedenfra70
Figur 75. Skalamodell etter forsøk SC_D_3_8_N. Vindretning fra høyre70
Figur 76. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_3_8_N (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)71
Figur 77. Skalamodell etter forsøk SC_D_3_8_P. Vindretning nedenfra72
Figur 78. Skalamodell etter forsøk SC_D_3_8_P. Vindretning fra høyre72
Figur 79. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_3_8_P (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)73
Figur 80. Skalamodell etter forsøk SC_D_3_24_N. Vindretning nedenfra74
Figur 81. Skalamodell etter forsøk SC_D_3_24_N. Vindretning fra høyre74
Figur 82. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_3_24_N (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)75
Figur 83. Skalamodell etter forsøk SC_D_3_24_P. Vindretning nedenfra76
Figur 84. Skalamodell etter forsøk SC_D_3_24_P. Vindretning fra høyre
Figur 85. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_3_24_P (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)77
Figur 86. Skalamodell etter forsøk SC_D_5_8_N. Vindretning nedenfra78
Figur 87. Skalamodell etter forsøk SC_D_5_8_N. Vindretning fra høyre78
Figur 88. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_5_8_P (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)
Figur 89. Skalamodell etter forsøk SC_D_5_8_P. Vindretning nedenfra
Figur 90. Skalamodell etter forsøk SC_D_5_8_P. Vindretning fra høyre80
Figur 91. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_5_8_P (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)
Figur 92. Skalamodell etter forsøk SC_D_5_24_N. Vindretning nedenfra
Figur 93. Skalamodell etter forsøk SC_D_5_24_N. Vindretning fra høyre
Figur 94. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_5_24_N (øverst), og differansen mellom
sandlaget ved de to målingene (nederst)
Figur 95. Skalamodell etter forsøk SC_D_5_24_P. Vindretning nedenfra

Figur 96. Skalamodell etter forsøk SC_D_5_24_P. Vindretning fra høyre	.84
Figur 97. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_5_24_P (øverst), og differansen mellor	n
sandlaget ved de to målingene (nederst)	.85
Figur 98. Prosentvis differanse mellom total erosjon for SC_D_0_0 T6, og øvrige akkumulasjonsforsøk	
med 8 mm avstand mellom panelenes underkant og topplaten.	.87
Figur 99. Prosentvis differanse mellom total erosjon for SC_D_0_0 T6, og øvrige akkumulasjonsforsøk	
med 24 mm avstand mellom panelenes underkant og topplaten.	.87

Tabeller

Kapittel 2:	
Tabell 1. Et utvalg anbefalte vinkler for solfangere	22
Tabell 2. Oversikt over de fysiske egenskaper til partikkeltypene brukt i Zhou m.fl. (Upublisert)	26
Kapittel 3:	
Tabell 3. Oversikt over de totalt 19 erosjonsforsøkene gjennnomført i forbindelse med oppgaven	33
Tabell 4. Oversikt over de totalt 13 akkumulasjonsforsøk gjennomført i forbindelse med oppgaven	35
Kapittel 4:	
Tabell 5. Resultater fra kalibrering av vindtunnelens rotasjonshastighet mot de målte vindhastigheter	37
Tabell 6. Prosentvis differanse av total sanderosjon mellom SC_D_0_0 T6 og de øvrige	
akkumulasjonsforsøk	86

Innhold

Forord		I
Sammendra	g	II
Abstract		III
Figurer		IV
Tabeller		VIII
1.0 Innled	ning	
1.1 Bak	grunn	
1.2 Avg	rensning og problemstilling	
1.3 Disp	posisjon	
2.0 Teori		3
2.0 1 COII.	sentasion av snølaststandarden	3
2.1 110	Restemmelse av snølast	3
2.1.2	Formfaktoren u	
2.2 Innf	Føring i fluiddynamikk	
2.2.1	Trvkk	
2.2.2	Densitet og viskositet	
2.2.3	Laminær og turbulent strømning	
2.2.4	Grenselag	
2.2.5	Fullt utviklet strømningsmønster	6
2.2.6	Strømninger med frie overflater	7
2.2.7	Separasjon	
2.2.8	Bernoullis ligning og Venturieffekten	
2.2.9	Pitotrør	9
2.3 Innf	øring i vindteori	
2.3.1	Atmosfærisk trykk	
2.3.2	Geostrofisk vind	
2.3.3	Vind i grenselaget – det logaritmiske vindprofilet	
2.3.4	Vind rundt bygninger	
2.4 Innf	øring i snøteori	
2.4.1	Kryp	
2.4.2	Saltasjon	
2.4.3	Suspensjon	
2.4.4	Kombinasjoner	
2.4.5	Avsetting av vindtransportert snø	
2.4.6	Redistribusjon av snø på tak ved snødriv	
2.4.7	Likevektsprofil ved snøfonner	
2.4.8	Snøgjerder med spalte	19
2.4.9	Snøfluks	
2.5 Solf	angere	21
2.5.1	Optimal vinkel for solfangere	
2.5.2	Optimal avstand mellom rader med solfangerpaneler	23
2.6 Skal	aforsøk	24
2.6.1	Erosjonsforsøk	24

2.6.2	Akkumulasjonsforsøk	25		
3.0 Metod	e			
3.1 Met	ode, skalaforsøk i vindtunnel			
3.1.1	3.1.1 Om vindtunnelen			
3.1.2	Om skalamodellen	29		
3.1.3	Kalibrering av vindtunnel			
3.1.4	Om forsøkene			
3.1.5	Gjennomføring av erosjonsforsøk			
3.1.6	Gjennomføring av akkumulasjonsforsøk			
4.0 Result	ater			
4.1 Kali	brering av vindtunnel			
4.1.1	Kalibrering av vindhastighet			
4.1.2	Kalibrering av vindhastighet ved innløpet			
4.1.3	Kalibrering av vindhastighet over testområdet og utløpet			
4.2 Eros	sjonsforsøk			
4.2.1	Erosjonsforsøk, 2 paneler			
4.2.2	Erosjonsforsøk, 3 paneler			
4.2.3	Erosjonsforsøk, 5 paneler	53		
4.2.2	Sammenligning av resultater	59		
4.3 Akk	umulasjonsforsøk	60		
4.2.1	Akkumulasjonsforsøk, 2 paneler	62		
4.2.2	Akkumulasjonsforsøk, 3 paneler	70		
4.2.3	Akkumulasjonsforsøk, 5 paneler			
4.3.2	Sammenligning av resultater	86		
5.0 Diskus	jon			
5.1 Kali	, brering av vindtunnel			
5.2 Eros	sjonsforsøk			
5.3 Akk	umulasjonsforsøk			
5.5 Feill	xilder			
5.5.1	Kalibrering av vindhastighet i vindtunnel			
5.5.2	Skalaforsøk			
6.0 Konklı	ısjon og videre arbeid	94		
7.0 Littera	turliste			
A Vadlar	α	08		
8.1 Ved	eσσ kalihrering av vindtunnel	90 98		
8.2 Ved	legg måledata akkumulasionsforsøk	100		
012 700				

1.0 Innledning

1.1 Bakgrunn

De siste årene har interessen for lavenergiboliger og –næringsbygg som passivhus, nullhus og plusshus økt. For å få klassifisert et bygg som passivhus, nullhus eller plusshus, stilles det krav til et lavt energiforbruk (Andresen 2008). I tillegg ønskes en større andel av energiforsyningen dekket av fornybar energi. Oppvarming av bygg gjennom solfangere er en miljøvennlig måte å dekke deler av varmebehovet på.

Solfangere vil påvirke den vindinduserte redistribusjonen av snø på tak som følge av de aerodynamiske egenskapene panelene tilfører taket. Dermed påvirkes også fordelingen av snølasten over takflaten. I snølaststandarden NS-EN 1991-1-3 formuleres metoder for beregning av dimensjonerende snølast for flate tak med projeksjoner. Formuleringen gjelder imidlertid kun for projeksjoner i direkte kontakt med takflaten. Solfangere monteres ofte på tak med en avstand fra solfangerpanelenes underkant til takflaten

Snølaststandarden tar høyde for vindens påvirkning på snølasten gjennom eksponeringsfaktor og formfaktor. For topografier med normal avskjerming av taket, settes formfaktoren lik 0,8 for flate tak, som tilsier at 20% av takets totale snømengde eroderes av takflaten.

Formfaktoren for flate tak med solfangere kan beregnes eksempelvis ved skalaforsøk. I denne oppgaven er det gjennomført skalaforsøk i vindtunnel ved ulike variabler; antall solfangerpaneler, panelenes orientering i forhold til vindretningen og panelenes vertikale avstand til takflaten. Det tas sikte på å sammenligne forskjellen i den totale lasten og lastfordelingen ved forsøksresultatene med standardens formulering for beregning av snølast på tak med projeksjoner. Dette er gjort for å undersøke om standardens metoder også kan benyttes for projeksjoner indirekte på takflaten.

1.2 Avgrensning og problemstilling

Et forslag til endring av snølaststandarden er ikke en del av målet med denne oppgaven. Hovedfokus i oppgaven er rettet mot forskjellen i redistribusjon av snø på flate tak med og uten solfangere. Det er flere faktorer som virker inn på redistribusjon av snø på tak: nedbør, transport av snø fra terrenget til takflaten, snøtransport fra et område av taket til et annet, og snømetamorfose. Denne oppgaven er begrenset til redistribusjon av snø på takflater. I forsøkene er det kun tatt høyde for to vindretninger og én bygningsform, og sand er brukt til å simulere snø. Hvis forsøksresultatene i denne oppgaven viser at plassering av solfangere på flate tak anses å ha betydning for vind- og snølastforholdene for flate tak, kan de benyttes i videre forskning for å eventuelt fremme et forslag til endring av snølaststandarden.

Oppgavens problemstilling gis ved følgende punkter:

- På hvilken måte vil solfangere påvirke vindforhold langs flate tak i forhold til uten solfangere?
- Hvordan vil snø redistribueres på flate tak med solfangere i forhold til ved flate tak?
- Hvordan er forskjellene mellom snølaststandardens formulering for beregning av dimensjonerende snølast på flate tak og den beregnede snølasten på flate tak med solfangere ut fra forsøksresultatene i oppgaven?
- Kan snølaststandardens formulering for beregning av dimensjonerende snølast på flate tak med projeksjoner benyttes for tilsvarende beregning for flate tak med solfangere, ut fra resultater fra skalaforsøk?

1.3 Disposisjon

Oppgaven består av 8 kapitler, og er bygget opp etter følgende oppsett:

- Kapittel 1 Innledning: Oppgavens bakgrunn og tema presenteres.
- Kapittel 2 Teori: I dette kapittelet presenteres oppgavens bakgrunn gjennom relevant teori, litteratur og forskning. Begreper innen fluiddynamik, vindfysikk, snøfysikk som senere vil bli diskutert blir vektlagt.
- Kapittel 3 Metode: De vitenskapelige metoder som er benyttet for å fremskaffe oppgavens resultater blir redegjort.
- Kapittel 4 Resultater: I dette kapittelet presenteres forsøksresultater gjennom diagrammer, samt forklaringer av diagrammene.
- Kapittel 5 Diskusjon: Resultatene fra kapittel 4 blir analysert og drøftet opp mot den presenterte teorien og oppgavens problemstilling.
- Kapittel 6 Konklusjon og videre arbeid: Resultatene oppsummeres, og det presenteres en endelig konklusjon av oppgaven.
- Kapittel 7 Litteraturliste: Dette kapittelet inneholder en liste over alle referanser brukt i forbindelse med oppgaven
- Kapittel 8 Vedlegg: Måledata fra forsøk og beregninger presenteres i form av tabeller og diagrammer.

2.0 Teori

2.1 Presentasjon av snølaststandarden

Alle konstruksjoner som oppføres i Norge skal ifølge Byggteknisk forskrift (TEK) gi sikkerhet mot sammenbrudd. I henhold til TEK10 skal byggverk *plasseres*, *prosjekteres og utføres slik at det oppnås tilfredsstillende sikkerhet for personer og husdyr, og slik at det ikke oppstår sammenbrudd eller ulykke som fører til uakseptabelt store materielle eller samfunnsmessige skader*.

Hvis Norsk Standards retningslinjer for belastninger og dimensjonering følges, vil krav til sikkerhet oppfylles. Ved avvik fra Norsk Standard, må sikkerhetskravene i TEK dokumenteres på et annet vis. Nåværende snølaststandard presentert i dette kapittelet er NS-EN 1991-1-3:2003, Eurokode 1 – Laster på konstruksjoner – Del 1: Allmenne laster – Snølaster.

Snølaststandardens relevans i denne oppgaven er knyttet til sammenligning av projeksjoner direkte på flate tak, og indirekte på takflaten. Det vil derfor bli fremlagt en kort introduksjon av snølaststandarden, og avsnittet om projeksjoner på flate tak.

2.1.1 Bestemmelse av snølast

Den dimensjonerende snølasten på tak s, skal ifølge snølaststandarden bestemmes ved

$$\mathbf{s} = \boldsymbol{\mu}_i \cdot \mathbf{C}_e \cdot \mathbf{C}_t \cdot \mathbf{s}_k \tag{1}$$

hvor μ_i er takets formfaktor, C_e er eksponeringsfaktoren, C_t er den termiske faktoren, og s_k er den karakteristiske snølasten på mark.

Den karakteristiske snølasten på mark er en femtiårslast, som vil si at den overskrides i gjennomsnitt hvert femtiende år. Snølaststandardens nasjonale tillegg NA:2008 oppgir den karakteristiske snølasten på mark for alle kommuner i Norge. Eksponeringsfaktoren C_e tar høyde for at vind kan blåse snø fra taket, og settes normalt lik 1,0. Den termiske faktoren C_t tar høyde for snøsmelting, og settes normalt lik 1,0. Formfaktoren μ_i bestemmes ur fra takets påvirkning på erosjon av snø av takflaten. Formfaktoren kan variere over takflatens utstrekning.

2.1.2 Formfaktoren µi

Dimensjonerende snølaster for tak vil variere med takutformingen og eventuelle lokale elementer som kan ha innvirkning på snølasten. For flate tak vil formfaktoren μ_i være lik 0,8. Dette vil si at 20% av snøen drives av takflaten. Ved tak med projeksjoner, eksempelvis ventilasjonsrom eller reklameskilt, bestemmes takets formfaktor ved

$$\mu_1 = 0.8$$
 (2)

og

$$\mu_2 = \gamma \cdot h/s_k \tag{3}$$

forutsatt at 0,8 ≤ μ_2 ≤ 2,0

hvor γ er snøens tyngdetetthet. For flate tak med projeksjoner settes denne normalt lik 2 kN/m³.

Figur 1. Formfaktorer ved dimensjonering for snølast på tak med projeksjoner. Gjengivelse av figur 6.1 i NS-EN 1991-1-3.

Snøfonnens lengde settes lik

 $l_s = 2h \label{eq:ls}$ for utsatt at 5 m $\leq l_s \leq$ 15 m

hvor h er projeksjonens høyde.

Den dimensjonerende snølasten for tak med projeksjoner vil dermed kreve bruk av to formfaktorer. For områdene av tak med avstand $l_s > 2h$ vil formfaktoren være lik formfaktor for flate tak. For områdene nær projeksjonen vil den dimensjonerende snølasten avhenge av projeksjonens høyde. Vi ser at formfaktorens verdi øker lineært mot projeksjonen fra avstanden l_s .

(4)

2.2 Innføring i fluiddynamikk

Fluidmekanikk defineres i fysikken som læren om fluider, altså væsker og gasser. Fluidmekanikk kan igjen deles inn i fluidstatikk, studiet av fluider i ro; fluidkinematikk, studiet av fluider i bevegelse og fluiddynamikk, studiet av krefters effekt på fluiders bevegelse. Fluiddynamikk kan igjen deles i aerodynamikk, læren om gass i bevegelse og hydrodynamikk, læren om væsker i bevegelse. Hoveddelen av teorien i dette kapittelet er hentet fra Alexandrou (2001), Finnemore & Franzini (2009) og Morrison (2013).

2.2.1 Trykk

Trykk defineres i fysikken som kraft per overflateareal. Denne oppgaven avgrenses til trykk i forbindelse med fluider. Trykk i et fluid kommer som et resultat av atomenes kollisjoner innad i fluidet og mot flatene som avgrenser det.

Et fluid under trykk vil alltid utjevnes med omgivelsene såfremt det ikke blir hindret, for eksempel ved å oppbevares i en beholder. Hvis ingen andre krefter virker på systemet, vil utjevningen forekomme med retning lik trykkgradientens. En trykkgradient er en vektorstørrelse rettet mot den største endring i trykk.

2.2.2 Densitet og viskositet

Et fluids egenskaper avhenger blant annet av fluidets densitet og viskositet. Densiteten eller massetettheten ρ er en betegnelse for masse per volum, og benevnes kg/m³. Et legemes densitet er absolutt fordi det avhenger av massen, som igjen er uavhengig av sted. Derimot påvirkes et fluids densitet av trykk og temperatur.

Et fluids viskositet er et mål for motstanden mot skjær- og normaldeformasjon. Friksjonskrefter i strømmende fluider kommer av kohesjon og utveksling av bevegelsesmengde mellom molekyler. For gasser vil økning i temperatur føre til en økning i viskositet, mens densiteten vil minke. Den dynamiske viskositeten μ har benevningen Ns/m², eller kg/sm. Den kinematiske viskositeten finner man ved forholdet mellom et fluids dynamiske viskositet og densitet, og har benevningen m²/s.

2.2.3 Laminær og turbulent strømning

Ved laminære strømningsmønstre, strømmer fluidet i tynne lameller lagvis over strømmens tverrsnitt. På molekylnivå vil partiklene bevege seg langs en bane eller, strømlinje. Turbulente strømningsmønstre kjennetegnes ved at partiklene følger uregelmessige baner og ingen definert frekvens, som for eksempel i bølgebevegelser. Strømningshastigheten varierer, og virvler følger tilfeldige, brå bevegelser.

For en fluidstrøm i et fullt rør vil ikke gravitasjonskraften påvirke strømningsmønsteret. Det vil derimot treghetskrefter og fluidets viskositet. Treghetskreftene er grunnet at endringer i et fluids hastighet ikke forekommer øyeblikkelig, men at hastigheten endres over tid. For Reynoldstallet Re, altså forholdet mellom treghetskrefter og viskøse krefter, gjelder (Morrison 2013)

$$\operatorname{Re} \equiv \rho \cdot \langle \upsilon \rangle \cdot D/\mu \tag{5}$$

hvor ρ er fluidets densitet, $\langle \upsilon \rangle$ er fluidstrømmens gjennomsnittshastighet, D er rørets hydrauliske diameter og μ er fluidets viskositet. For strømninger i sirkulære rør vil D tilsvare rørets diameter.

Ved normale tilfeller av strømning i et sirkulært, rett rør med normal ruhet, vil kritisk verdi for Reynoldstallet $\text{Re}_{\text{crit}} = 2000$ (Finnemore & Franzini 2009). Det vil altså normalt ikke oppstå turbulente strømninger ved Re < 2000. Morrison (2013) oppgir laminær strømning ved Re < 2100, turbulent strømning ved Re > 4000, og ustabil strømning ved 2100 < Re < 4000. Alexandrou (2001) oppgir laminær strømning ved Re < 2500 og turbulent strømning ved Re > 3000.

2.2.4 Grenselag

For en fluidstrøm over en flate, vil fluidets hastighet avta ved en viss avstand fra flaten, og inn mot flaten hvor hastigheten er 0. I fluidmekanikken defineres dette området som grenselaget (Morrison 2013). På grunn av den store hastighetsgradienten vil fluidets viskositet bestemme strømningshastigheten i grenselaget. Flatens ruhet vil også påvirke hastigheten i form av friksjon, som fører til skjærkrefter på fluidet. For en uniform luftstrøm med hastighet 10 m/s over en flate, vil grenselagets høyde være 0,5 cm, målt 0,5 m fra innføringspunktet.

2.2.5 Fullt utviklet strømningsmønster

For fluidstrømninger i rør kreves en minimumslengde fra rørets begynnelse til strømningen er fullt utviklet. På grunn av effekten av grenselag vil en hastighetsgradient utvikles langs rørets indre overflate til strømningen har nådd en kritisk distanse. Ved denne kritiske distansen kan strømningen sies å være fullt utviklet. Hastigheten i fluidstrømmens sentrum vil være uniform. Grenselagets høyde vil øke til strømningen har nådd denne kritiske distansen, også kalt inngangsavstanden. For laminære strømninger er inngangsavstanden L_e gitt ved (Alexandrou 2001)

$$L_{e} = 0.058 \cdot D_{h} \cdot Re \tag{6}$$

og for turbulente strømninger;

$$L_e = 4.4 \cdot D_h \cdot Re^{1/6} \tag{7}$$

hvor Re er strømningens Reynoldstall og D_h er rørets hydrauliske diameter.

For rør med sirkelformede tverrsnitt vil den hydrauliske diameteren være lik rørets innvendige diameter. For fluidstrømninger i rør med ikke-sirkulære tverrsnitt, er rørets hydrauliske diameter gitt ved (Franzini & Finnemore 2009)

$$D_{\rm h} = 4A/P \tag{8}$$

hvor A er rørets tverrsnittsareal og P andelen av rørets omkres som er i kontakt med fluidstrømmen.

Ved å anvende ligning 5 og 8, kan Reynoldstallet finnes for luftstrømmen i innløpets åpning i vindtunnelen brukt i forbindelse med denne oppgaven. Innløpets åpning måler 2 m x 2 m. For vindhastighet 5,1 m/s gis Re = 664 972, og for vindhastighet 13,6 m/s gis Re = 1 773 260. Her er det antatt at $\rho = 1,18$ kg/m³ og $\mu = 1,81 \cdot 10^{-5}$ kg/sm. Ettersom Reynoldstallet overskrider minimumsgrensen for turbulente strømninger, kan vi dermed si at strømningen i vindtunnelen er turbulent.

2.2.6 Strømninger med frie overflater

For en strømning med en fri overflate, eller en åpen strømning, er det ikke nok å beskrive strømningsmønsteret med Reynoldstallet. Ved slike tilfeller innfører vi et forholdstall mellom fluidets treghetskrefter og gravitasjonskraften som virker på fluidet. Dette forholdstallet kalles Froudetallet Fr, og er gitt ved (Morrison 2013)

$$Fr \equiv V^2/g \cdot L \tag{9}$$

hvor V er fluidstrømmens gjennomsnittshastighet, g er gravitasjonskraften og L er en den hydrauliske dybden. L tilsvarer normalt strømningens dybde.

2.2.7 Separasjon

Vi betrakter et fluid som strømmer over en konkavt krummende flate i strømningsretningen (se figur 2). A representerer et punkt hvor strømningen akselererer med en normal hastighetsdistribusjon i grenselaget, og B er punktet hvor hastigheten over grenselaget har nådd et

maksimum. Fra punkt B og videre nedstrøms vil hastigheten utenfor grenselaget avta, som resulterer i en trykkøkning (se ligning 10). Ved punkt D er hastigheten nær underlaget lik 0. Dermed vil grenselaget separeres fra underlaget. Ved punkt E oppstår det en resirkulasjon nær underlaget, drevet i retning av det lavere trykket. I dette tilfellet drives resirkulasjonen oppstrøms mot punkt D, for så å følge strømmen med **u**. Nedstrøms fra separasjonspunktet D dannes turbulente virvler. Merk at grenselagets høyde øker med avstanden fra punkt A.

Figur 2. Vekst og separasjon av grenselaget i en strømning, som følge av den økende trykkgradienten. Figur: Finnemore & Franzini (2009).

Området nedstrøms for separasjonspunktet betegnes som separasjonssonen, eller resirkulasjonssonen. Punktet hvor virvlene tas med i det normale strømningsmønsteret igjen kalles gjenkoblingspunktet. På grunn av virvlenes tilstedeværelse i separasjonssonen er både hastigheten og trykket lavere enn i resten av strømningen. Dermed kan partikler, som for eksempel snø, akkumuleres i separasjonssoner.

2.2.8 Bernoullis ligning og Venturieffekten

Bernoullis ligning kan utledes fra prinsippet om bevaring av energi. For et ukomprimerbart fluid kan Bernoullis ligning skrives som (Finnemore & Franzini 2009)

$$p + \gamma \cdot z + 1/2 \cdot \rho \cdot V^2 = \text{konstant}$$
(10)

hvor p er det statiske trykket som virker på fluidet, γ er fluidets spesifikke vekt [N/m³], z er høyden over underlaget, V er fluidets gjennomsnittshastighet og ρ er fluidets densitet.

Det er viktig å merke seg antakelsene ved bruk av Bernoullis ligning. Ligningen gjelder kun under følgende antakelser (Finnemore & Franzini 2009):

- 1. Det antas at viskøse effekter er neglisjerbare.
- 2. Det antas at fluidet har en jevn strømning.
- 3. Likningen gjelder langs en strømlinje
- 4. Det antas at ingen energi legges til eller trekkes fra systemet.

Beregninger med Bernoullis ligning kan resultere i feil om antakelsene ikke gjelder. Likevel kan ligningen anvendes i situasjoner hvor effektene av friksjon er små.

En fluidstrøm som møter en kontraksjonsdel vil føre til en endring i strømningsmønsteret. På grunn av kontraksjonen vil strømlinjene samles, og vi får en økning i strømningshastigheten. Dette fenomenet kalles Venturieffekten, og kan beskrives ved kontinuitetsligningen

$$\mathbf{V}_1 \mathbf{A}_1 = \mathbf{V}_2 \mathbf{A}_2 \tag{11}$$

hvor V er fluidstrømmens gjennomsnittshastighet og A er tverrsnittsarealet fluidet strømmer gjennom. Indeksene 1 og 2 representerer to faste i fluidstrømmen.

2.2.9 Pitotrør

Den lokale hastigheten i et strømmende fluid kan måles ved hjelp av Pitotrør. Pitotrøret stilles opp parallelt med strømningsretningen, med retning oppstrøms. Det har to hull, et på enden rettet oppstrøms, og et på siden.

Trykket i stagnasjonspunktet p_0 til et stillestående legeme i en fluidstrøm, kan skrives som $p_0 = p + \rho \cdot V^2/2$, hvor p og V er henholdsvis trykk og hastighet i et uforstyrret punkt oppstrøms fra legemet. Hvis p_0 og p måles, kan vi bestemmes fluidstrømmens hastighet.

Hvis vi tar for oss ligning 10 for et Pitotrør, ser vi at siden målepunktet er fast vil høyden z være tilnærmet lik. Gravitasjonskraften er den samme for begge punkter, og hastigheten V_2 er lik null i Pitotrøret. Fluidets strømningshastighet kan så beregnes ved å modifisere ligning 10:

$$V_{1} = \sqrt{2 \cdot (p_{2} - p_{1})/\rho}$$
(12)

Ved å anvende Pitotrør kan man altså måle både trykket i stagnasjonspunktet (i dette tilfellet i Pitotrøret) og i fluidstrømmen, og dermed beregne fluidets strømningshastighet.

2.3 Innføring i vindteori

Vind er den største bidragsyteren for redistribusjon av snø på flate tak. I dette kapittelet gjennomgås den grunnleggende vindteoriensom legges til grunn for redistribusjon av snø. Hoveddelen av teorien i dette kapittelet er basert på litteratur av Kind (1981), McIlveen (1992) og Arya (2001).

2.3.1 Atmosfærisk trykk

Som tidligere nevnt er trykk definert som kraft per areal. Vind skyldes i all hovedsak jordrotasjon samt trykkforskjeller i atmosfæren, som igjen er en følge av endringer i temperatur. Det atmosfæriske trykket i et punkt tilsvarer vekten av alle molekyler radielt utover i atmosfæren fra punktet. For to punkter med samme avstand fra terrenget og med ulikt trykk, vil altså det ene punktet ha større masse over seg enn det andre. Vi kan dermed si at det atmosfæriske trykket er et resultat av jordens gravitasjonskraft.

Lokal vind forårsakes av forskjeller i lufttemperatur. Et eksempel på dette er fenomenet solgangsbris. Ettersom vann har større spesifikk varmekapasitet enn landområder (Çengel & Ghajar 2011) varmes og avkjøles sjøen mer langsomt enn landområdene.

Luften ved land blir raskere varmet opp enn luften over sjøen, og vil stige som et resultat av mindre tetthet. Det etterlates dermed et lavere trykk over landoverflaten enn over sjøen, som utjevnes ved en luftstrøm fra sjøen mot land, også kalt sjøbris. Tidlig på dagen kan denne luftstrømmen ha en høyde på under 50 m. Mot slutten av dagen kan luftstrømmen nå en høyde på 300 m (Simpson 1994). Om natten avkjøles landoverflaten raskere enn vannet, og det dannes en luftstrøm fra land mot sjøen, også kalt landbris.

2.3.2 Geostrofisk vind

Vind fra 300-1000 m over jordens overflate påvirkes ikke av terrengets ruhet, og omtales som gradientnivået. Vind ved denne høyden har hastighet tilnærmet lik den geostrofiske vindhastigheten U_g, som bestemmes av formelen (Berry 1981)

$$\mathbf{U}_{g} = \boldsymbol{\alpha} \cdot \boldsymbol{\Delta} \mathbf{p} \cdot \mathbf{k} / \mathbf{f} \tag{13}$$

hvor α er et gitt volum, Δp er den horisontale trykkgradienten, **k** er enhetsvektoren langs vertikalaksen og f er Coriolisparameteren, en konstant for en gitt høyde i atmosfæren.

Coriolisparameteren tas med i beregningen av den geostrofiske vindhastigheten på grunnlag av et fenomen kalt Corioliseffekten. For å forklare Corioliseffekten kan vi starte med å betrakte et roterende referansesystem, for eksempel en roterende plate. Om man triller en ball over platen, vil ballens bane sett fra referansesystemet være avbøyd. Dette fenomenet gjelder også for vind ved at vind blir avbøyd som følge av jordens rotasjon.

Den geostrofiske vinden strømmer med den horisontale trykkgradienten med en vindhastighet lik gradientens hastighet. På den nordlige halvkule vil lavtrykket dermed være på venstre side av den geostrofiske vindens retning, mens det blir omvendt på den sørlige halvkule.

2.3.3 Vind i grenselaget – det logaritmiske vindprofilet

Grenselag i strømmende fluider er forklart i 2.2.4. I atmosfæren befinner grenselaget seg under gradientnivået, og påvirkes av friksjonen fra terrengets topografi. Grenselaget strekker seg helt ned til de siste få meterne over terrenget. Grenselagets høyde kan variere mellom 100 m og 1 km (Arya 2001).

Luftstabiliteten er angitt ved den vertikale temperaturgradienten, og er gitt ved $\delta T/\delta z$, altså endringen i temperatur per endring i høyde over terrenget. Ved nøytrale forhold vil temperaturen avta med ~10°C for hver kilometer utover i atmosfæren.

Terrengruhetens innvirkning på vindhastigheten er komplisert grunnet sammenhengen mellom luftstabiliteten og vindhastigheten. Ved nøytrale forhold hvor $\delta T/\delta z \sim -10^{\circ}C / km$, kan vindhastigheten over jevne overflater opp til ca. 30 m bestemmes ved (Berry 1981)

$$U_{z} = U^{*} \cdot \ln\left(z/z_{0}\right) / k \tag{14}$$

hvor U_z er vindhastigheten ved høyden z over terrenget, z_0 er effektiv ruhetshøyde, k er von Karmans konstant (vanligvis = 0,4). Friksjonshastigheten eller skjærhastigheten er en hypotetisk hastighet definert ved $U^* \equiv \sqrt{\tau/\rho}$. Her er τ skjærkraften fra terrenget på vinden, og ρ er luftens densitet.

Terrengets effektive ruhetshøyde z_0 , avhenger av terrengets ruhet. Denne høyden er ikke lik terrengruhetens faktiske høyde, og kan bestemmes ut fra flere metoder:

- z₀ kan bestemmes ved å lese av fra tabeller om man kjenner terrengets topografi. Eksempler er Vindlaststandarden NS 3491-4 og figur 10.5 (Arya 2001).
- z₀ kan bestemmes ved å kjenne vindhastigheten i to forskjellige høyder ved (Thiis m.fl. 1999a)

 $z_0 = \exp \{ [u(z_2)\ln(z_1) - u(z_1)\ln(z_2)] / [u(z_2) - u(z_1)] \}$ (15) hvor u(z₁) er vindhastigheten ved høyden z₁, og u(z₂) er vindhastigheten ved høyden z₂.

2.3.4 Vind rundt bygninger

Forskning gjort av Prasad m.fl. (2009) tok sikte på å undersøke vindhastigheter og vindlaster ved forskjellige takutforminger gjennom forsøk i vindtunnel. Det er først og fremst resultatene fra forsøk med flate tak som er relevant for denne oppgaven. Vindhastigheten brukt i forsøkene er 7 m/s, og målingene ble foretatt ved trykkmålere montert i noder på skalamodellene. De målte verdiene av det statiske trykket ble omregnet til den ubenevnte trykkparameteren C_p, som er gitt ved

$$C_{p} = (P - P_{\infty})/(0.5 \cdot \rho \cdot U_{\infty}^{2})$$
⁽¹⁶⁾

hvor P er trykket i et gitt punkt, P_{∞} er trykket i en fri luftstrøm, U_{∞} er vindhastigheten i den frie luftstrømmen og ρ er luftens densitet.

Figur 3. Trykkgradienter med verdi C_p for vind mot lo vegg (venstre) og tak (høyre). Figur: Prasad m.fl. (2009).

Ved lo vegg vil det største trykket befinner seg ved høyde $y/H \approx 0.35$ (se figur 3). Fra dette punket synker trykket jevnt mot side- og toppkantene. På takflaten observeres sug, med største verdier ved takflatens hjørner mot lo side, og laveste verdier ved $y/H \approx 0.8$. Det er også antydninger til en separasjonsboble i intervallet 0.3 < y/H < 0.8.

Ved å montere solfangere på bygg endres byggets aerodynamiske egenskaper. Dermed endres også fordelingen av trykk og sug på takflaten, som igjen påvirker erosjon og akkumulasjon av

snø. Văsieş m.fl. (2012) analyserte CFD-simuleringer for å kunne bestemme denne endringen. Simuleringene ble gjort for bygg med og uten parapet, med 7 solfangerrader,

Figur 4 a viser en bygning som eksponeres for vind. Vinden avledes når den møter bygningskroppen. Ved punktet SP₁ ved venstre takfot formes et aerodynamisk hopp, og det synes en resirkulasjonsboble over taket. Hvis takets lengde er langt nok vil luftstrømmene gjenkobles med takflaten. På figur 4 b illustreres solfangerpanelenes innvirkning strømningsmønstret over bygningen. Luftstrømmene forstyrres av panelene og vindhastigheten avtar, og det dannes virvler mellom panelene.

Figur 4. Luftstrømmer over bygg (a) uten og (b) med solfangere. Figur: Väsieş m.fl (2012).

I simuleringene er solfangernes absorbatorside sydvendte, med helning 35°, 0,2 m over takflaten. Vindretningen er fra nordøst, altså rettet 135° med urviseren for solfangernes absorbatorside. Vindhastigheten ved innløpet er 14 m/s, og turbulensintensiteten er satt til 10%. Figur 5 viser fargekonturer av vindhastighetene fra simuleringene uten parapet i tre snittplan.

С

Figur 5. Fargediagrammer av vindhastighetene ved snittplan gjennom (a) vestvendt fasade, (b) midten av modellen og (c) østvendt fasade. Figur: Văsieş m.fl. (2012).

Som vist på figur 5, er det tendenser til en økning i vindhastigheten i underkant av panelene. Figur 5c viser konturer av resirkulasjonssoner mellom panelradene. Et annet fenomen Văsieş m.fl. peker på er effekten av koniske virvler som dannes ved skrå vind mot byggets hjørner. Virvler synes over panelraden mot venstre (figur 5), og illustrert ved røde linjer i figur 6.

Figur 6. Koniske virvler ved vind 45° mot bygget. Figur: Văsieş m.fl. (2012).

De koniske virvlene fører til en økning i turbulens over et relativt lite område langs takets kanter. Dette fører til sug nær hjørnene, men også oppløft langs takføttene ved loveggene.

2.4 Innføring i snøteori

Når partikler eksponeres for vind kan de forflyttes. Hvorvidt partiklene forflyttes avhenger av partiklenes egenskaper og vindhastigheten. I denne oppgaven er det transport og redistribusjon av snø aktuelt, eller snødriv.

Snøens terskelhastighet U*_{th} indikerer minimum skjærhastighet for at snø skal kunne transporteres. Terskelhastigheten bestemmes av partiklenes egenskaper: partiklenes størrelse, form og vekt, og de kohesive kreftene mellom partiklene. For eksempel vil terskelhastigheten for våt gammel snø være høyere enn for ny tørr snø. Normalt vil snøpartiklers terskelhastighet ligge mellom 0,1 og 0,2 m/s (Kind 1981).

Snøtransport er definert som mengde snø som transporteres av vinden over et gitt tidsrom og bredde, på tvers av vindretningen. Snøpartikler forflyttes ved tre typer snødriv: kryp, saltasjon og suspensjon (se figur 7).

Et annet viktig aspekt ved snødriv på tak er snømetamorfose, altså endring av snøens egenskaper. Orheim (1966) gjennomførte forsøk på snømetamorfose ved observasjoner og målinger av snø utsatt for smelting som følge av solinnstråling. Forsøkene viser at snø som er utsatt for solinnstråling og dermed smeltet, eroderes i mindre grad enn snø som ikke er utsatt for solinnstråling. Dette er grunnet en utvikling av hardheten i snøens overflate, som igjen fører til en økning i snøens terskelhastighet. Et eksempel er såkalt skaresnø.

Figur 7. Kryp (1), saltasjon (2) og suspensjon (3). Figur: Ramberg (2009).

2.4.1 Kryp

Partikler som er for store til å bli løftet fra underlaget ved vind, ruller eller *kryper* langs snølagets overflate. Denne formen for snøtransport former ofte snøbølger, eller snødyner. Partikler som følger denne formen for snøtransport utgjør opptil 25% av all snøtransport ved lavere vindhastigheter. De vil stanse ved mindre topografiske hindre og snøgjerder (Tabler 2003).

2.4.2 Saltasjon

Lettere partikler vil kunne *saltere* eller hoppe langs underlaget, men er fortsatt for tunge til å forbli i luften. De salterende partiklenes bane varierer med partikkelstørrelse, vindhastighet og underlagets forhold. En typisk bane for en salterende snøpartikkel følger en 1 cm høy og 25 cm lang parabolsk linje, og de fleste holdes under 5 cm over underlaget (Tabler 2003).

2.4.3 Suspensjon

Ved en økning i vindhastigheten, vil salterende snøpartikler transporteres av vindens turbulensvirvler. Når partiklenes fallhastighet er lavere enn den vertikale vindhastighetskomponenten, vil partiklene først transporteres opp, for så å forflyttes med vindretningen. (Thiis m.fl, 1999b). Dette kalles suspensjon.

For at snøpartikler suspenderes må friksjonshastigheten være 5 ganger større enn terskelhastigheten. Det er som oftest finere partikler, også kalt snøstøv, som transporteres ved suspensjon (Kind 1981). Suspenderte snøpartikler har i Antarktis blitt observert opp mot 300 m over terrengnivået (Thiis m.fl, 1999b), men de fleste holdes under 1 m over terrengnivået (Tabler 1988).

2.4.4 Kombinasjoner

Partiklene i et snødekke har ulike egenskaper. Dermed vil både kryp, saltasjon og suspensjon kunne forekomme samtidig. Ved vindhastigheter lavere enn U^*_{th} for de største partiklene, vil det kun være snøtransport i form av kryp. Hvis vindhastigheten øker og det observeres salterende partikler, vil det også som oftest være partikler som kryper. På samme måte vil det også kunne forekomme kryp og saltasjon ved observasjon av suspenderende partikler.

Når terskelhastighetene oppgis for snødekker, er de beregnet ut i fra gjennomsnittlig terskelhastighet for snøpartiklene. Type snøtransport ved skjærhastigheter er gitt ved (Kind 1981)

- Kryp når $U^* < U^*_{th}$
- Saltasjon når $U^*_{th} < U^* < 5U^*_{th}$
- Suspensjon når $U^* > U^*_{th}$

2.4.5 Avsetting av vindtransportert snø

En fullt utviklet snøtransport oppnås hvis mengden snø som løftes av vinden er lik mengden som avsettes. Hvis vi betrakter en vindprofil fri for partikler, vil partiklene langs terrenget begynne å løftes opp og føres i vindens retning. Til å begynne med vil antallet partikler som løftes opp fra underlaget være større enn antall avsatte partikler. Etter en viss distanse vil det oppnås en likevekt mellom partikler som løftes opp og avsettes. Tabler (1988) anslår denne distansen til 150-300 m, mens O'Rourke m.fl. (2005) anslår distansen til 210 m.

I en gitt høyde over terrenget øker vindens evne til å transportere snø ved økning i vindhastigheten (Tabler 1991). På samme måte vil vindens evne til å transportere snø avta om vindhastigheten avtar. På grunn av naturlig turbulens vil vindhastigheten endres kontinuerlig, og det vil dermed oppstå akselerasjoner og retardasjoner i vindhastigheten. Disse endringene i vindhastighet betegnes som fluktuasjon. Akkumulasjon og erosjon av snøpartikler grunnet vindens fluktuasjon jevnes ut over tid. Likevel vil snø akkumuleres i områder hvor skjærhastigheten avtar. I områder hvor skjærhastigheten øker vil partikler eroderes. Dermed får vi

- Akkumulasjon når dU*/ds < 0
- Erosjon når $dU^*/ds > 0$

hvor dU*/ds er endring i skjærhastighet i vindens retning.

2.4.6 Redistribusjon av snø på tak ved snødriv

Snøavsetning på tak skjer ved to typer snødriv. Snøen kan løftes fra terrenget opp på takflaten, eller den kan redistribueres fra en del av taket til en annen. For snø som løftes fra terrenget er det hovedsakelig suspensjon som bidrar til avsetning av snø på takflaten. Vi har tidligere sett at de fleste suspenderte snøpartikler holder seg under 1 m over terrengoverflaten, og at konsentrasjonen av snøpartikler avtar med høyde over terrenget. Derfor vil mengde snø som redistribueres fra terreng til takflater minke med byggets høyde.

Redistribusjon av snø fra en del av taket til en annen har større viktighet for fordeling av snølast, og forekommer i størst grad ved saltasjon og suspensjon. Den dominerende type partikkeltransport ved redistribusjon av snø på tak er saltasjon. Ved saltasjon vil snøpartiklene holdes luftbårne lengre, og det er dermed større sannsynlighet for at de passerer takflaten.

2.4.7 Likevektsprofil ved snøfonner

Mens en snøfonn dannes, vil underlagets aerodynamiske egenskaper endre seg kontinuerlig. Dermed vil også vindens strømningsmønster og skjærhastighet endre seg, som igjen fører til en endring i partikkeltransporten. Som nevnt tidligere vil vi oppnå likevekt i akkumulerte og eroderte partikler etter en viss distanse. Dette kan relateres til snøfonner, og betegnes som en snøfonns likevektstilstand. Snøfonnens tverrsnitt parallelt med vindretningen kalles snøfonnens likevektsprofil.

Mengden snø som avsettes på og rundt en snøfonn avtar jo nærmere snøfonnen kommer likevektstilstanden. En snøfonns likevektsprofil sies å være fullt utviklet hvis videre eksponering for vind ikke endrer snøfonnens profil betydelig.

Et snøgjerde har som funksjon å fange snø, og er ofte tilknyttet infrastruktur. Et viktig aspekt Tabler (1988) beskriver i forbindelse snøfonndannelse, er det ujevne forholdet mellom utviklingen av snøfonnens høyde og lengde. Snøfonnen når maksimal høyde tidligere enn den når maksimal lengde. Et eksempel på dette illustreres i figur 8, hvor snøfonnen har nådd tilnærmet maksimal høyde ved profil 4, mens lengden ved samme måling kun er ca. 50 % av maksimal lengde. Merk at profil 1 og 6 ble registrert ved et like langt tidsintervall som profil 6 og 7.

Figur 8. Snøfonndannelse ved et Wyoming snøgjerde med 50 % porøsitet, 15° helning medvinds, og en spalte tilsvarende 15 % av snøgjerdets høyde . Profil nr. 1 er registrert 01.11.83, nr. 2 den 30.11, nr. 3 den 07.12, nr. 4 den 12.12, nr. 5 den 20.12, nr. 6 den 01.01.84 og nr. 7 den 07.03. Figur: Tabler (1988)

2.4.8 Snøgjerder med spalte

En spalte mellom terrengoverflaten og snøgjerdenes underkant bidrar til å holde de salterende partiklene nær bakken hvor de lettere stopper opp. Hensikten med dette er å redusere akkumulasjon av snø nær gjerdet, for dermed å opprettholde snøgjerdets lagringskapasitet. Snøgjerder som er helt eller delvis begravet i snø er ikke like effektive når det gjelder å stoppe luftbårne snøpartikler. Snøfonnenes vekt kan føre til skader på snøgjerdet, og det kan utvikles unormalt lange snødriv. Den optimale avstanden mellom snøgjerder og underlaget anslås å være 10-15% av snøgjerdets totale høyde (Tabler 2003).

Hvis spalten er større enn 15% av snøgjerdets totale høyde, vil lagringskapasiteten reduseres (se figur 9 og 10). Spaltens effekt vil variere med vindhastigheten. I områder med sterk vind vil et snøgjerde med spalte lik 25% av den totale høyden fange om lag 30% mindre snø enn et snøgjerde med spalte lik 10% av den totale høyden. Ved lavere gjennomsnittlig vindhastighet vil forskjellen være 10%.

Snøfonnens profil nedstrøms for gjerdet med spalte lik 5% av gjerdets totale høyde er vesentlig større på lo side av gjerdet, samt ved de første ca. 25 m på lesiden (se figur 9). Fra ca. 38 m på lesiden av snøgjerdet til snøfonnens ende ved ca. 114 m, akkumuleres snø i størst grad ved snøgjerdet med spalte med høyde lik 25% av snøgjerdets totale høyde. Merke at snølagringskapasiteten avtar lineært med økende avstand mellom snøgjerdet og underliggende terreng.

Figur 9. Sammenligning av likevektsprofiler ved to 3,8 m høye Wyoming-snøgjerder med 15° helning medvinds, med avstand lik henholdsvis 30 cm (heltrukken linje) og 90 cm (stiplet linje) mellom snøgjerdenes underkant og underlaget. Figur: Tabler (1986).

Figur 10. Effekten på snølagring av en spalte mellom underkant snøgjerde og underlag. Figur: Tabler (1994).

2.4.9 Snøfluks

I beregninger av snødriv og utvikling av snøfonner er det relevant å ha kjennskap til mengde luftbåren snø, og hvordan snøen transporteres. Dette betegnes som snøkonsentrasjon eller snøfluks, og er et mål på hvor mye snø som penetrerer et gitt areal over en gitt tid. I forbindelse med snødriv og redistribusjon av snø, er det den horisontale snufluksen som er aktuell.

Denne horisontale snøfluksen avhenger av høyden over terrengenivå. Dette skyldes terrengets innvirkning på vindhastigheten, og mengde luftbåren snø varierer deretter. Snøfluksen er ofte størst nær terrenget, grunnet mengden salterende partikler i dette sjiktet. Den kan bestemmes ved

målinger, for eksempel med snøsamlere. Font m.fl. (1998) illustrerer tre typer snøsamlere som alle består av beholdere montert på en vertikal konstruksjon, og samler snø i ulike høyder. Det er utviklet en regresjonsligning for den horisontale snøfluksen q(z), gitt ved (Mellor & Fellers 1986)

$$q(z) = \exp (10,089 - 0,41049x_1 - 122,03x_2 - 0,13856x_1^2 - 14,446x_1x_2 - 0,0059773x_1^3 + 3,2682x_1^2x_2 + 114,13x_1x_2^2 + 2290,0x_2^3$$
(17)

hvor $x_1 = \ln(z)$ og $x_2 = 1 / u_{10}$, z er høyden over terrenget og u_{10} representerer vindhastigheten 10 m over terrengnivået.

Ligningen er gyldig for vindhastigheter over 10 m/s, og gir nøyaktige resultater ved høyder opptil 5 m. Den horisontale snøfluksen har benevning kg/m²s. Vi kan finne snøkonsentrasjonen [kg/m³] ved å dividere den horisontale snøfluksen med vindhastigheten.

2.5 Solfangere

Solfangere er avhengige av solinnstråling for å kunne produsere energi. Årlig solinnstråling på horisontalplanet i Norge varierer fra rundt 700 kWh/m² i nord i landet til rundt 1000 kWh/m² i sør (Andresen 2008). Figur 11 viser imidlertid at solinnstrålingen varierer vesentlig mellom årstidene. Vi ser også at den månedlige solinnstrålingen i Oslo og Hamburg er tilnærmet lik store deler av året.

Figur 11. Månedlig solinnstråling på horisontalplanet [W/m²] for Oslo, Tromsø og Hamburg. Figur: Andresen (2008).

All informasjon om solfangere og solcellepaneler i de to neste avsnittene er hentet fra rapporten *Mulighetsstudie – Solenergi i Norge*, utført av SINTEF Byggforsk & KanEnergi (2011).

Det er viktig å kunne skille mellom begrepene *solfangere* og *solcellepaneler*. Solceller utnytter den fotoelektriske effekten til å omdanne strålingsenergi fra solen til elektrisk energi. Så lenge solcellen får sollys vil denne effekten opprettholdes. En solfanger, eller solvarmeanlegg, omgjør solenergi til termisk energi. De kan brukes til å produsere varmt tappevann og til romoppvarming. Solfangere kan også brukes til kjøling. I tillegg til solfangerpaneler og solcellepaneler finnes det kombinasjonssystemer, som genererer både varme og elektrisk energi.

Forholdet mellom den utnyttbare termiske produksjonen og mengden solinnstråling defineres som virkningsgraden. På grunn av varmetap til omgivelsene, avtar solfangernes virkningsgrad med økende temperatur. Om lag 20% av solinnstrålingens energi går tapt ved refleksjon av solinnstråling fra panelenes overflate.

2.5.1 Optimal vinkel for solfangere

Det finnes en rekke veiledere og retningslinjer samt beregningsmetoder for optimale vinkler for solfangere. Med solfangernes vinkel menes vinkelen mellom underlaget og solfangerpanelenes ikke-absorberende side. En tabell med beregnede optimale vinkler fra et utvalg forskningsrapporter er vist nedenfor

Hottel, 1954	$\varphi + 20^{\circ}$
Heywood, 1971	$\varphi - 10^{\circ}$
Kern & Harris, 1975	$\varphi + 10^{\circ}$
El-kassaby, 1988; Gopinathan, 1991;	
Soulayman, 1991; Morcos, 1994	φ
Yellott, 1973	$\phi \pm 20^{\circ} *$
Lunde, 1980; Garg, 1982	$\phi \pm 15^{\circ} *$
Lewis, 1987	$\phi \pm 8^{\circ} *$

Tabell 1. E	Et utvalg ar	nbefalte vinkle	r for solfan	gere. Tabell: H	Rehman &	Siddiqui ((2012)
		./					

* Sesongkorrigerte verdier.

hvor ϕ er breddegraden solfangerne befinner seg på.

Solfangernes virkningsgrad avhenger av solinnstrålingens innfallsvinkel. Innfallsvinkelen defineres som vinkelen mellom den direkte solinnstrålingen og en tenkt normalvektor på solfangerpanelet. Den optimale innfallsvinkelen vil være 0°. I en samtale med Lars Erik Lunde ved Swecos avdeling Tekniske Installasjoner ble det lagt frem at innfallsvinkelen påvirker

produksjonsmengden i langt mindre grad for solfangere enn for solcellepaneler. Ifølge Lunde er optimal vinkel for solfangere i Danmark rundt 60°.

Solfangerprodusenten Catch Solar anbefaler 75° helningsvinkel fra horisontalplanet for sine produkter i Oslo-området, men at solfangernes vinkel ikke har stor betydning for utnyttelse av solenergi. Videre står det at både 22° og 90° også gir god effekt. Informasjonen er hentet fra Catch Solars hjemmesider (Ukjent dato). Andresen (2008) oppgir 50° som optimal helningsvinkel for solfangere i Oslo.

I en rapport utført av Bosanac & Nielsen (2001) presenteres den termiske effekten for væskebærende solfangere. Ettersom solens posisjon, og dermed solinnstrålingen, varierer i løpet av dagen vil energiproduksjonen variere deretter. Derfor brukes det en korreksjonsfaktor i beregningene. Denne tar høyde for solens posisjon og tapet i ytelse i forhold til optimal innfallsvinkel. Det kommer frem at det ikke er nødvendig å korrigere innfallsvinkelen hvis den er mindre enn 30°, fordi tapet i virkningsgrad kan ignoreres. I praksis betyr dette at effekttapet ved en innfallsvinkel mellom -30° og 30° er neglisjerbart.

2.5.2 Optimal avstand mellom rader med solfangerpaneler

Ved å kjenne en solfangers dimensjoner og hvor mange timer 100% av solfangerens absorbatorareal skal være eksponert for solinnstråling, kan den optimale avstanden mellom rader med solfangerpaneler regnes ut. Utregningsmetoden nedenfor er hentet fra solfangerdistributøren Affordable Solars hjemmesider, men samme metode finnes på Nordic Folk Center for Renewable Energys hjemmesider (se også figur 12)

$$D' = H/tan(\alpha)$$
(18)

hvor D' er den maksimale skyggeavstanden mellom panelene, H er panelenes vertikale høyde og α er solinnstrålingens innfallsvinkel.

Videre beregnes avstanden mellom panelradene D, ved formelen

$$\mathbf{D} = \mathbf{D}' \cdot \cos\left(180 - \psi\right) \tag{19}$$

hvor ψ er solens asimutvinkel. Asimutvinkelen er vinkelen den horisontale innfallsvinkelen og sør, målt med urviseren i horisontalplanet.

Figur 12. Venstre: solfangere sett fra siden. Høyre: solfangere sett ovenfra. Figur: M.F. Molnar etter Affordable Solar (Ukjent dato).

2.6 Skalaforsøk

Ved skalaforsøk simuleres virkeligheten gjennom forsøk med en forenklet modell i skala. Hensikten med å gjennomføre skalaforsøk kan være å undersøke reaksjoner og mekanismer knyttet til prototypen. For å kunne anse resultatene av et skalaforsøk som gyldige, stilles det krav til skalering, blant annet geometriske størrelser, hastigheter og partiklers egenskaper.

2.6.1 Erosjonsforsøk

Ferreira & Sanchez (2009) gjennomførte forsøk i vindtunnel, med hensikt å undersøke om trær kunne brukes for å skape ly for vind langs idrettsanlegget. I forbindelse med studiet ble både CFD-simuleringer og skalaforsøk i vindtunnel gjennomført. Tunnelens vindprofil ble målt til videre bruk i beregninger (se figur 13). Her er z høyden målt fra underlaget, H er en referansehøyde ut fra trærnes høyde (= 15 cm), u er målt vindhastighet og u_{max} er høyeste målte vindhastighet. Dermed kan grenselagets høyde i vindtunnelen anslås til z \approx 75 mm.

Ved forsøkene ble et sandlag med 1 mm høyde fordelt uniformt over hele modellens 1 m lange bredde. Sandens terskelhastighet ble funnet ved å først gjennomføre forsøk uten vindbeskyttelse for modellen. Vindtunnelen ble akselerert til en hastighet erosjon av sand ble observert. Denne vindhastigheten ble definert som sandens terskelhastighet U^*_{th} . Terskelhastigheten ble benyttet som referanse for alle andre vindhastigheter i forsøkene, for å oppnå ubenevnte forsøksresultater. Deretter ble det gjort forsøk med beskyttelse mot vind. Områder hvor sand ble erodert ved $U > U^*_{th}$, hvor U er vindhastigheten, indikerer beskyttede soner. Områder hvor sand ble erodert ved $U < U^*_{th}$, indikerer eksponerte soner.

Figur 13. Vindprofil målt i vindtunnelen nær testobjektets plassering på testområdet. Figur: Ferreira & Sanchez (2009).

Forsøkenes prosedyre bestod i å øke vindhastigheten til forhåndsbestemte nivåer. Sandens konturer ved hvert nivå ble registrert med digitalkamera. Deretter ble bildene behandlet i et bildebehandlingsprogram, hvor sandens konturer ble markert og fargelagt til et polygon. Polygonene for hvert nivå ble lagt på hverandre, slik at man endte opp med et fargediagram med sandens konturer ved alle de forhåndsbestemte nivåene.

2.6.2 Akkumulasjonsforsøk

Zhou m.fl (Upublisert) gjennomførte forsøk i forbindelse med et studie av redistribusjon av snø på flernivåtak. Det ble både gjort feltobservasjoner, samt forsøk med en modell skalamodell i målestokk 1:7,5 i vindtunnel. Hensikten med disse forsøkene var å

- 1. Gjennomføre forsøk med ulike partikkeltyper med ulike fysiske egenskaper for å bestemme hvilken partikkeltype som best egner seg til å simulere snø.
- 2. Hvordan redistribusjon av snø påvirkes av vindhastighet, taklengde og varigheten av eksponering for vind.

Punkt 1 i størst grad relevant i forbindelse med denne oppgaven, og som dermed blir gjennomgått. Forsøkene ble gjennomført med samme ubenevnte vindhastighet og varighet for alle forsøk med ulike partikler. De forskjellige typer partikler brukt i forsøkene var sagmuggaske, skumplast og silicasand.
	Snøpartikkel	Silicasand	Skumplast	Sagmuggaske
Diameter [mm]	0,15~0,2	0,2	0,4	0,5
Densitet [kg/m3]	50~700	2784	1223	297
Terskelhastighet ved 1 m høyde [m/s]	3,25~7,81	7,16	4,77	3,25
Terskelfriksjonshastighet [m/s]	0,15~0,36	0,33	0,22	0,15
Friksjonsvinkel [°]	50	34	21	43
Sedimenteringshastighet [m/s]	0,2~0,5	0,6	0,5	0,2

Figur 14. Redistribusjon av tre partikkeltyper påmodellens nedre flate. Figur: Zhou m.fl (Upublisert).

Det presenteres videre skaleringskriterier for partikler brukt i forsøk i vindtunnel. For hver partikkeltype må skaleringskriteriet tilfredsstilles for å kunne benytte partikkeltypen i skalaforsøk:

- Likhet i forhold for modell, terreng og strømningsfelt.
- Likhet i forholdet mellom partiklenes saltasjonsbaner.
- Likhet i forhold for akkumulasjonsmønstre.
- Likhet i tidsforhold.

Forsøkene viset at det er større likhetsparametre mellom resultatene fra forsøkene gjort med silicasand og fullskalaforsøk med snø, sammenlignet med resultatene fra forsøkene med de øvrige partikkeltypene (se figur 14).

Det blir videre nevnt at likhetsparameterne ved forsøkene med silicasand ikke bare ligner mest på fullskalaforsøkene med snø, men at de også tilfredsstiller skaleringskriteriene i størst grad. Det konkluderes med at silicasand, sammenliknet med to skumplast og sagmuggaske, simulerer mer nøyaktig redistribusjon av snø som følge av vind på tak.

3.0 Metode

Det er mulig å belyse oppgavens problemstilling ved observasjon av faktiske forhold utendørs, forsøk med skalamodeller under kontrollerte forhold, og numeriske simuleringer. De numeriske simuleringene kan for eksempel utføres med ANSYS CFD.

3.1 Metode, skalaforsøk i vindtunnel

Det ble besluttet å gjennomføre forsøk på skalamodell under kontrollerte forhold i vindtunnel, ettersom resultater fra slike forsøk anses som nøyaktige (se 2.6.1 og 2.6.2). Forsøkene ble gjennomført i Coimbra, Portugal perioden 27.01.2014 – 27.02.2014, hvor den første uken ble brukt til å bygge skalamodellene. De gjenværende fire ukene gjennomførte vi totalt 33 forsøk i forbindelse med denne oppgaven, hvorav 32 blir presentert.

3.1.1 Om vindtunnelen

Vindtunnelen brukes av UC så vel som den delvis frittstående forskningsinstitusjonen Association for the Development of the Industrial Aerodynamics (ADAI). UCs bruksområder for vindtunnelen er som oftest tilknyttet mastergradsoppgaver, doktorgradsavhandlinger og annen forskning.

Vindtunnelen virker ved at luft først drives fra en vifte gjennom to sett filtere med heksagonale åpninger for å redusere effekten av virvling fra viften. Deretter følger en kontraksjonsdel mot inntaket til det åpne testområdet. Deretter føres luften gjennom uttaket, en returkanal, og tilbake til luftinntaksrommet hvor viften befinner seg.

Inntakets åpning måler 2m x 2m. Uttaket har samme mål, men med en utvidelse på ca. 0,5 m over, på høyre og venstre side. Vindtunnelens testområde måler 5m x 5m. På midten av testområdet er en roterende skive som manøvreres manuelt (se figur 15).

Vindtunnelen styres gjennom et kontrollpanel plassert inntil luftinntaksrommet. Kontrollpanelet betjenes ved å akselerere viften til ønsket rotasjonshastighet, w [rpm], som vises på et display på kontrollpanelet. Over testområdet er det en lasermåler som måler avstander, og betjenes gjennom en datamaskin tilknyttet måleren.

Figur 15. Oversikt over vindtunnelens testområde.

3.1.2 Om skalamodellen

Modellen representer en 3 etasjer høy bygning med solfangere på taket. Den er laget i skala 1:26 med målene H x B x L = 30 cm x 120 cm x 60 cm. Det ble gjort undersøkelser av ulike solfangerprodusenters typiske dimensjoner for solfangere. Ut i fra disse undersøkelsene, og av praktiske årsaker, ble det bestemt at en representativ høyde og tykkelse i fullskala til bruk i denne oppgaven kunne være henholdsvis 1950 mm og 130 mm. Dette tilsvarer høyde 75 mm og tykkelse 5 mm i skalaforsøkene.

For å kunne bestemme hvordan avstanden mellom solfangernes underkant og topplaten påvirker redistribusjon av sand, ble forsøkene gjennomført ved tre ulike avstander. I denne oppgaven ble 8 mm, 16 mm og 24 mm valgt, som tilsvarer henholdsvis 208 mm, 416 mm og 624 mm i fullskala.

Solfangernes vinkel ble bestemt på grunnlag av flere informasjonskilder nevnt i 2.5.1. Med bakgrunn i nevnt litteratur og samtale, ble solfangernes helningsvinkel i denne oppgaven satt til 70°.

Solfangernes innbyrdes avstand ble bestemt ut fra ligning 18 og 19. For utregningen forutsettes det at solfangerne er sydvendte. Det ble først brukt en solkalkulator fra hjemmesidene til U.S National Oceanic & Atmospheric Administration (NOAA). Ved å plotte inn koordinater og klokkeslett oppgis solens vinkel i forhold til horisontalplanet samt asimutvinkelen.

Med input 1. mars og 7 timer uten skygge på solfangerne, gis innbyrdes avstand 5676 mm, som tilsvarer 218 mm i skala 1:26. Med denne utregningen til grunn ble det bestemt at 3 paneler, ett mot hver kant av topplaten og et på midten, er optimalt. Se figur 16 og 17 for mer utfyllende opplysninger om modellen.

Modellens indre konstruksjoner og rammeverket til solfangerne ble gjennomført i tre, mens sideog topplatene bestod av trefiberplater. Solfangerne ble laget av en 8 mm tykk pleksiglassplate som ble saget til i emner. Modellen ble posisjonert 153,7 cm nedstrøms fra inntaket, på grunn av lasermålerens plassering (se figur 18). Gulvet ble markert med kritt for å sikre lik posisjonering i forsøkene.

Figur 16. Målsatt 3D-tegning av skalamodellen brukt i forsøkene.

Figur 17. Oversikt over innbyrdes avstander mellom solfangerpanelene.

Figur 18. Plassering av modell samt definisjon av aksesystemet brukt i forsøkene, sett ovenfra.

3.1.3 Kalibrering av vindtunnel

For å kunne anse forsøksresultatene som gyldige var vi avhengige at vindhastigheten er uniform i innløpets tverrsnitt samt på testområdet. Det ble derfor gjort kalibreringer av vindtunnelen i form av totalt tre tester. Alle ble gjort ved å anvende Pitotrør, og lese av målingene manuelt fra den tilhørende trykkmåleren. Deretter ble vindhastigheten ved Pitotrørets posisjon funnet ved ligning 12. Nedenfor er en oversikt over de ulike kalibreringene som ble gjort i forbindelse med skalaforsøkene.

- Kalibrering av vindhastighetens uniformitet ved innløpet: Vindhastigheten ble målt for hver 0,25 m i et rutenett over innløpets tverrsnitt. Dette ble gjort ved å montere fast Pitotrøret til en stålramme med justerbare deler. Testen ble gjort ved w = 300 rpm, 0,15~0,2 m fra innløpet.
- 2. Kalibrering av vindhastighetens uniformitet på testområdet og i utløpet: Vindhastigheten ble målt 0,2 m over gulvet i et rutenett mellom innløpet og utløpet. Det ble foretatt målinger for hver 0,25 m langs tre linjer parallelt med vindretningen. Vindhastigheten ble også testet 1,0 m og 2,0 m inn i utløpet. Testen ble gjort ved w = 300 rpm.
- 3. Kalibrering av viftens rotasjonshastighet og tilhørende vindhastighet: Etter forsøkene var gjennomført ble viftens vindhastighet målt opp mot viftens rotasjonshastighet, målt 0,15~0,2 m fra innløpet ved høyde 0,3 m og 1,0 m over testområdets flate.

3.1.4 Om forsøkene

Utregnet optimalt antall rader med solfangere er 3. Det var relevant å undersøke redistribusjon av sand ved et høyere og lavere antall paneler. Det ble dermed besluttet at det også skulle gjøres forsøk med 2 og 5 rader.

Forsøkene ble altså gjort med følgende tre variabler:

- 1. Modellens orientering i forhold til vindretningen.
- 2. Antall rader med solfangerpaneler.
- 3. Avstand mellom underkant panel og topplaten.

Sand ble brukt til å simulere snø i forsøkene, ettersom snø ikke var tilgjengelig. Viser til kapittel 2.6.2 hvor sand anses å tilfredsstille skaleringskriteriene presentert av Zhou m.fl. (Upublisert).

For å skille mellom forsøkene og gjøre etterarbeidet enklere, ble det gitt kodenavn til hvert enkelt forsøk. De følger oppsettet

SC_A_B_C_D

hvor SC står for Solar Collector, A angir type forsøk [E = erotion (erosjon), D = deposition (akkumulasjon)], B angir antall rader med solfangerpaneler (2, 3 eller 5), C angir solfangerpanelenes høyde over modellens topplate i mm (8, 16 eller 24), og D angir modellens orientering i forhold til vindretning (P = positiv, N = negativ). For akkumulasjonsforsøkene vil det stå T0 eller T6 etter forsøkstittelen. T0 indikerer 0 minutter, altså at målingen er gjort før eksponering av vind, og T6 indikerer at modellen har blitt eksponert for vind i 6 minutter før målingen ble gjort.

Figur 19. Definisjon av modellens orientering i forhold til vindretningen (vist med piler). Til venstre: positiv orientering. Til høyre: negativ orientering.

Før oppstart av forsøk ble det gjennomført et erosjonsforsøk og et akkumulasjonsforsøk. Resultatene fra forsøkene ble brukt som referanse for de øvrige forsøk med solfangerpaneler.

3.1.5 Gjennomføring av erosjonsforsøk

For å kunne fastslå hvor modellens topplate er mest eksponert for vind og hvor separasjonssoner dannes, ble det gjennomført sanderosjonsforsøk. Forsøkene følger samme prinsipp som forsøk gjort av Ferreira og Sanchez (2009), forklart i 2.6.2.

Det ble gjort testforsøk i forkant som viste at sand ikke begynte å erodere før viften hadde nådd w = 150 rpm, og det ble dermed besluttet at første registrering skulle gjøres ved nevnte rotasjonshastighet. Høyeste rotasjonshastighet ble bestemt til w = 400 rpm, da det ble observert ved referanseforsøket at sand i liten grad eroderte ved denne rotasjonshastigheten.

Forsøk	Antall rader	Høyde [mm]	Orientering
SC_E_0_0	0	0	-
SC_E_2_8_N	2	8	Negativ
SC_E_2_8_P	2	8	Positiv
SC_E_2_16_N	2	16	Negativ
SC_E_2_16_P	2	16	Positiv
SC_E_2_24_N	2	24	Negativ
SC_E_2_24_P	2	24	Positiv
SC_E_3_8_N	3	8	Negativ
SC_E_3_8_P	3	8	Positiv
SC_E_3_16_N	3	16	Negativ
SC_E_3_16_P	3	16	Positiv
SC_E_3_24_N	3	24	Negativ
SC_E_3_24_P	3	24	Positiv
SC_E_5_8_N	5	8	Negativ
SC_E_5_8_P	5	8	Positiv
SC_E_5_16_N	5	16	Negativ
SC_E_5_16_P	5	16	Positiv
SC_E_5_24_N	5	24	Negativ
SC_E_5_24_P	5	24	Positiv

Tabell 3. Oversikt over de totalt 19 erosjonsforsøkene gjennnomført i forbindelse med oppgaven.

Erosjonsforsøkene fulgte følgende fremgangsmåte:

- 1. Modellen ble plassert på testområdet, og solfangerpanelenes rammeverk ble montert.
- 2. Et sandlag med 1 mm høyde ble fordelt over modellens topplate.
- 3. Videokameraet og vindtunnelen ble startet opp.

- 4. Viftens rotasjonshastighet økte til de forhåndsbestemte nivåene. Modellen ble eksponert for vind i tid T = 2 minutter for hvert nivå og konturene ble registrert (se figur 20), før viftens rotasjonshastighet ble økt til neste nivå.
- 5. Etter forsøket var ferdig ble videoopptaket stoppet og overført til datamaskin, og modellen ble gjort klar til neste forsøk.

Figur 20. Til venstre vises modellen like før registrering av viftefrekvens w = 225 rpm ved forsøk $SC_E_5_8_N$. Til høyre vises hvordan de forhåndsbestemte nivåene ble registrert for å kunne bearbeide data videre.

Etterarbeidet bestod i å gå gjennom videoklippene fra hvert enkelt forsøk, og hente ut bilder ved hver registrering (se figur 20). Enkeltbildene ble bearbeidet i Photoshop ved å lage et polygon som fulgte sandens konturer, og fylle polygonet med farge for den respektive hastigheten konturen ble registrert ved. Deretter ble polygonene lagt lagvis på hverandre. På denne måten fikk man et fargediagram for hvert forsøk med sandens konturer ved hver vindhastighet.

Erosjonsdiagram i snitt gjennom senterlinjen ble laget ved å benytte programmet Grapher. De ferdige fargediagrammene importert inn i programmet, og man definerte et aksesystem. Deretter kunne man hente ut koordinatene til konturlinjene til hver enkelt vindhastighet manuelt. Dataene ble så bearbeidet i Excel og importert tilbake til Grapher, hvor et diagram ble laget ut fra hvert enkeltforsøks data.

3.1.6 Gjennomføring av akkumulasjonsforsøk

Akkumulasjonsforsøk ble gjennomført for å kunne fastslå den totale eroderte mengden sand langs modellens senterlinje, samt fordelingen av sanden over modellens lengde som følge av vind. Det ble bestemt at akkumulasjonsforsøkene ikke skulle gjøres ved 8 mm og 24 mm høyde.

Tabell 4. Oversikt over de totalt 13 akkumulasjonsforsøk gjennomført i forbindelse med oppgaven.

Forsøk	Antall rader	Høyde [mm]	Orientering
SC_D_0_0	0	0	-
SC_D_2_8_N	2	8	Negativ
SC_D_2_8_P	2	8	Positiv
SC_D_2_24_N	2	24	Negativ
SC_D_2_24_P	2	24	Positiv
SC_D_3_8_N	3	8	Negativ
SC_D_3_8_P	3	8	Positiv
SC_D_3_24_N	3	24	Negativ
SC_D_3_24_P	3	24	Positiv
SC_D_5_8_N	5	8	Negativ
SC_D_5_8_P	5	8	Positiv
SC_D_5_24_N	5	24	Negativ
SC_D_5_24_P	5	24	Positiv

Den nevnte forsøksmetoden er basert på prinsippene beskrevet i Zhou m.fl. (Upublisert), og fulgte følgende fremgangsmåte:

- 1. Modellen ble plassert på testområdet, og rammeverket til solfangerpanelene ble montert
- 2. Et sandlag med 20 mm høyde ble fordelt ut over modellens topplate.
- 3. Viften ble deretter stilt til w = 333 rpm. Mens viftens frekvens økte til det forhåndsbestemte nivået, ble en trefiberplate holdt mellom inntaket og modellen for å hindre eksponering for vind utenfor forsøkets definerte tidsrammer. Når viften hadde nådd w = 333 rpm, ble platen fjernet, og forsøket startet.
- 4. Etter T = 6 minutter ble platen igjen satt mellom inntaket og modellen, av samme grunn som i punkt 3.
- 5. Målinger ble foretatt av lasermåleren, som målte sandhøyden ut i fra et forhåndsdefinert rutenett. Måledata kunne deretter hentes fra datamaskinen tilknyttet måleren.

Etterarbeidet bestod først i å importere data fra alle forsøk i Excel. Sandlagets høyde for hvert målte punkt ble funnet ved formelen

$$z = H_L - H - z_M \tag{20}$$

hvor z er sandlagets høyde etter endt forsøk, H_L er lasermålerens høyde over testområdets underlag (= 2779 mm), H er høyden til modellens topplate over testområdets underlag (= 31 cm) og z_M er den målte avstanden fra lasermåleren til sandlagets overflate. Differansen $\boldsymbol{z}_{\text{diff}}$ mellom sandhøyden før og etter eksponering for vind gis ved

$$\mathbf{z}_{\rm diff} = \mathbf{z}_0 - \mathbf{z} \tag{21}$$

hvor z_0 er sandlagets høyde før modellen ble eksponert for vind.

Dataene ble deretter importert til Grapher, og det ble laget en graf for hvert forsøk for de utregnede verdiene for z, og en graf ut i fra de utregnede verdiene for z_{diff} .

4.0 Resultater

I dette kapittelet presenteres resultatene fra kalibreringen av vindtunnelen samt resultater fra forsøkene gjort i forbindelse med oppgaven. Resultater fra forsøkene vil presenteres med forsøkstittel i henhold til definisjonene forklart i kapittel 3.1.4, 3.1.5 og 3.1.6. Aksesystemet brukt i forbindelse med forsøkene er definert i figur 18, ved positiv X-akse med vindretningen. Positiv Y-akse er mot høyre, sett mot innløpet. Panelene er nummerert fra 1 til 5, hvor panel 1 er lengst oppstrøms og panel 5 lengst nedstrøms.

4.1 Kalibrering av vindtunnel

Resultatene fra kalibreringen av vindtunnelen beskrevet i delkapittel 3.1.4 presenteres i dette delkapittelet. Vindtunnelens uniformitet i innløpet, vindhastigheten over testområdet, samt test av viftens rotasjonshastighet og de tilhørende vindhastighetene vil presenteres. Alle målinger er gjort med Pitotrør, og vindhastighetene er funnet ved formel 8. I beregningene av vindhastigheter luftens densitet antatt lik 1,18 kg/m³.

4.1.1 Kalibrering av vindhastighet

Test av vindhastigheter ved de ulike rotasjonshastighetene ble gjort etter at alle forsøk var gjennomført. Nedenfor er en tabell med resultatene fra målingene. Ut fra beregninger gjort ved ligning 11, er det valgt å bruke den lineære sammenhengen dV/dw = 0,034 som grunnlag for beregning av vindhastigheter ved vindtunnelens rotasjonshastigheter.

Tabell 5. Resultater fra kalibrering av vindtunnelens rotasjonshastighet mot de målte vindhastighetene.

w [rpm]	V [m/s]
150	5,1
175	6,0
200	6,8
225	7,7
250	8,5
275	9,4
300	10,2
325	11,1
350	11,9
375	12,8
400	13,6

4.1.2 Kalibrering av vindhastighet ved innløpet

Test av vindhastighetens uniformitet ved innløpet ble gjort før forsøkene. Vindhastighetene ble målt over hele innløpets tverrsnitt, bortsett fra ved høyde lik 0. Målingene er gjort i et rutenett på 0,25 m for begge aksene.

4.1.3 Kalibrering av vindhastighet over testområdet og utløpet

Vindhastighetens uniformitet over testområdet ble testet før forsøkene ble gjennomført. Vindhastighetene ble målt langs 3 linjer fra innløpet, over testområdet og i utløpet.

Figur 22. Vindhastigheter over testområdet og i utløpet.

4.2 Erosjonsforsøk

Skalamodellen er delt i tre soner (se figur 16). Ved presentasjon av erosjonsforsøkene defineres sonen hvor Y er positiv som den øvre sonen, sonen hvor Y er negativ som den nedre sonen, og sonen hvor X-aksen skjærer gjennom senterlinjen som den midtre sonen.

Resultater fra erosjonsforsøkene presenteres etter følgende oppsett: På hver side vises figurer fra ett forsøk. Den øvre figuren viser et erosjonsdiagram i plan, som ble produsert etter metoden forklart i 3.1.6. Hver farge i diagrammet representerer sandens konturer ved fargens tilhørende vindhastighet vist til høyre for diagrammet. Ved alle forsøk med solfangerpaneler ble fargediagrammene laget ut ifra erosjonen mellom panelenes rammeverk. Dette betyr at de ytterste ca. 12 cm på hver side av rammeverkets ytterkanter ikke kommer med. Derfor ser diagrammet fra SC_E_0_0 noe smalere og høyere ut enn for de andre forsøkene.

Den nedre figuren er et erosjonsdiagram laget ut ifra et snitt gjennom modellens senterlinje, forklart i 3.1.5. Solfangerpanelenes posisjon er markert over diagrammene. Merk at de kun er ment for å indikere solfangerpanelenes omtrentlige posisjon.

SC_E_0_0:

Figurene viser resultatet fra erosjonsforsøk gjort uten paneler. Resultatet fra dette forsøket er brukt som referanse for erosjonsforsøkene gjort med paneler. Fargediagrammet viser en relativt jevn erosjon over modellens bredde, med noen uregelmessigheter.

Figur 23. Erosjonsdiagram i plan, for forsøk SC_E_0_0.

Figur 24. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_0_0.

4.2.1 Erosjonsforsøk, 2 paneler

SC_E_2_8_N:

Figurene viser resultatet fra forsøk med 2 paneler 8 mm over topplaten, med negativ orientering i forhold til vindretningen. Det synes en relativt jevn erosjon over modellens bredde. Det er erodert tilnærmet like mengder sand oppstrøms som nedstrøms for det fremste panelet. For det bakre panelet er det erodert nærmest utelukkende oppstrøms for panelets underkant.

Figur 25. Erosjonsdiagram i plan, for forsøk SC_E_2_8_N.

Figur 26. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_2_8_N.

SC_E_2_8_P:

Figurene viser resultatet fra forsøk med 2 paneler 8 mm over topplaten, med positiv orientering i forhold til vindretningen. Erosjonen er relativt jevn over modellens bredde. Ved det fremste panelet er størst mengde sand erodert nedstrøms for panelets bunnpunkt, mens for det bakre panelet er sand i størst grad erodert oppstrøms for panelets bunnpunkt.

Figur 27. Erosjonsdiagram i plan, for forsøk SC_E_2_8_P.

Figur 28. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_2_8_P.

SC_E_2_16_N:

Figurene viser resultatet fra forsøk med 2 paneler 16 mm over topplaten, med negativ orientering i forhold til vindretningen. Sanden er erodert noe ujevnt, mest i den midtre sonen og minst i den nedre sonen. Ved det fremste panelet er sand erodert mer nedstrøms enn oppstrøms for panelets underkant. Ved det bakre panelet eroderte adskillig mer sand oppstrøms enn nedstrøms for panelets underkant.

Figur 29. Erosjonsdiagram i plan, for forsøk SC_E_2_16_N.

Figur 30. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_2_16_N.

SC_E_2_16_P:

Figurene viser resultatet fra forsøk med 2 paneler 16 mm over topplaten, med positiv orientering i forhold til vindretningen. Sanden eroderte jevnt over modellens bredde. Nedstrøms for det fremste panelets underkant eroderte sanden både før og i større grad enn oppstrøms. Ved det bakre panelet eroderte sanden oppstrøms for panelets underkant.

Figur 31. Erosjonsdiagram i plan, for forsøk SC_E_2_16_P.

Figur 32. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_2_16_P.

SC_E_2_24_N:

Figurene viser resultatet fra forsøk med 2 paneler 24 mm over topplaten, med negativ orientering i forhold til vindretningen. Sanden eroderte noe ujevnt, i større grad og tidligst ved den midtre sonen og minst ved den nedre sonen. Ved det fremste panelet er det tendenser til lik erosjon ved de lavere vindhastighetene oppstrøms og nedstrøms for panelets underkant. Ved høyere vindhastigheter viser figuren at det eroderes mest nedstrøms for panelets underkant.

Figur 33. Erosjonsdiagram i plan, for forsøk SC_E_2_24_N.

Figur 34. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_2_24_N.

SC_E_2_24_P:

Figurene viser resultatet fra forsøk med 2 paneler 24 mm over topplaten, med positiv orientering i forhold til vindretningen. Sanden eroderte relativt jevnt over modellens bredde, dog noe mindre i den nederste sonen enn de to øvre. Figuren viser klare tendenser til erosjon nedstrøms for det fremste panelets underkant. Det er i liten grad erodert sand ved det bakre panelet.

Figur 35. Erosjonsdiagram i plan, for forsøk SC_E_2_24_P.

Figur 36. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_2_24_P.

4.2.2 Erosjonsforsøk, 3 paneler

SC_E_3_8_N:

Figurene viser resultatet fra forsøk med 3 paneler 8 mm over topplaten, med negativ orientering i forhold til vindretningen. Sanden har erodert relativt jevnt over modellens bredde. Merk at sanden har erodert noe mer oppstrøms enn nedstrøms for det fremste panelets underkant. For de to bakre panelene har det erodert minimalt med sand nedstrøms for panelenes underkant, men det er erodert betydelig oppstrøms for underkantet.

Figur 37. Erosjonsdiagram i plan, for forsøk SC_E_3_8_N.

Figur 38. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_3_8_N.

SC_E_3_8_P:

Figurene viser resultatet fra forsøk med 3 paneler 8 mm over topplaten, med positiv orientering i forhold til vindretningen. Erosjonen er relativt jevn over modellens bredde. Ved de to fremste panelene er det erodert mer nedstrøms for panelenes underkant, mens for det bakre panelet er det erodert mest oppstrøms for panelets underkant.

Figur 39. Erosjonsdiagram i plan, for forsøk SC_E_3_8_P.

Figur 40. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_3_8_P.

SC_E_3_16_N:

Figurene viser resultatet fra forsøk med 3 paneler 8 mm over topplaten, med negativ orientering i forhold til vindretningen. Sanden har erodert noe ujevnt over modellens bredde, det er erodert minst ved den nedre sonen, og mest ved den midtre. Sanden eroderte omtrent like mye oppstrøms som nedstrøms for panelets underkant. Ved de to bakre panelene er sanden erodert tilnærmet utelukkende oppstrøms for panelenes underkant.

Figur 41. Erosjonsdiagram i plan, for forsøk SC_E_3_16_N.

Figur 42. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_3_16_N.

SC_E_3_16_P:

Figurene viser resultatet fra forsøk med 3 paneler 16 mm over topplaten, med positiv orientering i forhold til vindretningen. Sanden har erodert relativt jevnt over modellens bredde. Det er erodert tidligst og mest mellom det fremste panelets toppunkt til det midtre panelets underkant. Det er også noe erosjon nedstrøms for det midtre panelets underkant, men minimalt ved det bakre panelet.

Figur 43. Erosjonsdiagram i plan, for forsøk SC_E_3_16_P.

Figur 44. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_3_16_P.

SC_E_3_24_N:

Figurene viser resultatet fra forsøk med 3 paneler 24 mm over topplaten, med negativ orientering i forhold til vindretningen. Ved det fremste panelet, er det erodert mer i den midtre sonen enn ved de øvrige. Ved det bakre panelet er det også erodert mest i den midtre sonen, og ingen erosjon i den nedre sonen. Det er erodert mer sand nedstrøms enn oppstrøms for det fremste panelets underkant. Det er tilnærmet ingen erosjon ved det midtre panelet. Ved det bakre panelet er det erodert sand oppstrøms for panelets underkant.

Figur 45. Erosjonsdiagram i plan, for forsøk SC_E_3_24_N.

Figur 46. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_3_24_N.

SC_E_3_24_P:

Figurene viser resultatet fra forsøk med 3 paneler 24 mm over topplaten, med positiv orientering i forhold til vindretningen. Sanden er erodert relativt jevnt over modellens bredde. Sanden eroderte fra omtrent ved det fremste panelets toppunkt til det bakre panelets toppunkt, og tidligst mellom det fremste panelets underkant og det midtre panelets toppunkt. Det er tilnærmet ingen erosjon nedstrøms fra det bakre panelets toppunkt.

Figur 47. Erosjonsdiagram i plan, for forsøk SC_E_3_24_P.

Figur 48. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_3_24_P.

4.2.3 Erosjonsforsøk, 5 paneler

SC_E_5_8_N:

Figurene viser resultatet fra forsøk med 5 paneler 8 mm over topplaten, med negativ orientering i forhold til vindretningen. Sanden eroderte relativt jevnt over modellens bredde, med unntak av nedstrøms for det bakre panelet. Ved det fremste panelet er det erodert omtrent like mye oppstrøms og nedstrøms for panelets underkant. Ved de øvrige panelene er det i størst grad erodert oppstrøms for panelenes underkanter.

Figur 49. Erosjonsdiagram i plan, for forsøk SC_E_5_8_N.

Figur 50. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_5_8_N.

SC_E_5_8_P:

Figurene viser resultatet fra forsøk med 5 paneler 8 mm over topplaten, med positiv orientering i forhold til vindretningen. Sanden har erodert relativt jevnt over modellens bredde, bortsett fra ved det midtre panelet, hvor det er erodert mindre i den nedre sonen. Det er erodert først i området mellom det første panelets underkant og det andre panelets toppunkt. Ved de to bakre panelene er det i størst grad erodert oppstrøms for panelenes underkanter.

Figur 52. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_5_8_P.

SC_E_5_16_N:

Figurene viser resultatet fra forsøk med 5 paneler 16 mm over topplaten, med negativ orientering i forhold til vindretningen. Sanden er erodert relativt likt over modellens bredde. Imidlertid er sand erodert noe tidligere og i større grad i den midtre sonen, og i minst grad i den nedre sonen ved panel 3, 4 og 5. Ved panel 2 ble det ikke erodert sand i den midtre sonen, mens ved de to ytre sonene er det erodert noe sand mot ytterkantene. Ved det fremste panelet eroderte sanden tilnærmet likt oppstrøms og nedstrøms for underkantet, mens for de øvrige panelene eroderte sanden mest oppstrøms for panelenes underkant.

Figur 53. Erosjonsdiagram i plan, for forsøk SC_E_5_16_N.

Figur 54. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_5_16_N.

SC_E_5_16_P:

Figurene viser resultatet fra forsøk med 5 paneler 16 mm over topplaten, med positiv orientering i forhold til vindretningen. Ved dette forsøket eroderte sanden ujevnt over modellens bredde. Det er imidlertid noen mønstre som går igjen i de tre sonene; sanden eroderte først nedstrøms for det fremste panelets underkant, og deretter øker det eroderte området jevnt med økende vindhastighet. Det er tendenser til senere erosjon like oppstrøms for panelenes underkanter.

Figur 55. Erosjonsdiagram i plan, for forsøk SC_E_5_16_P.

Figur 56. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_5_16_P.

SC_E_5_24_N:

Figurene viser resultatet fra forsøk med 5 paneler 24 mm over topplaten, med negativ orientering i forhold til vindretningen. Ved dette forsøket har sanden erodert jevnt over modellens bredde. Det har imidlertid erodert noe mer i den midtre sonen ved de fremste panelene. Ved modellens bakre panel er det erodert noe over hele den midtre sonens bredde, mens det er noe erosjon i den øvre sonen, og ingen erosjon i den nedre sonen.

Figur 57. Erosjonsdiagram i plan, for forsøk SC_E_5_24_N.

Figur 58. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_5_24_N.

SC_E_5_24_P:

Figurene viser resultatet fra forsøk med 5 paneler 24 mm over topplaten, med positiv orientering i forhold til vindretningen. Sanden er erodert noe ujevnt over modellens bredde, men det er likevel store likheter over sonene. Erosjonen startet ved det fremste panelets underkant, og omtrent til ved det midtre panelets toppunkt. Videre nedstrøms er sand erodert relativt jevnt over modellens lengde.

Figur 60. Erosjonsdiagram i snitt gjennom senterlinjen, for forsøk SC_E_5_24_P.

4.2.2 Sammenligning av resultater

Negativt orienterte paneler:

Det er klare tendenser til like erosjonsmønstre ved det fremste panelet for forsøk med negativt orienterte paneler. Erosjonen startet ved panelenes underkant, og ved lavere vindhastigheter eroderes tilnærmet like mye oppstrøms som nedstrøms for dette punktet. Deretter eroderte sanden lengre nedstrøms enn oppstrøms. Ved de øvrige panelene eroderte sanden tilnærmet utelukkende oppstrøms for panelenes underkanter.

For forsøk med to paneler eroderte sanden ved høyere vindhastigheter men ved større utstrekning, med økende avstand mellom panelenes underkant og topplaten. Nær det bakre panelet eroderte sanden ved høyere vindhastigheter og over mindre utstrekning, med økende avstand mellom panelenes underkant og topplaten.

Forsøkene gjort med tre paneler deler likheter med forsøkene gjort med to. Erosjon ved det fremste panelet følger samme mønster som for forsøkene med to paneler. Ved det bakre panelet eroderte sanden ved høyere vindhastigheter og over mindre utstrekning, med økende avstand mellom panelenes underkant og topplaten. Erosjonen ved det midtre panelet synes å følge formen til erosjonen ved det bakre panelet. Sand eroderte imidlertid ved høyere vindhastigheter, og over mindre areal enn ved det bakre panelet.

For forsøk med fem paneler eroderte sanden nær det fremste panelet på samme måte som med to og tre paneler, ved økning i avstand mellom panelenes underkant og topplaten. Nær de øvrige panelene eroderte sand ved høyere hastigheter og over mindre utstrekning ved økende avstand mellom panelenes underkant og topplaten.

Positivt orienterte paneler:

Ved forsøk med panelene positivt orientert er det også klare tendenser til like erosjonsmønstre nær det fremste panelet. For alle forsøk startet erosjonen nedstrøms for panelenes underkanter. For de øvrige panelene synes det også å ha erodert noe tidligere nedstrøms for panelenes underkant. Dette gjelder imidlertid ikke den bakre panelraden, hvor det var tendenser til erosjon oppstrøms for hvert panels underkant. Ved de høyere vindhastighetene var det også tendenser til erosjon nedstrøms for de bakre panelenes underkanter.

For forsøk med to paneler eroderte sanden nær det fremste panelet over større areal og ved lavere hastigheter, med økende avstand mellom panelenes underkant og topplaten. Nær det bakre panelet eroderte sanden ved høyere hastighet, og med mindre utstrekning med økende avstand mellom panelenes underkant og topplaten.

Ved forsøk med tre paneler, følger erosjon nær det fremste panelet samme mønster som i forsøkene gjort med to paneler. Det samme gjelder erosjon nær det bakre panelet. Sand eroderte nær det midtre panelet ved lavere hastigheter og med større utstrekning med økende avstand mellom panelenes underkant og topplaten. For forsøk med fem paneler eroderte sand ved lavere hastigheter og med større utstrekning ved alle paneler, med økning i avstand mellom panelenes underkant og topplaten.

4.3 Akkumulasjonsforsøk

Resultater fra akkumulasjonsforsøkene presenteres etter følgende oppsett: Ett forsøk presenteres på to sider. På den første siden vises to bilder samt en beskrivelse av observasjonene ved forsøket. På den neste siden presenteres to diagrammer. Det øvre diagrammet viser målte sandhøyder. Linjene i diagrammet representerer sandhøyden ved de ulike Y-verdiene (illustrert til høyre for diagrammet). For akkumulasjonsforsøkene defineres sonene som henholdsvis den positive sonen (Y = positiv), den negative sonen (Y = negativ) og den midtre sonen.

Det antas at sandlagets tykkelse før eksponering for vind er den samme for alle forsøkene. Derfor ble sandhøyden ved SC_D_0_0, før den ble eksponert for vind, vist med de andre forsøksresultatene som en referanse. Det nedre diagrammet viser differansen mellom sandlagets høyde ved SC_D_0_0 T0, og de respektive forsøkene som er presentert. Ved alle diagrammene som presenteres vil den horisontale aksen ha verdi fra 0 til 1. Verdiene langs aksen er forholdstall mellom målingenes X-verdi dividert med modellens totale lengde.

Diagrammene er laget ved å benytte ligning 20 og 21 for de vedlagte målte verdiene til de respektive forsøk.. Noen målinger ble utelatt fra diagrammene, og er merket med farger i vedlagte tabeller. Målinger som ble gjort utenfor modellens flate (rødt), målinger som ga urealistiske verdier (grått) og målinger gjort på solfangerpaneler (blått) er utelatt fra diagrammene (se vedlagte tabeller).

Ved enkelte av diagrammene er linjene ikke-kontinuerlige. Dette skyldes at målingene ble gjort over panelene, og ga urealistiske verdier av sandlagets høyde på grunn av delvis refleksjon fra pleksiglasset. Dermed måtte disse verdiene utelates. Dette gjelder imidlertid kun hvor ville blitt forstyrret om panelene ble fjernet. Etter endt forsøk hvor panelene ikke var i kontakt med sanden, ble panelene fjernet før sandlagets høyder ble målt.

Det ble først antatt at redistribusjonen av sand ville være symmetrisk over modellens bredde. For disse forsøkene ble det gjort målinger ved to Y-verdier. Prosedyren ble endret da usymmetrisk redistribusjon ble observert, og det ble foretatt målinger ved tre Y-verdier.

SC_D_0_0:

Diagrammene nedenfor viser at etter eksponering for vind har sand akkumulert fra i intervallet $\sim 0.18 < X/L < 0.24$. Ved de øvrige målingene over modellens lengde er det erodert sand.

Figur 61. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_0_0 T6 (øverst), og differansen mellom sandlaget ved de to målingene (nederst).
4.2.1 Akkumulasjonsforsøk, 2 paneler

SC_D_2_8_N:

Sanden er redistribuert relativt uniformt over modellens bredde. Ved dette forsøket har sand erodert helt ned til modellens topplate langs senterlinjen i intervallet $\sim 0.7 < X/L < 0.12$. Like nedstrøms for panelet er det akkumulert noe sand ved måling Y = 0. Fra like bak det fremste panelet til det bakre panelet er det erodert jevnt.

Figur 62. *Skalamodell etter forsøk SC*_*D*_2_8_*N*. *Vindretning nedenfra*.

Figur 63. Skalamodell etter forsøk SC_D_2_8_N. Vindretning fra høyre.

Figur 64. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_2_8_N (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

SC_D_2_8_P:

Ved dette forsøket er sanden redistribuert relativt uniformt ved den midtre og den positive sonen, men ved den negative sonen eroderte sanden mindre. Ved den negative sonen er sanden erodert ned til topplaten i intervallet $\sim 0,15 < X/L < 0,2$. I de to øvrige sonene er sanden erodert ned til topplaten i intervallet $\sim 0,1 < X/L < 0,4$. Vi ser også at sand har akkumulert i intervallet $\sim 0,28 < X/L < 0,55$.

Figur 65. Skalamodell etter forsøk SC_D_2_8_P. Vindretning nedenfra.

Figur 66. Skalamodell etter forsøk SC_D_2_8_P. Vindretning fra høyre.

Figur 67. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_2_8_P (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

SC_D_2_24_N:

I dette forsøket er sanden redistribuert relativt uniformt i de tre sonene. I intervallet $\sim 0.05 < X/L < 0.18$ har sanden erodert ned til topplaten langs senterlinjen. Vi ser også at sand har akkumulert i intervallet $\sim 0.2 < X/L < 0.5$, med toppunkt på 32,025 mm ved X/L = 0.25.

Figur 68. *Skalamodell etter forsøk SC*_*D*_2_24_*N*. *Vindretning nedenfra*.

Figur 69. Skalamodell etter forsøk SC_D_2_24_N. Vindretning fra høyre.

Figur 70. Sandlagets høyde ved forsøk SC_D_0_0 TO og SC_D_2_24_N (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

SC_D_2_24_P:

Ved dette forsøket er sanden redistribuert tilnærmet identisk over modellens bredde. Sanden eroderte ned til modellens topplate fra ~ 0,12 < X/L < 0,5. I intervallet ~ 0,55 < X/L < 0,9 er sand akkumulert, med toppunkt 38,925 mm ved X/L = 0,57.

Figur 71. Skalamodell etter forsøk SC_D_2_24_P. Vindretning nedenfra.

Figur 72. Skalamodell etter forsøk SC_D_2_24_P. Vindretning fra høyre.

Figur 73. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_2_24_P (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

4.2.2 Akkumulasjonsforsøk, 3 paneler

SC_D_3_8_N:

Erosjons- og akkumulasjonsmønstrene er relativt uniforme for målingene i de to snittplanene, men ved Y = 0 er det akkumulert sand i intervallet ~ 0,2 < X/L < 0,37. Fra X/L = 0,37 og videre nedstrøms har sanden erodert jevnt økende.

Figur 74. Skalamodell etter forsøk SC_D_3_8_N. Vindretning nedenfra.

Figur 75. Skalamodell etter forsøk SC_D_3_8_N. Vindretning fra høyre.

Figur 76. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_3_8_N (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

SC_D_3_8_P:

Ved dette forsøket er sanden redistribuert likt i den midtre og positive sonen, hvor sand er erodert ned til topplaten i intervallet ~ 0,07 < X/L < 0,32. I den negative sonen har det blitt erodert mindre sand, og her er sanden erodert ned til topplaten i intervallet ~ 0,14 < X/L < 0,22. Nedstrøms for det midtre panelet er sanden erodert jevnt.

Figur 77. Skalamodell etter forsøk SC_D_3_8_P. Vindretning nedenfra.

Figur 78. Skalamodell etter forsøk SC_D_3_8_P. Vindretning fra høyre.

Figur 79. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_3_8_P (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

SC_D_3_24_N:

Sanden er redistribuert uniformt over modellens bredde, og erodert ned til topplaten i intervallet $\sim 0.1 < X/L < 0.2$, altså frem til like nedstrøms for det fremste panelet. Det er akkumulert sand i intervallet $\sim 0.23 < X/L < 0.5$.

Figur 80. *Skalamodell etter forsøk SC*_*D*_3_24_*N*. *Vindretning nedenfra*.

Figur 81. Skalamodell etter forsøk SC_D_3_24_N. Vindretning fra høyre.

Figur 82. *Sandlagets høyde ved forsøk* SC_D_0_0 TO og SC_D_3_24_N (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

SC_D_3_24_P:

Sanden er redistribuert relativt uniformt over modellens bredde. I intervallet $\sim 0.1 < X/L < 0.4$ er sanden erodert ned til topplaten. Deretter bygger sandlaget seg opp til det midtre panelet. Nedstrøms fra det midtre panelet er det erodert noe sand for målingene i den positive sonen, mens det er akkumulert for den negative sonen. I den midtre sonen er sandlagets høyde tilnærmet uendret.

Figur 83. Skalamodell etter forsøk SC_D_3_24_P. Vindretning nedenfra.

Figur 84. Skalamodell etter forsøk SC_D_3_24_P. Vindretning fra høyre.

Figur 85. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_3_24_P (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

4.2.3 Akkumulasjonsforsøk, 5 paneler

SC_D_5_8_N:

Sanden er redistribuert noe ujevnt mellom de tre sonene. Det er imidlertid tendenser til større mengde erodert enn akkumulert sand over modellen, bortsett fra intervallet $\sim 0.05 < X/L < 0.15$ for den midtre sonen.

Figur 86. *Skalamodell etter forsøk SC*_*D*_5_8_*N*. *Vindretning nedenfra*.

Figur 87. Skalamodell etter forsøk SC_D_5_8_N. Vindretning fra høyre.

Figur 88. Sandlagets høyde ved forsøk SC_D_0_0 TO og SC_D_5_8_P (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

SC_D_5_8_P:

I dette forsøket er sanden redistribuert noe ujevnt. Det er likevel tendenser likheter mellom de tre sonene. I intervallet $\sim 0.05 < X/L < 0.21$ er det erodert sand, mens mellom de øvrige panelene er sand akkumulert.

Figur 89. *Skalamodell etter forsøk SC*_*D*_5_8_*P*. *Vindretning nedenfra*.

Figur 90. Skalamodell etter forsøk SC_D_5_8_P. Vindretning fra høyre.

Figur 91. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_5_8_P (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

SC_D_5_24_N:

Sanden er redistribuert relativt uniformt over modellens bredde. I intervallet ~ 0,05 < X/L < 0,2 er sanden erodert ned til topplaten of den midtre sonen. Deretter øker sandlagets høyde til det når maksimal høyde nær panel nummer 2. Nedstrøms for panel 2 til X/L = 1, er det tendenser til noe erosjon.

Figur 92. Skalamodell etter forsøk SC_D_5_24_N. Vindretning nedenfra.

Figur 93. Skalamodell etter forsøk SC_D_5_24_N. Vindretning fra høyre.

Figur 94. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_5_24_N (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

SC_D_5_24_P:

Sanden er redistribuert relativt uniformt over modellens bredde. Det er erodert noe mer sand i den midtre sonen enn de to øvrige, mellom det midtre og det fjerde panelet. I intervallet $\sim 0.2 < X/L < 0.42$ er sanden erodert ned til topplaten i den midtre sonen.

Figur 95. Skalamodell etter forsøk SC_D_5_24_P. Vindretning nedenfra.

Figur 96. Skalamodell etter forsøk SC_D_5_24_P. Vindretning fra høyre.

Figur 97. Sandlagets høyde ved forsøk SC_D_0_0 T0 og SC_D_5_24_P (øverst), og differansen mellom sandlaget ved de to målingene (nederst).

4.3.2 Sammenligning av resultater

Akkumulasjonsforsøkene med negativt orienterte paneler synes å like redistribusjonsmønstre. Etter alle forsøk er det en fonn oppstrøms for det fremste panelet på mellom 8 og 15 mm høyde. Deretter er sanden erodert ned til topplaten frem til like nedstrøms for det fremste panelet. Forsøkene viser at området hvor sand er erodert ned til topplaten øker med avstand mellom panelenes underkant og topplaten. Sand akkumuleres mer lokalt, med høyere maksimumshøyde.

Forsøk med positivt orienterte paneler har flere likhetstrekk som forsøk med negativt orienterte paneler. Det dannes en fonn oppstrøms for det fremste panelet. Fra fonnen er sanden erodert ned til topplaten. Det er tendenser til økte områder hvor sand er erodert ned til topplaten med økning i avstand mellom underkant panel og topplaten. Diagrammene viser også at sanden akkumuleres med høyere maksimumshøyde for sanden.

Differansen mellom den totale erosjonsmengden ved referanseforsøket og de øvrige forsøkene omtales heretter som differansen i erosjon. Tabellen og diagrammene nedenfor viser forholdet mellom differansene i erosjon og antall paneler, ved forsøk med 8 mm (figur 98), og 24 mm (figur 99) avstand mellom underkant panel og topplaten. Positiv differanse indikerer større total erosjon i forhold til referanseforsøket, mens negativ differanse indikerer mindre total erosjon i forhold til referanseforsøket. Den grønne linjen representerer forsøk med panelene positivt orientert, og den oransje linjen representerer forsøk med panelene negativt orientert. Den sorte linjen representerer middelverdiene av disse. Alle beregninger av differanse i erosjon er gjort i snittplanet langs modellens senterlinje.

	Differanse i erosjon,	Gjennomsnittlig differanse
Forsøk	prosentvis	i erosjon, prosentvis.
SC_D_2_8_N	-30,5	
SC_D_3_8_N	-13,6	-21,9
SC_D_5_8_N	-21,6	
SC_D_2_8_P	28,9	
SC_D_3_8_P	17,2	26,5
SC_D_5_8_P	33,2	
SC_D_2_24_N	-43,0	
SC_D_3_24_N	-42,8	-42,1
SC_D_5_24_N	-40,4	
SC_D_2_24_P	41,1	
SC_D_3_24_P	47,8	53,2
SC_D_5_24_P	70,8	

Tabell 6. Prosentvis differanse av total sanderosjon mellom SC_D_0_0 T6 og øvrige akkumulasjonsforsøk.

Av grafene kan man lese at det eroderes mer sand for forsøk med panelene positivt orientert, enn for tilsvarende forsøk med panelene negativt orientert. Merk at erosjonsmengden ved SC_D_3_8_N og SC_D_3_8_P er betydelig mer lik erosjonsmengden ved SC_D_0_0 T6, enn de øvrige forsøkene.

Figur 98. Prosentvis differanse mellom total erosjon for SC_D_0_0 T6, og øvrige akkumulasjonsforsøk med 8 mm avstand mellom panelenes underkant og topplaten.

Figur 99. Prosentvis differanse mellom total erosjon for SC_D_0_0 T6, og øvrige akkumulasjonsforsøk med 24 mm avstand mellom panelenes underkant og topplaten.

5.0 Diskusjon

Hensikten med denne oppgaven er å undersøke mønstre for redistribusjon av snø på flate tak med solfangere og sammenligne forsøksresultatene med snølaststandardens formuleringer. I dette kapittelet drøftes de presenterte forsøksresultatene opp mot teori og annen relevant forskning.

5.1 Kalibrering av vindtunnel

Resultatene fra kalibrering av vindtunnelen viser en uniformitet i vindhastighet ved modellens plassering. Den største prosentvise differansen mellom vindhastigheter målt ved innløpet er 4,2%, og for målinger gjort over testområdet er den største prosentvise differansen 1,9%.

Variasjonen i vindhastigheten ved punktene vurdert ovenfor er neglisjerbare, og strømningsmønsteret i vindtunnelen ved modellens plassering anses som uniformt. Forsøkene er dermed gjort under like forhold, og kan repeteres.

5.2 Erosjonsforsøk

Forsøksresultatene viser at med solfangere eroderes sand initielt på motsatt side av taket av det som er tilfelle for referanseforsøket. Dette kan delvis forklares ved Venturieffekten, forklart i 2.2.8. Når luftstrømmen møter panelenes toppunkt føres den via en kontraksjon ned til panelenes bunnpunkt. Ved anvendelse av ligning 11 for paneler 8 mm over topplaten får vi at vindhastigheten øker med en faktor på 9,8 ved panelenes bunnpunkt i forhold vindhastsigheten før kontraksjonen. I tillegg vil en ruhet i form av de øvrige panelene eliminere luftstrømmen og topplatens gjenkoblingspunkt mot le side av modellen.

Prasad m.fl (2009) viser at det laveste trykket på takflaten vil være ved loveggens hjørner. Ettersom luft strømmer fra høyere mot lavere trykk vil det føre til økt vindhastighet nær modellens hjørner (se figur 3). Dermed vil det eroderes ved lavere vindhastigheter i disse områdene. Dette er også tilfelle for forsøkene. Når vind treffer et hjørne dannes koniske virvler som avbøyes med en vinkel fra hjørnet (Väsieş m.fl. 2012). Disse virvlene vil i forbindelse med erosjonsforsøkene føre til erosjon fra modellens hjørner, og vi ser ved forsøk SC_E_0_0 at sand initielt eroderes ved hjørnene med en vinkel på ~45° mot takets senterlinje.

Utelates erosjon ved hjørnene, viser resultatet fra forsøk SC_E_0_0 at sand initielt eroderes på le side av topplaten. Dette er i tråd med Văsieş m.fl. (2012), som viser luftstrømmen og takflatens gjenkoblingspunkt nær le vegg, og at vindhastigheten over takflaten dermed vil være størst nedstrøms for dette punktet. Prasad m.fl. (2009) viser at suget langs takflatens midtlinje er størst

mot lo side av taket. Dette samsvarer ikke med resultatene fra forsøk SC_E_0_0, hvor sand nær lo side eroderte i liten grad.

Ved vindhastighet 6,8 m/s eroderte sand ved modellens senterlinje i gjennomsnitt 192,6% mer ved forsøkene med positivt orienterte paneler enn ved forsøk med negativt orienterte paneler. Dette kan skyldes at panelenes orientering leder mer av luftstrømmen ned mot modellens topplate. Samtidig viser erosjonsdiagrammene i plan økte områder uten erosjon av sand etter endt forsøk enn for SC_D_0_0 ved høyere vindhastigheter. Overført til reelle bygninger vil det i soner hvor sand ikke er erodert akkumuleres snø, og dermed føre til ujevn avsetting. På denne måten vil taket utsettes for uønskede skjeve lastfordelinger.

5.3 Akkumulasjonsforsøk

Resultatene viser like mønstre i redistribusjon av sand ved forsøk med paneler likt orientert i forhold til vindretningen. For akkumulasjonsforsøkene antas at skaleringskriteriene presentert av Zhou m.fl. (Upublisert) er tilfredsstilt, på grunnlag av likheter mellom partikkeltypene brukt i forsøkene i forbindelse med denne oppgaven og i forsøkene til Zhou m.fl. (Upublisert).

Ifølge snølaststandardens formuleringer for flate tak eroderes 20% av snøen fra takflaten. Ved forsøk SC_D_0_0 ble 21,2% av den totale mengden sand erodert fra modellens topplate etter endt forsøk. Denne verdien er brukt som referanse for de øvrige forsøkene, og tilsvarer formfaktoren μ_1 for flate tak i snølaststandarden.

Gjennomsnittlig erodert sand ble beregnet for forsøk med like antall solfangere i forhold til referanseforsøket. Beregningene viser at forholdet mellom erosjon ved forsøk gjort med paneler og referanseforsøket er

- -0,9% for tak med to solfangerpaneler.
- 2,2% for tak med tre solfangerpaneler.
- 10,5% for tak med fem solfangerpaneler.

Det dimensjonerende tilfellet etter forsøksresultatene vil være for to solfangerpaneler montert på takflaten. Den totale snølasten vil, ifølge forsøksresultatene, være tilnærmet lik snølasten ved flate tak uten solfangere.

Det er i utgangspunktet ikke mulig å sammenligne forsøksresultatene med snølaststandarden, grunnet modellens skalering. Dette fører til at ligning 4 ikke oppfylles. Justeres målestokken til 1:36, kan man utføre kontroll av modellens formfaktor etter snølaststandardens formulering. Formfaktorene er beregnet etter formler presentert i 2.1.2.

Ved beregning av snølast antas solfangerne å være montert direkte på takflaten, og at de står vertikalt. For flate tak med solfangerpaneler øker snølasten i forhold til flate tak med

- $\sim 22\%$ for tak med to solfangerpaneler.
- $\sim 41\%$ for tak med tre solfangerpaneler.
- \sim 56% for tak med fem solfangerpaneler.

Forsøkene viser at erosjon av sand øker med antall paneler. Ved bruk av snølaststandardens metode for beregning av snølast med projeksjoner, øker snølasten med økning i antall projeksjoner. En grunn til avviket kan være at ved forsøkene ble det kun tatt hensyn til redistribusjon av snø på takflaten, og ikke fra arealer omkring modellen, nedbør og snømetamorfose.

Det er ikke tatt høyde for solfangernes egenlast ved beregningene. Typisk vekt for solfangere kan være 31 kg/m² (Catch Solar, udatert). For modellen brukt i forsøkene omregnet til fullskala blir den totale vekten av tre rader med solfangere 4712 kg. Det er heller ikke tatt høyde for snømetamorfose i forsøkene. Orheim (1966) viser at snø som tines og fryser til, får en økt overflatehardhet som dermed fører til en større terskelhastighet. Sandens egenskaper er like gjennom forsøkenes forløp. Snøens egenskaper vil variere gjennom vinterhalvåret, og skaresnø vil kunne dannes på takflaten.

For forsøk med positivt orienterte paneler 8 mm over topplaten, er den økte erosjonen 21,0% større enn den reduserte erosjon for negativt orienterte paneler. Tilsvarende tall for forsøk med 24 mm høyde er 26,3%. Forsøkene tar kun høyde for to vindretninger, og er dermed ikke representativ for erosjon av snø under naturlige forhold, da vindretningen endres gjennom vinteren. Likevel viser forsøksresultatene at den totale erosjonen avtar ved solfangere montert på modellen.

Sandlagets profil etter forsøk SC_D_0_0 viser at sandlagets profil langs senterlinjen er relativt jevn, med liten mengde akkumulert sand. Maksimal sandhøyde for SC_D_0_0 er 0,5 mm. Ved de øvrige forsøkene er sanden erodert ned til topplaten, og har en maksimal akkumulasjonshøyde for målinger gjort langs senterlinjen på mellom 3,7 mm og 16,4 mm. En økning i maksimal sandhøyde og reduksjon i den totale sandmengden fører en ujevn fordelt last over takflaten, som igjen kan føre til krav om økt kapasitet for de bærende konstruksjoner.

Resultatene samsvarer ikke med Tablers (2003) modell om lagringskapasiteten til snøgjerder med spalte mellom snøgjerdets underkant og underlaget. Snølagringskapasiteten skal minke lineært med en økning i spaltens høyde over 10% av snøgjerdets totale høyde. De mest nærliggende forsøkene å sammenligne med modellen Tabler presenterer, er SC_D_2_8_N, og SC_D_2_24_N. Dette fordi snøgjerdet har en vinkel tilsvarende negativ vinkel i forsøkene presentert i denne oppgaven.

Av figur 64 og 70 synes større mengder akkumulert sand nær det fremste panelet ved forsøk gjort med 24 mm avstand mellom panelenes underkant og topplaten. Akkumulasjonen nær panelet skal etter figur 10 minke med ~24% fra SC_D_2_8_N til SC_D_2_24_N. Forsøksresultatene viser en økning på 426,1%. Forsøkene er gjort under betydelig store forhold. Tablers (2003) modell gjelder for snøgjerder plassert på terreng, og det tas blant annet høyde for nedbør samt ulikheter i partiklenes egenskaper. I forsøkene utført i forbindelse med denne oppgaven er det et element, i form av skalamodellen, som utgjør en vesentlig forskjell for strømningsmønsteret. I tillegg er resultatene presentert av Tabler (2003) gjort ved oppnådd likevekt for snøfonndannelsen, som ikke er tilfelle for forsøkene gjort i forbindelse med denne oppgaven.

5.5 Feilkilder

Ettersom oppsett av alle forsøk ble gjort manuelt, og alle registreringer ved erosjonsforsøkene ble gjort manuelt, vil det være feilkilder knyttet til oppgavens resultater. Nedenfor drøftes feilkilder som kan virke inn på resultater fra kalibreringer og forsøk.

5.5.1 Kalibrering av vindhastighet i vindtunnel

Alle målinger av vindhastigheter ble gjort med Pitotrør. Ettersom målingene måtte leses av manuelt, er det noe usikkerhet tilknyttet verdiene brukt i videre beregninger. Måleinstrumentet fluktuerte ved alle målinger. Dette ble løst ved å registrere middelverdiene. Målingene som ble benyttet til videre beregninger har dermed en usikkerhet på $\pm 0,005$ kPa. Det ble også gjort målinger med større fluktuasjon, men disse målingene ble ansett som ugyldige.

Resultatene fra kalibreringen av vindhastigheten mot viftens rotasjonshastighet viste en tilnærmet lineær sammenheng, som er i tråd med en veiledende oversikt ved vindtunnelen. Likevel er sammenhengen ikke helt lineær (se vedlagte tabell 5 og 6, og figur 97). Dermed er det noe usikkerhet knyttet til de faktiske vindhastighetene presentert i tabell 5. Denne usikkerhetens relevans anses som liten ved bruk av vindhastighetene, og er dermed neglisjerbar.

Test av vindhastigheten i innløpet viste seg å gi relativt like innbyrdes vindhastigheter ved alle høyder med unntak av målinger ved høyde = 2,0 m (se figur 10, og vedlagte tabell 7 og 8). En forklaring på avviket mellom målingene ved høyde = 2,0 m og de øvrige målingene, kan være turbulente virvler forårsaket av innløpets kant. Siden testområdet er åpent, vil forstyrrelser utenfor innløpets tverrsnitt påvirke strømningen. Vindhastighetene for alle målinger avtar fra avstand 0,25 m fra sidekantene, og utover. Resultatene viser også større fall i målte vindhastigheter på venstre side av innløpet. Dette kan skyldes en løfteinnretning plassert skjevt i forhold til innløpet. De målte vindhastighetene over testområdet er relativt uniforme frem til utløpets åpning. Målingene gjort inne i utløpet viser en lavere vindhastighet, noe som kan skyldes at vind avledes av utvidelsene langs utløpets åpning. Målingene gjort ved Y = 1,0 m og Y = -1,0 m viser en betydelig lavere vindhastighet enn målingene nærmere vindstrømmens senterlinje. Dette skyldes mest sannsynlig det samme som ved de ujevne målingene ved innløpets ytterkanter. I tillegg forstyrrer løfteinnretningen plassert nær innløpet strømningen.

5.5.2 Skalaforsøk

Ved enkelte av forsøkene var erosjons- og akkumulasjonsmønstrene ujevne over modellens bredde. Dette gjelder erosjonsforsøkene SC_E_2_24_N, SC_E_3_16_N, SC_E_3_24_N, SC_E_5_16_N, og akkumulasjonsforsøkene SC_D_2_8_P, SC_D_3_8_P, SC_D_5_8_P, og delvis SC_D_5_24_N. Modellens posisjon ble merket med kritt, men det var vanskelig å sikre nøyaktig lik posisjonering av modellen ved alle forsøkene. Dermed kan en årsak til ujevnhetene være at modellen ble stilt skjevt. Det er også usikkerheter rundt bruk av vindtunnelen. Den manøvreres manuelt, det var derfor variasjoner i tidsbruk for å nå de forhåndsbestemte vindhastighetene.

Erosjonsdiagrammene i plan viser et noe ufullstendig bilde av erosjonsmønstre nær rammeverket langs modellens lengde, ettersom lyssettingen over testområdet var noe mangelfull. Dermed ble 2-3 cm på venstre side av hver ramme skyggelagt, sett fra innløpet. Under bearbeiding av bildene var det vanskelig å se sandens konturer i disse områdene. Erosjonsdiagrammene i plan kan dermed være noe unøyaktige nær modellens rammeverk.

For hvert akkumulasjonsforsøk ble det laget et diagram som viser differansen mellom sandlagets initielle høyde og sandlagets høyde etter endt forsøk. Det ble tatt en avgjørelse ut ifra tidsbruk om å bruke den initielle sandhøyden ved forsøk SC_D_0_0 som sammenligningsgrunnlag for alle forsøkene. Det ble brukt forskjellige instrumenter for å fordele sanden over modellens flate ved SC_D_0_0 og de øvrige forsøkene, på grunn av utilgjengelighet mellom solfangernes rammeverk. Dermed vil den reelle initielle sandhøyden variere mellom forsøkene, noe som kan føre til noe avvikende resultater.

Det ble gjort manuelle målinger for å undersøke likheten mellom sandhøydene ved bruk av de ulike instrumentene, og det var tilnærmet ingen forskjell. Målingene ved SC_D_0_0 T0 ble gjort for hver 25 mm over modellens lengde, mens målingene ved de øvrige forsøkene ble gjort for hver 10 mm. Det var ønskelig å få et tilstrekkelig grunnlag for diagrammene for differansen mellom før og etter eksponering for vind. Derfor ble verdier for hver 10 mm for SC_D_0_0 funnet ved interpolasjon, noe som medfører økt usikkerhet for forsøksresultatene.

Det er også en usikkerhet knyttet til modellens faktiske mål. Ettersom den ble laget for hånd er ikke modellens mål nøyaktige i henhold til figur 16 og 17. Unøyaktighetene anses likevel som neglisjerbare.

De målte verdiene gjort av lasermåleren varierer ved enkelte verdier. Flere målinger kan sies å være urealistiske, og har blitt utelatt fra diagrammene. De utelatte verdiene er markert i vedlagte tabeller med målinger, i henhold til fargekodene forklart i 4.3. Ved enkelte punkter ble sandlagets høyde målt til ~74 mm, mens ved andre punkter er sandlagets høyde målt til ~340 mm under modellens topplate. Slike urealistiske verdier har blitt utelatt under fremstilling av resultater. Måling Y = -340 ved forsøk SC_D_3_24_N gir en sandhøyde på ± 6 mm i intervallet ~ 0,12 < X/L < 0,2, mens i realiteten er all sand erodert ned til topplaten. Modellen ble plassert noe skjevt i forhold til lasermåleren, slik at den målte sandhøyden ved positiv og negativ Y-verdi er forskjøvet.

6.0 Konklusjon og videre arbeid

Oppgavens hovedformål var å fastslå modeller for redistribusjon av snø på flate tak med solfangere. Videre skulle forsøksresultatene sammenlignes med snølaststandardens metoder for beregning av formfaktor for flate tak og flate tak med projeksjoner.

Sandlagets profiler etter akkumulasjonsforsøk med paneler er i større grad konsentrert mot modellens midtpunkt enn hva som er tilfelle for referanseforsøket. Sand er dermed akkumulert i større lokale opphopninger. For reelle bygg vil solfangere føre til mer konsentrerte snølaster.

Resultater fra erosjonsforsøk med paneler viser en økt skjærhastighet langs modellens topplate ved lavere vindhastigheter. Det vises også at den maksimale skjærhastighet ved lavere vindhastigheter forekommer på motsatt side av hva som er tilfelle for referanseforøket. En økning i vindhastigheter langs bygningers takflate gir økte påkjenninger på takkonstruksjonen, som kan føre til skjerpede krav til taktekking.

Sandlagenes profiler ved akkumulasjonsforsøkene ble sammenlignet med snølaststandardens formulering for snølast på flate tak. Det vises tilnærmet like totale laster for det dimensjonerende lasttilfellet.

Ved sammenligning med snølaststandardens metoder for beregning av snølast på flate tak med projeksjoner, gis en betydelig mindre beregnet totale snølast ved forsøkene. Avviket kan skyldes at snølaststandardens metode kun gjelder for projeksjoner direkte på takflaten, i tillegg til at den gjelder for vertikalt stilte projeksjoner. Etter resultatene presentert i denne oppgaven vil snølaststandardens metode for beregning av dimensjonerende snølast for tak med projeksjoner anses som konservativ for tilfeller med solfangere på takflaten.

Forsøk gjort under kontrollerte forhold i vindtunnel vil alltid gi et forenklet bilde av virkeligheten, og oppgaven er avgrenset til redistribusjon av snø på tak. Det er dermed ikke tatt høyde for nedbør, transport av snø fra arealer rundt bygg til takflaten, eller snømetamorfose.

Det vil likevel være nyttig å forske videre på dette feltet. Ved å gjennomføre CFD-simuleringer, vil problemstillingen kunne belyses fra flere sider, og dermed gi ytterligere forklaringer av resultatene. Spesielt tofasesimuleringer, hvor det er mulig å simulere vind med snøpartikler, vil kunne bidra til en økt forståelse av solfangeres effekt på redistribusjon av snø for flate tak.

7.0 Litteraturliste

- NS-EN 1991-1-3, 1. utgave, november 2003. Eurokode 1, Laster på konstruksjoner, Del 1-3: Allmenne laster, Snølaster.
- Affordable Solar (Ukjent dato, sist kontrollert 13.05.2014). *Calculating Tilted Array Spacing*. Tilgjengelig fra: <u>http://www.affordable-solar.com/Learning-Center/Building-a-</u> <u>System/Calculating-Tilted-Array-Spacing</u>.

Alexandrou, A. N. (2001). Principles of fluid mechanics: Prentice Hall.

- Andresen, I. (2008). Planlegging av solvarmeanlegg for lavenergiboliger og passivhus. En introduksjon: SINTEF Byggforsk.
- Arya, P. S. (2001). *Introduction to micrometeorology*, b. 79: Academic press. ISBN 0-12-059354-8.
- Berry, M. (1981). Snow and climate. *The handbook of snow*. *Principles, processes, management and use*. *Pergamon, Toronto, Canada*: 51-60. ISBN 0-08-025375-X.
- Bosanac, M. N., Nielsen, J. E. (2001). Måling af solfangereffektivitet. *SolEnergiCentret*, *Teknologisk Institut*, 2000 (1).
- Catch Solar. (Ukjent dato, sist kontrollert 13.05.2014). Tilgjengelig fra: http://www.catchsolar.no/pages/solenergi_qa_spmsvar.php.
- Çengel, Y. A., Ghajar, A. J. (2011). Heat and mass transfer: fundamentals & applications: McGraw-Hill. ISBN 0-07-125739-X.
- Ferreira, A., Sanchez, P. (2009). Numerical and experimental evaluation of the wind-field behind living shelterbelts.
- Finnemore, E. J., Franzini, J. B. (2009). Fluid Mechanics with Engineering Applications. New York: McGraw-Hill. ISBN 978-007-127011-3.
- Font, D., Mases, M., Vilaplana, J. M. (1998). Experimental mass-flux measurements: a comparison of different gauges with estimated theoretical data.
- Kind, R. J. (1981). Handbook of snow, Pergamon Press, ISBN 0-08-025375-X.
- McIlveen, R. (1992). Fundamentals of weather and climate: Chapman & Hall, ISBN 0-412-41160-1.
- Mellor, M., Fellers, G. (1986). Concentration and flux of wind-blown snow: DTIC Document.

Morrison, F. A. (2013). *An Introduction to Fluid Mechanics*: Cambridge University Press. ISBN 978-1-107-00353-8

Mott, R. L. (2000). Applied Fluid Mechanics. New Jersey: Prentice Hall. ISBN 0-13-023120.

- Nordic FolkCenter for Renewable Energy (2012, sist kontrollert 13.05.2014). Distance between solar cells.
- O'Rourke, M., DeGaetano, A., Tokarczyk, J. D. (2005). Analytical simulation of snow drift loading. *Journal of structural engineering*, 131 (4): 660-667.
- Orheim, O. (1966). Surface snow metamorphosis on the Antarctic Plateau. Norsk Polarinstitutt, Årbok: 84-91.
- Prasad, D., Uliate, T., Ahmed, M. R. (2009). Wind Loads on Low-Rise Building Models with Different Roof Configurations. *International Journal of Fluid Mechanics Research*, 36 (3).
- Ramberg, J. F. (2007). Vindpåvirket avsetting og redistribusjon av snø på tak En evaluering av snølaststandarden NS-EN 1991-1-3. Ås: Universitetet for miljø- og biovitenskap (UMB).
- Rehman, N. U., Siddiqui, M. A. (2012). Development of simulation tool for finding optimum tilt for solar collectors.
- Simpson, J. E. (1994). *Sea breeze and local winds*. Cambridge: Cambridge University Press. ISBN 0-521-452112.
- SINTEF Byggforsk, KanEnergi. (2011). Mulighetsstudie Solenergi i Norge.
- Tabler, R., Schmidt, R. (1986). Snow erosion, transport and deposition in relation to agriculture. Proceedings of the Symposium, Snow Management for Agriculture, Great Plains Agric. Counc. Publ. 11-58 s.
- Tabler, R. D. (1988). Snow Fence Handbook: (release 1.1): Tabler & Associates.
- Tabler, R. D. (1991). Snow transport as a function of wind speed and height. Cold Regions Engineering (1991): ASCE. 729-738 s.
- Tabler, R. D. (1994). Design guidelines for the control of blowing and drifting snow: Strategic Highway Research Program, National Research Council.
- Tabler, R. D. (2003). Controlling Blowing and Drifting with Snow Fences and Road Design.
- Thiis, T. K., Gjessing, Y. (1999a). Large-scale measurements of snowdrifts around flat-roofed and single-pitch-roofed buildings. *Cold regions science and technology*, 30 (1): 175-181.

- Thiis, T. K., Jaedicke, C., Dahl-Grøntvedt, M., Johnsen, J. (1999b). The new mess building in Ny-Ålesund - Effects on snowdrifts. *Meteorological Report Series - University of Bergen* (5).
- Văsieş, G. m.fl. (2012). Numerical Simulation of Wind Action on Solar Panel Placed on Flat Roofs with and without Parapet.
- Zhou, X. m.fl. (Upublisert). Natural Hazards Research of wind tunnel test on snow loads on a stepped flat roof.
8.0 Vedlegg

8.1 Vedlegg, kalibrering av vindtunnel

Tabell V1. Målte verdier av dp ved gitte nivåer av w for høyde 1,0 m over testområdet.

w [rpm]	dp [kPa]	V [m/s]	dV/dw	Σ(dV/dw)/n
50	1,35	1,51		
100	6,4	3,29	0,04	
200	26,72	6,73	0,03	
300	55,16	9,67	0,03	
400	106,18	13,42	0,04	0,034

Tabell V2. Målte verdier av dp ved gitte nivåer av w for høyde 0,3 m over testområdet.

w [rpm]	dp [kPa]	V [m/s]	dV/dw	Σ(dV/dw)/n
50	1,6	1,65		
100	6,75	3,38	0,03	
200	28	6,89	0,04	
300	57,93	9,91	0,03	
400	110,74	13,70	0,04	0,034

Figur V1. Sammenheng mellom viftens rotasjonshastighet og vindhastighet.

Y [cm]										
200	0,006	0,018	0,026	0,038	0,041	0,042	0,044	0,026	0,011	
175	0,04	0,063	0,059	0,06	0,061	0,063	0,063	0,064	0,052	
150	0,045	0,062	0,061	0,059	0,06	0,06	0,06	0,062	0,052	
125	0,065	0,061	0,059	0,059	0,06	0,059	0,058	0,06	0,051	
100	0.044		0.0.6		0.0.50	0.076		0.06	0.0.48	
100	0,064	0,062	0,06	0,059	0,059	0,056	0,057	0,06	0,042	
75	0.042	0.06	0.050	0.050	0.050	0.057	0.050	0.061	0.045	
15	0,045	0,00	0,039	0,039	0,039	0,037	0,039	0,001	0,043	
50	0.027	0.059	0.06	0.059	0.06	0.058	0.06	0.062	0.056	
50	0,027	0,057	0,00	0,057	0,00	0,050	0,00	0,002	0,050	
25	0.03	0.061	0.058	0.06	0.061	0.062	0.063	0.062	0.061	
	,	,	,	,	,	,	,	,	,	
0										
	0	25	50	75	100	125	150	175	195	X [cm]

Tabell V3. Målte trykkforskjeller i innløpets tverrsnitt.

Tabell V4. Beregnede vindhastigheter i innløpets tverrsnitt.

Y [cm]									
200	3,19	5,52	6,64	8,03	8,34	8,44	8,64	6,64	4,32
175	8,23	10,33	10,00	10,08	10,17	10,33	10,33	10,42	9,39
150	8,73	10,25	10,17	10,00	10,08	10,08	10,08	10,25	9,39
125	10,50	10,17	10,00	10,00	10,08	10,00	9,91	10,08	9,30
100	10,42	10,25	10,08	10,00	10,00	9,74	9,83	10,08	8,44
75	8,54	10,08	10,00	10,00	10,00	9,83	10,00	10,17	8,73
50	6,76	10,00	10,08	10,00	10,08	9,91	10,08	10,25	9,74
25	7,13	10,17	9,91	10,08	10,17	10,25	10,33	10,25	10,17
0									
	0	25	50	75	100	125	150	175	195 X [cm

Tabell V5. Målte trykkforskjeller over testområdet og i utløpet.

8.2 Vedlegg, måledata akkumulasjonsforsøk

Tabell V7. Målinger av sandlagets høyde ved akkumulasjonsforsøk.

SC_D_0_	0 T 0			SC_D_0_0 T6			
X [mm]	Y [mm]	z _M [mm]		X [mm]	Y [mm]	z _M [mm]	
0	0	4,425		-10	0	2778,78	
25	0	20.9		0	0	2465,55	
50	0	21.175		25	0	2460,93	
75		21 275		50	0	2455,28	
100		21,275		75	0	2450,65	
100	0	20,425		100	0	2448,5	
125	0	21,2		125	0	2447,3	
150	0	21,275		150	0	2447,25	
175	0	21,425		175	0	2447,88	
200	0	21,25		200	0	2449,05	
225	0	21		225	0	2450,15	
250	0	21,175		250	0	2451,65	
275	0	21,175		275	0	2452,2	
300	0	22.175		300	0	2453,1	
325	0	21,725		325	0	2453,68	
350	0	22.025		350	0	2453,65	
375	0	21.8		375	0	2452,93	
400		22,025		400	0	2453,15	
400		22,025		425	0	2452,18	
425	0	21,/5		450	0	2452,93	
450	0	21,325		475	0	2452,33	
475	0	21,6		500	0	2452,33	
500	0	21,35		525	0	2452,85	
525	0	22,05		550	0	2453,53	
550	0	21,05		575	0	2456,15	
575	0	21,6		600	0	2460,35	
600	0	17,35		625	0	2778,23	

x mm: x mm:<	SC_D	_2_8_	N				SC_D	_2_8_	Р							
150 0 2403_16 640 2441_1 650 2462_135 10 940 241_35 10 340 241_35 10 340 241_35 10 340 241_35 10 340 241_35 10 340 241_35 10 340 241_35 10 340 241_35 10 340 241_35 10 340 241_35 10 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 20 340 241_35 30 340 241_35 30 340 241_35 30 340 241_35 30 341_35 30 341_35 30 341	X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z., [mm]	X [mm]	Y [mm]	z., [mm]	X [mm]	Y [mm]	z _M [m	m]	X [mm]	Y [mm]	z _{.m} [mm]
0 0 2464.1 610 2462.285 10 0 2462.285 10 340 2451.725 20 340 2457.725 20 340 2457.725 20 340 2457.725 20 340 2457.725 20 340 2455.755 20 340 2455.75 30 340 2455.77 30 340 2455.77	-10	0	2603,9	620	245	2467,05	-10	0	2605,65	620	340	2451,	35	0	-340	2777,45
10 0 2460.775 600 2462.175 600 2462.175 600 2455.275 20 2455.155 20 2455.155 20 245	0	0	2464,1	610	245	2465,325	0	0	2412,85	610	340	245	1	10	-340	2718,101
20 0 245:9 30 245:9.7 30 0 245:9.7 30 0 245:9.7 30 0 245:9.7 30 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340 245:9.7 350 340	10	0	2460,775	600	245	2462,15	10	0	2460,175	600	340	2451,7	725	20	-340	2603,55
30 0 2458,2 30 0 2452,7 580 340 2456,7 40 3440 2456,7 50 0 2464,2 50 245,2 570 340 2453,3 50 340 2453,3 50 340 2453,37 50 340 2453,37 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,77 50 340 2453,75 50 340 2453,75 50 340 2453,75 50 340 2453,75 50 340 2454,75 50 340 2454,75 50 340 2453,75 50 340 2453,75	20	0	2457,9	590	245	2455,875	20	0	2456,1	590	340	2451,8	325	30	-340	2459,675
40 0 2465,2 570 246 245,12 40 0 2455,25 560 340 2455,35 50 340 2455,35 50 340 2455,35 50 340 2455,35 50 340 2455,35 50 340 2455,35 50 340 2455,35 30 2455,35 30 2455,35 30 2465,35 340 2452,35 30 340 2452,35 30 340 2452,35 30 340 2452,35 30 340 2452,35 30 340 2452,35 30 340 2452,35 30 340 2452,35 30 340 2452,35 30 340 2453,35 30 340 2453,35 30 340 2453,35 30 340 2453,35 30 340 2453,35 30 340 2453,35 30 340 2453,35 30 340 2453,35 30 340 2453,35 30 340 2453,35 30 340 2453,35 30 30 340 340 340 340 34	30	0	2458,825	580	245	2452	30	0	2452,75	580	340	2456,	75	40	-340	2456,75
50 0 2464,24 50 2462,35 50 340 2465,37 70 340 2465,37 70 340 2465,37 70 340 2455,37 70 340 2455,37 70 340 2455,37 70 340 2455,37 70 340 2455,37 70 340 2455,37 70 340 2455,37 70 340 2455,37 70 340 2455,37 70 340 2455,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2453,37 70 340 2445,37 70 340 2445,37 70 340 2453,37	40	0	2465,2	570	245	2451,25	40	0	2455,725	570	340	2455,	35	50	-340	2451,9
B0 0 2444, 25 300 245, 25 70 0 2445, 27 50 2445, 27 70 -340 2445, 27 70 -340 2445, 27 70 -340 2445, 27 70 -340 2445, 27 70 -340 2445, 27 70 -340 2445, 27 70 -340 2445, 27 70 -340 2445, 27 70 -340 2445, 27 70 -340 2445, 27 70 -340 2445, 27 70 -340 245, 27 70 -340 245, 27 70 -340 245, 27 70 -340 245, 27 70 -340 245, 27 70 -340 245, 27 70 30 300 245, 27 73 30 300 245, 27 73 30 300 245, 27 73 30 300 246, 37 300 300 340 340 340 340 340 340 340 340 340 340 340 340 340	50	0	2464,4	560	245	2451,025	50	0	2462,95	560	340	2455,	85	60	-340	2448,925
10 0 2485,05 350 248,04 248,05 350 340 242,15 80 340 242,15 80 340 242,15 80 340 242,15 80 340 242,15 80 340 242,15 80 340 242,15 80 340 242,15 80 340 242,15 80 340 242,15 80 340 242,15 80 340 242,15 100 340 242,15 100 340 242,15 100 340 242,15 100 340 242,15 100 340 242,15 100 340 242,15 100 340 242,15 100 340 242,15 100 340 242,15 100 2445,14 100 2445,14 100 2445,15 100 2446,25 440 245,25 100 2446,25 440 245,25 100 2445,25 100 2445,25 100 2445,25 100 2445,15 100	60	0	2464,625	550	245	2451,425	60	0	2464,975	550	340	2455,9	375	70	-340	2449,125
B O AMB, JAN BO O AMB, JAN BO O AMB, JAN BO D AMB, JAN BO D AMB, JAN BO D AMB, JAN BO D AMB, JAN D AMB, JAN D AMB, JAN AMB, JAN JAN<	- /0	0	2465,35	540	245	2451,5	/0	0	2465,075	540	340	2451,	./5	80	-340	2456,2
10 0 2484,875 500 2462,275 </td <td></td> <td>0</td> <td>2405,05</td> <td>530</td> <td>245</td> <td>2409,975</td> <td></td> <td></td> <td>2400,470</td> <td>530</td> <td>340</td> <td>2452,0</td> <td>225</td> <td>100</td> <td>-340</td> <td>2402,975</td>		0	2405,05	530	245	2409,975			2400,470	530	340	2452,0	225	100	-340	2402,975
110 0 2445,55 500 246,217 120 7440 7400 7460 <th< td=""><td>100</td><td>ő</td><td>2453.85</td><td>510</td><td>245</td><td>2454 975</td><td>100</td><td>ő</td><td>2405,225</td><td>510</td><td>340</td><td>2451,5</td><td>95</td><td>110</td><td>-340</td><td>2462,725</td></th<>	100	ő	2453.85	510	245	2454 975	100	ő	2405,225	510	340	2451,5	95	110	-340	2462,725
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	ő	2445.85	500	245	2454.825	110	ő	2465.525	500	340	2452.1	75	120	-340	2463.2
	120	0	2444,275	490	245	2458.75	120	0	2466.075	490	340	2451.7	25	130	-340	2462.175
	130	0	2445,4	480	245	2452,175	130	0	2464,875	480	340	2452,	35	140	-340	2454,125
150 0 2446,8 460 245 245,22 160 -246,22 460 340 245,27 160 -340 2445,25 340 2445,27 170 -340 2444,37 170 0 2446,65 440 245 2453,31 170 0 2466,55 420 340 245,45 180 -2467,175 430 340 245,45 180 -2467,175 430 340 245,45 190 -340 2445,05 120 -340 2445,05 120 -340 2445,07 200 0 2447,31 410 245 2450,75 210 0 2447,35 400 340 2451,125 220 -340 2445,07 220 0 2448,315 390 245 2450,75 250 0 2441,125 360 340 2450,275 2460,17 340 2445,07 340 2445,07 340 2445,07 340 2445,07 340 2445,07 340 2445,07 340 2445,07 340 2445,07 340 2446,07 340	140	0	2445,6	470	245	2452,775	140	0	2465,225	470	340	2452	,3	150	-340	2447,85
100 0 2446,6 450 245 2453 160 0 2466,7 440 340 2452,7 170 -340 2444,3 190 0 2446,55 430 245 2452,15 180 0 2467,17 430 340 2452,14 200 -340 2445,14 200 -340 2445,14 200 -340 2445,14 200 -340 2445,14 200 -340 2445,15 220 -340 2445,15 220 -340 2445,15 220 -340 2445,15 220 -340 2445,15 220 -2448,375 390 245 2450,15 220 2447,3 380 340 2450,25 230 -2449,11 370 340 2450,25 240 -340 2446,21 2460,75 250 2444,127 350 340 2446,21 2460,75 240 2444,137 350 340 2446,21 240 340 2446,21 240 340 2446,17 340 2446,17 340 2446,17 340 2446,17 340 2446,17 </td <td>150</td> <td>0</td> <td>2446,3</td> <td>460</td> <td>245</td> <td>2453,225</td> <td>150</td> <td>0</td> <td>2466,025</td> <td>460</td> <td>340</td> <td>2452</td> <td>2</td> <td>160</td> <td>-340</td> <td>2443,425</td>	150	0	2446,3	460	245	2453,225	150	0	2466,025	460	340	2452	2	160	-340	2443,425
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	160	0	2446,6	450	245	2452,725	160	0	2466,525	450	340	2451	,7	170	-340	2444,3
180 0 2446,25 430 245 1430 2451,45 190 -340 2445,10 190 0 2447,4 410 245 2452,12 190 0 2451,05 210 -340 2445,10 210 0 2448,17 340 2451,05 210 -340 2445,15 210 -340 2445,15 210 -340 2445,15 210 -340 2445,15 210 -340 2445,15 210 -340 2445,15 210 -340 2445,15 210 -340 2445,15 210 -340 2445,15 210 -340 2446,07 -340 2446,07 -340 2446,17 340 2450,15 240 -340 2446,17 340 2450,15 240 -340 2446,17 340 2450,15 240 -340 2446,17 340 2450,15 240 -340 2446,17 340 2446,17 340 2446,17 340 2446,17 340 2446,17 340 2446,17 340 2446,17 340 2446,17 340 <td< td=""><td>170</td><td>0</td><td>2446,6</td><td>440</td><td>245</td><td>2453</td><td>170</td><td>0</td><td>2466,7</td><td>440</td><td>340</td><td>2452,</td><td>05</td><td>180</td><td>-340</td><td>2444,975</td></td<>	170	0	2446,6	440	245	2453	170	0	2466,7	440	340	2452,	05	180	-340	2444,975
190 0 2447,3 420 245 2452,12 190 0 2462,65 420 340 2451,65 210 -340 2451,55 220 -340 2451,55 220 -340 2451,55 220 -340 2451,55 220 -340 2455,55 220 -340 2455,55 220 -340 2455,25 220 -340 2455,25 220 -340 2455,25 220 -340 2455,25 230 -340 2455,25 250 -340 2445,25 340 2450,255 250 -340 2446,57 250 2448,425 350 340 2445,15 250 -340 2446,57 270 -340 2446,57 270 -340 2446,57 270 -340 2446,57 340 2446,57 340 2444,27 330 340 2447,1 290 -340 2446,57 310 340 2447,1 290 -340 2446,57 310 340 2445,25 310 340 2445,25 310 340 2445,25 310 340 2446,72 340	180	0	2446,55	430	245	2452,45	180	0	2467,175	430	340	2451,	45	190	-340	2445,15
200 0 2444,74 410 245 245,05 210 -340 245,155 210 -340 245,155 220 -340 2445,155 220 -340 2445,155 220 -340 2445,155 220 -340 2445,155 220 -340 2445,155 220 -340 2445,155 220 -340 2445,155 220 -340 2445,155 220 -340 2445,155 220 -340 2445,155 220 -340 2445,155 220 -340 2445,155 200 -340 2445,055 250 -340 2445,055 250 -340 2446,375 350 340 2446,15 340 2446,17 330 340 2446,15 340 2446,17 330 340 2447,1 330 340 2447,1 340 2446,17 330 340 2447,1 300 340 2447,1 300 340 2447,1 300 340 2447,1 300 340 2447,1 300 340 2447,1 300 340 2447,1 300 340 2	190	0	2447,3	420	245	2452,1	190	0	2460,65	420	340	2451	,4	200	-340	2445,075
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	200	0	2447,4	410	245	2452,125	200	0	2453,8	410	340	2451,	05	210	-340	2445,95
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	210	0	2448,1	400	245	2450,875	210	0	2447,35	400	340	2451,	55	220	-340	2445,575
220 0 2439 240 0 2439 240 2445,25 370 245 2450,075 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2450,25 250 340 2445,25 250 340 2445,25 250 340 2446,75 300 2446,75 300 340 2446,25 300 2446,75 300 340 2446,25 300 2446,75 300 340 2446,25 300 340 2446,25 300 2446,75 300 340 2446,25 300 340 2446,25 300 340 2446,25 300 340 2446,25	220	0	2448,375	390	245	2450,75	220	0	2439,525	390	340	2451,1	25	230	-340	2445,35
250 0 2448,223 360 245 2450,075 250 0 2448,25 360 2440,075 260 2448,655 270 340 2446,37 270 0 2448,425 350 245 2450,07 270 0 2448,55 270 340 2446,37 280 0 2448,675 310 245 2450,07 270 0 2443,35 340 2447,1 300 340 2446,37 300 0 2448,675 310 245 2450,07 300 0 2444,2 330 340 2444,2 320 340 2446,73 310 0 2448,575 310 245 2450,8 320 0 2444,2 320 340 2444,2 320 340 2444,2 320 340 2444,2 320 340 2444,2 320 340 2444,2 320 340 2446,73 330 0 2448,72 340 </td <td>240</td> <td>0</td> <td>2447,3</td> <td>370</td> <td>245</td> <td>2450,5</td> <td>230</td> <td></td> <td>2439</td> <td>370</td> <td>340</td> <td>2450.6</td> <td>10</td> <td>240</td> <td>-340</td> <td>2440,05</td>	240	0	2447,3	370	245	2450,5	230		2439	370	340	2450.6	10	240	-340	2440,05
260 0 2448,425 350 245 2450,45 200 0 2441,875 350 340 2448,65 270 340 2446,17 270 0 2448,975 330 245 2450,07 270 0 2443,35 340 340 2446,17 290 4248,975 330 245 2450,07 280 0 2444,1 330 340 2447,1 300 440 2446,17 300 0 2448,975 310 245 2450,07 300 0 2444,2 330 340 2447,11 300 440 2446,7 330 0 2448,725 280 245 2450,68 310 0 2444,25 330 340 2444,25 330 340 2444,25 340 2446,73 340 0 2449,625 270 245 2450,48 350 0 2449,77 340 2446,73 340 2444,71 340 2446,73	250	ő	2448.325	360	245	2450.075	250	0	2440,1	360	340	2450,0	175	250	-340	2443,0
270 0 2448,45 340 245 2450,7 270 0 2443,35 340 340 2449 280 -340 2446,17 280 0 2448,075 320 245 2450,02 280 0 2444,25 320 340 2447,1 300 340 2447,1 300 340 2447,1 300 340 2447,1 300 340 2447,1 300 340 2446,17 300 340 2446,17 300 340 2446,17 300 340 2446,17 300 340 2446,17 300 340 2446,17 300 340 2446,17 300 340 2446,17 300 340 2446,17 300 340 2446,17 300 340 2447,13 300 340 2446,17 300 340 2447,13 300 340 2446,17 300 2446,17 300 2446,17 300 2446,17 300 2446,17 300 2446,	260	0	2448.425	350	245	2450.45	260	ő	2441.875	350	340	2448	65	270	-340	2446.375
280 0 2449,075 330 245 2450,05 280 0 2444,2 330 340 2447,4 290 -340 2445,8 280 0 2448,975 310 245 2450,075 300 0 2448,55 310 340 2445,8 310 340 2444,2 320 340 2447,1 300 340 2446,87 310 0 2448,755 300 245 2450,8 310 0 2444,25 330 340 2446,77 320 0 2448,75 280 245 2450,475 330 0 2449,77 290 340 2446,73 340 2446,73 330 0 2449,675 260 245 2449,8 350 0 2449,75 340 2446,75 360 2446,725 360 340 2447,12 380 340 2447,12 380 340 2447,13 380 24449,75 380 340 <t< td=""><td>270</td><td>0</td><td>2448,45</td><td>340</td><td>245</td><td>2450.7</td><td>270</td><td>0</td><td>2443.35</td><td>340</td><td>340</td><td>2449</td><td>9</td><td>280</td><td>-340</td><td>2446.175</td></t<>	270	0	2448,45	340	245	2450.7	270	0	2443.35	340	340	2449	9	280	-340	2446.175
290 0 2448,975 320 245 2450,075 300 0 2448,675 310 245 2450,075 300 0 2448,755 300 2445,255 310 340 2446,77 310 0 2448,755 300 245 2450,075 300 0 2447,075 300 340 2444,2 320 -340 2446,73 320 0 2448,725 280 245 2450,475 330 0 2447,075 300 340 2440,9 340 -340 2446,73 330 0 2448,175 250 245 2450,475 330 0 2449,175 350 -340 2447,07 360 0 2449,67 250 245 2450,05 360 0 2449,72 340 2440,23 300 -2449,72 360 2449,72 360 2449,72 360 2446,72 370 -340 2447,72 370 0 2449,87<	280	0	2449,075	330	245	2450,05	280	0	2444,2	330	340	2447	4	290	-340	2445,8
300 0 2448,675 310 245 2450,075 300 0 2448,705 310 340 2448,525 310 340 2448,525 310 0 2448,575 300 245 2450,6 310 0 2447,7 290 340 2444,25 330 340 2444,25 330 340 2444,25 330 340 2444,25 330 340 2444,25 330 340 2446,17 340 2446,17 340 2446,17 360 2449,17 260 2449,17 360 2449,17 360 2449,17 260 340 2447,11 360 2449,17 360 2449,17 360 2449,17 360 2449,17 360 2449,17 360 2449,17 360 2449,17 360 2449,17 380 340 2447,12 340 2447,13 380 340 2447,13 380 340 2447,13 380 340 2446,13 340 2447,13 <td< td=""><td>290</td><td>0</td><td>2448,975</td><td>320</td><td>245</td><td>2450,2</td><td>290</td><td>0</td><td>2445,25</td><td>320</td><td>340</td><td>2447</td><td>1</td><td>300</td><td>-340</td><td>2446,3</td></td<>	290	0	2448,975	320	245	2450,2	290	0	2445,25	320	340	2447	1	300	-340	2446,3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	300	0	2448,675	310	245	2450,075	300	0	2445,8	310	340	2445,5	525	310	-340	2446,875
320 0 2448,725 290 245 2450,8 320 0 2448,225 280 340 2442,15 330 -340 2447,12 330 0 2449,175 240 245 2450,475 330 0 2448,225 280 340 2440,375 350 -340 2446,7 360 0 2449,475 260 245 2450,0425 360 0 2449,075 360 -340 2446,725 360 -340 2447,12 370 0 2449,975 240 245 2449,055 370 0 2449,725 380 -340 2447,12 380 0 2449,975 240 245 2449,775 380 0 2449,82 210 245 2449,775 380 2445,225 210 340 2466,33 390 -340 2447,57 410 0 2449,85 190 245 2449,175 300 2445,25 210 340 </td <td>310</td> <td>0</td> <td>2448,55</td> <td>300</td> <td>245</td> <td>2450,6</td> <td>310</td> <td>0</td> <td>2447,075</td> <td>300</td> <td>340</td> <td>2444</td> <td>,2</td> <td>320</td> <td>-340</td> <td>2446,75</td>	310	0	2448,55	300	245	2450,6	310	0	2447,075	300	340	2444	,2	320	-340	2446,75
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	320	0	2448,725	290	245	2450,8	320	0	2447,7	290	340	2442,	55	330	-340	2447,125
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	330	0	2449,1	280	245	2450,475	330	0	2448,325	280	340	2440	,9	340	-340	2446,7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	340	0	2449,625	270	245	2450,425	340	0	2449,2	270	340	2440,3	375	350	-340	2446,9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	350	0	2449,475	260	245	2449,8	350	0	2449,05	260	340	2446,7	/25	360	-340	2447,15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	360	0	2449,6	250	245	2450,05	360	0	2450,05	250	340	2454,2	225	370	-340	2447,125
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	380	0	2449,975	240	245	2449,373	370	0	2449,7	240	340	2460,9	125	380	-340	2447,675
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	390	ő	2443,773	220	245	2449,775	300	0	2449,725	230	340	2408	05	400	-340	2447,323
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	400	ő	2449.9	210	245	2449.25	400	ő	2443,0	210	340	2400,	4	410	-340	2447,05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	410	0	2449,925	200	245	2449.8	410	ő	2449.55	200	340	2467	9	420	-340	2447.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	420	0	2449,85	190	245	2449,15	420	0	2450.125	190	340	2468	3	430	-340	2447.95
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	430	0	2450,075	180	245	2449,925	430	0	2450,225	180	340	2468	7	440	-340	2447,675
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	440	0	2449,675	170	245	2449,1	440	0	2449,975	170	340	2468,1	175	450	-340	2447,975
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	450	0	2450,125	160	245	2449,5	450	0	2450,225	160	340	2467,	85	460	-340	2447,8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	460	0	2450,5	150	245	2449,275	460	0	2450,85	150	340	2467,7	/25	470	-340	2448,325
480 0 2449,625 130 245 2449,35 480 0 2449,675 130 340 2467,35 490 -340 2448,12 490 0 2448,675 110 245 2448,6 490 0 2450,675 120 340 2467,35 490 -340 2448,12 500 0 2448,675 110 245 2448,6 500 0 2450,675 120 340 2467,225 510 -340 2448,35 510 0 2456,175 100 245 2448,6 510 0 2450,675 100 340 2467,225 530 -340 2448,45 520 0 2451,4175 500 0 2450,675 100 340 2465,375 520 -340 2448,00 530 0 2452,075 70 245 2445,175 530 0 2488,975 80 340 2451,425 540 -340 2448,0 540 0 2465,975 540 0 2468,975 50	470	0	2450,575	140	245	2449,25	470	0	2450,8	140	340	2467	,6	480	-340	2448,225
490 0 2449,2 120 245 2448,5 490 0 2450,675 110 340 2467,025 500 -340 2448,2 500 0 2456,675 110 245 2448,7 500 0 2467,225 510 -340 2448,2 510 0 2456,175 100 245 2448,6 510 0 2450,610 340 2467,225 510 -340 2448,2 520 0 2453,775 90 245 2447,175 520 0 2451,375 90 340 2458,125 530 -340 2448,0 540 0 2456,2075 70 245 2446,175 530 2458,125 530 -340 2448,0 550 0 2452,249,75 540 2466,75 550 340 2458,125 530 -340 2448,0 550 0 2452,2465,975 540 2466,875 550 340 2452,246,375 540 2448,3 560 0 2450,125 60 2452,2	480	0	2449,625	130	245	2449,35	480	0	2449,675	130	340	2467,	35	490	-340	2448,125
500 0 2448,675 110 2448,7 500 0 2450 110 340 2467,225 510 -340 2448,3 510 0 2456,175 100 245 2448,7 500 0 2450 110 340 2467,225 510 -340 2448,3 520 0 2453,775 90 245 2447,175 520 0 2451,375 90 340 2465,375 520 -340 2448,0 530 0 2452 2447,175 530 0 2488,975 80 340 2454,425 540 -340 2448,0 540 0 2462,075 70 245 2465,925 550 0 2456,125 60 340 2457,5 550 -340 2448,3 560 0 2450,455 50 245 2466,925 550 0 2455,457 50 340 2451,375 570 -340 2451,375 570<	490	0	2449,2	120	245	2448,6	490	0	2450,675	120	340	2467,0	025	500	-340	2448,2
510 0 2435,175 100 243 2448,6 510 0 2450,6 100 340 2465,375 520 -340 2448,6 520 0 2453,775 90 245 2447,175 520 0 2451,375 90 340 2458,125 530 -340 2448,6 530 0 2454,425 80 245 2449,175 530 0 2458,975 90 340 2458,425 530 -340 2448,8 540 0 2462,075 70 245 2456,975 540 0 2469 70 340 2457,5 550 -340 2448,3 560 0 2450,125 60 240 70 340 2462 560 -340 2459,87 560 0 2450,125 50 2452,425,925 550 0 2455,45 50 340 2462 560 -340 2459,87 570 0 2450,125 50 2466,825 560 0 2455,45 40 340 <td< td=""><td>500</td><td>0</td><td>2448,675</td><td>110</td><td>245</td><td>2448,7</td><td>500</td><td>0</td><td>2450</td><td>110</td><td>340</td><td>2467,2</td><td>225</td><td>510</td><td>-340</td><td>2448,3</td></td<>	500	0	2448,675	110	245	2448,7	500	0	2450	110	340	2467,2	225	510	-340	2448,3
530 0 2435,775 50 2435,775 50 2431,775 500 2431,775 500 2431,775 500 2448,175 530 0 340 2456,125 540 -340 2448,8 540 0 2462,075 70 245 2456,975 540 0 2469,775 550 340 2456,425 540 -340 2448,3 550 0 2450,325 60 245 2465,925 550 0 2456,125 60 340 2457,5 550 -340 2448,3 560 0 2450,255 50 245 2466,825 560 0 2455,45 50 340 2462 560 -340 2451,37 580 0 2455,45 50 340 2781,25 590 -340 2451,37 580 0 2455,475 50 340 2781,25 590 -340 2453,67 590 0 2455,475 <	520	ő	2450,175	100	245	2446,0	510	0	2450,6	100	340	2465,3	\$75	520	-340	2448,4
540 0 2452,075 70 245 2456,975 540 0 2466,975 500 2466,975 500 2466,975 500 2466,975 500 2452,125 550 0 2452,125 550 0 2452,125 550 0 2466,975 550 2462,255 550 340 2448,355 550 2462,255 550 340 2448,355 550 340 2448,35 550 340 2448,35 550 340 2448,35 550 340 2448,35 550 340 2448,35 550 340 2448,35 550 340 2448,35 570 340 2448,35 570 340 2448,35 570 340 2453,675 570 340 2453,675 570 340 2453,675 570 340 2453,675 580 340 2781,25 590 340 2453,675 590 340 2453,675 590 340 2453,675 590 340 2453,675	530	ŏ	2453,775	80	245	2447,175	520		2451,375	90	340	2458,1	125	530	-340	2448,05
550 0 2450,325 60 245 2466,825 550 0 2456,125 60 340 247,3 530 5340 2448,3 560 0 2450,55 50 245 2466,825 550 0 2455,675 50 340 2462 560 -340 2451,67 570 0 2450,125 40 245 2466,825 570 0 2455,675 50 340 2482,15 -340 2451,67 580 0 2450,675 570 0 2450,675 580 -340 2451,67 570 0 2452,675 580 -340 2451,67 590 -340 2451,67 590 -340 2451,67 590 -340 2451,67 590 -340 2451,67 590 -340 2451,67 590 -340 2451,67 590 -340 2451,67 590 -340 2451,67 590 -340 2451,67 590 -340 2451,6	540	õ	2462 075	70	245	2456.975	540	0	2468,975	70	340	2434,4	5	550	-340	2446
560 0 2450,55 50 245 2466,825 560 0 2455,675 50 340 2787,35 570 -340 2451,67 570 0 2450,125 40 245 2466,875 570 0 2455,675 50 340 2787,35 570 -340 2451,67 580 0 2450,675 30 245 2466,875 570 0 2455,675 50 340 2787,35 570 -340 2451,67 580 0 2450,675 20 245 2466,85 580 0 2458,15 30 340 2781,25 590 -340 2451,67 600 0 2450,675 20 245 2466,75 590 0 2457,075 20 340 2781,475 600 -340 2453,67 600 0 2459,275 10 245 2464,875 590 0 2449,795 10 340 2781,8 61	550	0	2450.325	60	245	2465.925	550	0	2456 125	60	340	2437	2	560	-340	2459 875
570 0 2450,125 40 245 2466,475 570 0 2455,45 40 340 2606,55 580 -340 2451,37 580 0 2450,375 30 245 2466,85 580 0 2458,45 40 340 2606,55 580 -340 2451,37 590 0 2450,675 20 245 2466,85 590 0 2457,075 20 340 2781,475 600 -340 2453,67 600 0 2455,275 10 245 2466,875 590 0 2457,075 20 340 2781,475 600 -340 2447,5 610 0 2449,775 0 340 2781,8 610 -340 2446,17 620 0 2461,975 0 340 2781,975 620 -340 2446,72 620 0 2461,975 0 2450,05 0 340 2781,975 620 <td>560</td> <td>Ó</td> <td>2450.55</td> <td>50</td> <td>245</td> <td>2466.825</td> <td>560</td> <td>0</td> <td>2455.675</td> <td>50</td> <td>340</td> <td>2787</td> <td>35</td> <td>570</td> <td>-340</td> <td>2451.675</td>	560	Ó	2450.55	50	245	2466.825	560	0	2455.675	50	340	2787	35	570	-340	2451.675
580 0 2450,375 30 245 2466,85 580 0 2458,15 30 340 2781,25 590 -340 2453,6 590 0 2450,675 20 245 2466,775 590 0 2457,075 20 340 2781,475 600 -340 2447,5 600 0 2455,275 10 245 2464,875 600 2449,925 10 340 2781,475 600 -340 2447,5 610 0 2449,975 0 340 2781,875 620 -340 2446,1 620 0 2461,975 0 340 2781,975 620 -340 2446,72 620 0 2461,975 0 340 2781,975 620 -340 2446,72 620 0 2450,05 0 2450,05 0 340 2781,975 620 -340 2446,72	570	0	2450,125	40	245	2466,475	570	ő	2455.45	40	340	2606	55	580	-340	2451.375
590 0 2450,675 20 245 2466,775 590 0 2457,075 20 340 2781,475 600 -340 2447,5 600 0 2455,275 10 245 2464,875 600 0 2449,925 10 340 2781,475 600 -340 2447,5 610 0 2460,625 0 245 2460,1 610 0 2449,775 0 340 2781,975 620 -340 2446,72 620 0 2450,05 520 0 2450,05 520 -340 2446,72	580	0	2450,375	30	245	2466,85	580	0	2458.15	30	340	2781	25	590	-340	2453.65
600 0 2455,275 10 245 2464,875 600 0 2449,925 10 340 2781,8 610 -340 2446,12 610 0 2460,625 0 245 2460,1 610 0 2449,975 0 340 2781,8 610 -340 2446,12 620 0 2451,975 0 340 2781,975 620 -340 2446,72	590	0	2450,675	20	245	2466,775	590	0	2457,075	20	340	2781.4	175	600	-340	2447,55
610 0 2460,625 0 245 2460,1 610 0 2449,775 0 340 2781,975 620 -340 2446,72 620 0 2451,975 620 0 2450,05 620 -340 2446,72	600	0	2455,275	10	245	2464,875	600	0	2449,925	10	340	2781	,8	610	-340	2446,1
620 0 2461,975 620 0 2450,05	610	0	2460,625	0	245	2460,1	610	0	2449,775	0	340	2781,9	975	620	-340	2446,725
	620	0	2461,975				620	0	2450,05							

Tabell V8 og V9. Målinger av sandlagets høyde ved akkumulasjonsforsøk.

SC_D	_2_24	_N						
X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]
-10	0	2589,85	620	340	2597,1	0	-340	2777,1
10	0	2464,1	610	340	2/84,075	10	-340	2588,95
20	0	2400,9	590	340	2407,725	30	-340	2457,05
30	0	2401,05	580	340	2401,95	40	-340	2436,13
40	0	2464 925	570	340	2450,775	50	-340	2454.1
50	0	2464.85	560	340	2450.8	60	-340	2459.13
60	0	2465.175	550	340	2451.025	70	-340	2463.73
70	0	2465.4	540	340	2451.025	80	-340	2463.45
80	0	2465,55	530	340	2450,5	90	-340	2463,75
90	0	2465,65	520	340	2450,75	100	-340	2463,2
100	0	2466,1	510	340	2451,35	110	-340	2463,25
110	0	2462,6	500	340	2454,35	120	-340	2456,45
120	0	2456,1	490	340	2454,125	130	-340	2449,4
130	0	2447,775	480	340	2452,95	140	-340	2442,55
140	0	2440,6	470	340	2451,4	150	-340	2437,03
150	0	2436,975	460	340	2450,4	160	-340	2438,25
160	0	2438,35	450	340	2449,575	170	-340	2439,13
170	0	2439,5	440	340	2449,725	180	-340	2439,95
180	0	2440,275	430	340	2450	190	-340	2440,5
190	0	2441	420	340	2449,9	200	-340	2441,58
200	0	2441,175	410	340	2450,25	210	-340	2442,13
210	0	2442,3	400	340	2449,775	220	-340	2442,45
220	0	2443,025	390	340	2449,925	230	-340	2443,23
230	0	2443,625	380	340	2450,025	240	-340	2444,03
240	0	2444,5	370	340	2449,85	250	-340	2444,5
250	0	2444,725	360	340	2449,95	260	-340	2444
260	0	2445,675	350	340	2449,375	270	-340	2445
270	0	2445,75	340	340	2449,225	280	-340	2444,8
280	0	2446,225	330	340	2449,575	290	-340	2445,28
290	0	2446,35	320	340	2449,425	300	-340	2445,98
300	0	2446,8	310	340	2449,025	310	-340	2446,13
310	0	2447,05	300	340	2449,45	320	-340	2446,3
320	0	2447,325	290	340	2448,925	330	-340	2446,08
330	0	2447,925	280	340	2448,45	340	-340	2446,75
340	0	2447,95	270	340	2448,725	350	-340	2446,53
350	0	2448,1	260	340	2448,075	360	-340	2447,1
360	0	2448,35	250	340	2447,95	3/0	-340	2440,8
370	0	2448,475	240	340	2448,2	380	-340	2447,13
300	0	2446,323	230	340	2447,373	400	-340	2440,93
400	0	2443,1	210	340	2447,3	410	-340	2447,13
410	0	2446,725	200	340	2447,1	420	-340	2447,33
420	0	2446,373	190	340	2440,25	430	-340	2447,03
430	0	2448.6	180	340	2445 125	440	-340	2447.65
440	0	2449.125	170	340	2444.4	450	-340	2447.8
450	0	2448 725	160	340	2443.25	460	-340	2447.55
460	0	2448.65	150	340	2442.55	470	-340	2447.55
470	0	2449.5	140	340	2441.4	480	-340	2447,48
480	0	2451.65	130	340	2440.9	490	-340	2447.85
490	0	2454,75	120	340	2441,325	500	-340	2448,43
500	0	2454,5	110	340	2448,65	510	-340	2448,25
510	0	2453,1	100	340	2455,7	520	-340	2447,8
520	0	2449,3	90	340	2463,025	530	-340	2447,7
530	0	2448,7	80	340	2468,725	540	-340	2449,03
540	0	2448,9	70	340	2467,8	550	-340	2449,85
550	0	2449,1	60	340	2467,475	560	-340	2450,63
560	0	2449,375	50	340	2467,175	570	-340	2448,2
570	0	2450,725	40	340	2467,3	580	-340	2448,78
580	0	2456,35	30	340	2467,275	590	-340	2448,05
590	0	2461,575	20	340	2462,225	600	-340	2448,7
600	0	2467,275	10	340	2461,275	610	-340	2448,18
610	0	2782,225	0	340	2464,7	620	-340	2448,58
620	0	3737.076						

SC_D_	2_24	Р						
X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]
-10	0	2589,975	620	340	2462,75	0	-340	2588,05
0	0	2454,025	610	340	2457,725	10	-340	2778,5
10	0	2460,65	600	340	2451,925	20	-340	2458,4
20	0	2457,025	590	340	2450,625	30	-340	2453,825
40	0	2404,30	570	340	2450,15	40	-340	2449,075
50	0	2432,873	560	340	2450,025	60	-340	2440,323
60	0	2464 775	550	340	2452.6	70	-340	2451.85
70	0	2464.975	540	340	2451.925	80	-340	2458.925
80	0	2465.6	530	340	2449.025	90	-340	2463.125
90	0	2465,6	520	340	2449,1	100	-340	2463,55
100	0	2465,525	510	340	2448,675	110	-340	2463,575
110	0	2466,1	500	340	2447,85	120	-340	2463,675
120	0	2466,175	490	340	2447,025	130	-340	2463,65
130	0	2466,025	480	340	2446,975	140	-340	2463,85
140	0	2466,425	470	340	2446,775	150	-340	2464
150	0	2466,575	460	340	2445,6	160	-340	2464,525
160	0	2467,425	450	340	2444,975	170	-340	2464,35
170	0	2467,275	440	340	2444	180	-340	2464,95
180	0	2467	430	340	2443,125	190	-340	2464,55
190	0	2468,05	420	340	2442,975	200	-340	2465,375
200	0	2467,5	410	340	2441,775	210	-340	2464,925
210	0	2467,75	400	340	2441,175	220	-340	2465,6
220	0	2468,05	390	340	2439	230	-340	2465,45
230	0	2467,8	380	340	2438,2	240	-340	2465,325
240	0	2468,325	370	340	2437,25	250	-340	2465,45
250	0	2468,25	360	340	2436,05	260	-340	2465,325
260	0	2468,3	350	340	2436,3	2/0	-340	2466,025
2/0	0	2468,375	340	340	2436,85	280	-340	2466,6
280	0	2408,8	330	340	2443,15	290	-340	2404,35
290	0	2400,0	320	240	2450,45	310	-340	2436,05
310	0	2406,775	300	340	2450,4	320	-340	2451,225
320	0	2455,825	290	340	2467.3	330	-340	2437.025
330	0	2449	280	340	2470 775	340	-340	2430 175
340	0	2442.35	270	340	2470.2	350	-340	2430.075
350	0	2442.4	260	340	2469,7	360	-340	2430,475
360	0	2430,675	250	340	2470,05	370	-340	2432,475
370	0	2430,875	240	340	2469,7	380	-340	2434,125
380	0	2432,5	230	340	2469,65	390	-340	2435,7
390	0	2434,175	220	340	2469,025	400	-340	2437,125
400	0	2434,825	210	340	2470,05	410	-340	2438,55
410	0	2436,675	200	340	2469,175	420	-340	2439,6
420	0	2436,95	190	340	2469,15	430	-340	2440,5
430	0	2437,5	180	340	2468,725	440	-340	2441,85
440	0	2438,025	170	340	2469,025	450	-340	2442,575
450	0	2438,825	160	340	2468,55	460	-340	2442,075
460	0	2439,875	150	340	2468,9	4/0	-340	2442,9
4/0	0	2439,725	140	340	2468,425	480	-340	2442,975
480	0	2441,175	130	340	2407,85	490	-340	2443,875
490	0	2442,375	110	340	2408,423	500	-340	2443,25
510	0	2441,623	100	340	2408,075	510	-340	2443,773
520	0	2443	90	340	2406,223	530	-340	2444,3
530	0	2443,075	80	340	2467.925	540	-340	2448.6
540	0	2445.2	70	340	2468.625	550	-340	2447.7
550	0	2446.15	60	340	2465.725	560	-340	2446.325
560	0	2448,75	50	340	2459,35	570	-340	2446,35
570	0	2451,175	40	340	2451,275	580	-340	2446,925
580	0	2449,15	30	340	2450,7	590	-340	2450,1
590	0	2448,675	20	340	2452,875	600	-340	2455,95
600	0	2449,15	10	340	2455,75	610	-340	2462,025
610	0	2449,775	0	340	2460,775	620	-340	2468,575
620	0	2454,375						

Tabell V12 og V13. Målinger av sandlagets høyde ved akkumulasjonsforsøk.

SC_D	_3_8_	N			
X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]
-10	0	2604,3	620	340	2459,475
0	0	2464,425	610	340	2453,6
10	0	2460,25	600	340	2451,4
20	0	2458,675	590	340	2450,525
30	0	2460,9	580	340	2451,7
40	0	2465,35	570	340	2451,675
50	0	2464,575	560	340	2508,575
60	0	2464,775	550	340	2461,975
/0	0	2464,625	540	340	2455,5
80	0	2404,975	530	340	2450,3
100		2400,3	520	240	2400,475
110	0	2439,2	500	340	2433,7
120	ő	2434,423	490	340	2453,55
130	ő	2444 275	480	340	2452.5
140	0	2444.8	470	340	2451.425
150	0	2445.6	460	340	2450.075
160	0	2445.525	450	340	2449.825
170	0	2446.4	440	340	2448.925
180	0	2447.075	430	340	2450.175
190	0	2447.475	420	340	2450.45
200	0	2447,65	410	340	2450,25
210	0	2447,7	400	340	2450,4
220	0	2447,8	390	340	2449,925
230	0	2448,25	380	340	2449,85
240	0	2448	370	340	2450,325
250	0	2448,275	360	340	2450,125
260	0	2448,875	350	340	2449,325
270	0	2448,65	340	340	2449,6
280	0	2447,7	330	340	2453,5
290	0	2448,525	320	340	2453,3
300	0	2453,875	310	340	2454,15
310	0	2452,45	300	340	2450,15
320	0	2452,675	290	340	2448,55
330	0	2452,55	280	340	2449,025
340	0	2448,325	270	340	2450,275
350	0	2448,5	260	340	2450,25
360	0	2448,75	250	340	2449,975
370	0	2448,85	240	340	2449,9
380	0	2449,025	230	340	2449,95
390	0	2449,325	220	340	2449,925
400	0	2449,05	210	340	2449,925
410	0	2449,125	100	340	2449,5
420	0	2449,3	190	340	2449,425
440	0	2449,625	170	340	2449,0
450	0	2449 825	160	340	2449.4
460	0	2450 775	150	340	2448.95
470	0	2451.25	140	340	2448.25
480	0	2451.325	130	340	2448.1
490	0	2451.375	120	340	2448.475
500	0	2451,075	110	340	2448,7
510	0	2450,8	100	340	2457,05
520	0	2449,9	90	340	2461,825
530	0	2459,6	80	340	2467,9
540	0	2454,6	70	340	2467,7
550	0	2454,3	60	340	2467,225
560	0	2454,875	50	340	2467,3
570	0	2475,125	40	340	2458,975
580	0	2450,875	30	340	2455,525
590	0	2450,525	20	340	2457,775
600	0	2450,675	10	340	2460,8
610	0	2450,625	0	340	2465,55
620	0	2450,475			

SC_D	_3_8_	P						
X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]
-10	0	2605	620	340	2631,75	0	-340	2776,625
0	0	2394,575	610	340	2612,95	10	-340	2603,325
10	0	2459,525	600	340	2468,3	20	-340	2786,45
20	0	2456,175	590	340	2464	30	-340	2457,35
30	0	2453,925	580	340	2459,825	40	-340	2453,125
40	0	2457,475	5/0	340	2455,375	50	-340	2449,425
50	0	2400,020	550	340	2452,275	70	-340	2451,3
70	0	2404,373	540	340	2451,775	80	-340	2457,4
80	ő	2465.425	530	340	2451.575	90	-340	2462.975
90	0	2465.525	520	340	2453.25	100	-340	2462.85
100	0	2465.25	510	340	2456.2	110	-340	2463.3
110	0	2465,625	500	340	2455,55	120	-340	2463,675
120	0	2465,925	490	340	2456,475	130	-340	2463,9
130	0	2466,275	480	340	2452,175	140	-340	2457,625
140	0	2466,1	470	340	2452,1	150	-340	2451,2
150	0	2466,875	460	340	2452,525	160	-340	2445,6
160	0	2467,05	450	340	2451,9	170	-340	2443,25
170	0	2466,6	440	340	2451,85	180	-340	2443,7
180	0	2466,925	430	340	2452,25	190	-340	2444,6
190	0	2463,375	420	340	2451,7	200	-340	2445,15
200	0	2458,3	410	340	2451,975	210	-340	2445,225
210	0	2453,15	400	340	2452,85	220	-340	2445,425
220	0	2447,05	390	340	2452,25	230	-340	2445,625
230	0	2439,175	380	340	2451,975	240	-340	2445,8
240	0	2438,4	3/0	340	2451,6	250	-340	2445,675
250	0	2439,075	360	340	2401	200	-340	2440,075
200	0	2430,33	340	340	2430,073	280	-340	2440,2
280	0	2436,15	330	340	2431,2	290	-340	2446.425
290	ő	2442.1	320	340	2448 725	300	-340	2446.35
300	ō	2440,475	310	340	2448.675	310	-340	2446.1
310	0	2451,175	300	340	2446,125	320	-340	2446,35
320	0	2447	290	340	2445,925	330	-340	2450,425
330	0	2447,075	280	340	2446,225	340	-340	2449,9
340	0	2448,075	270	340	2441,75	350	-340	2450
350	0	2448,225	260	340	2440,85	360	-340	2446,425
360	0	2448,875	250	340	2440,925	370	-340	2445,1
370	0	2448,95	240	340	2440,875	380	-340	2446,65
380	0	2449,475	230	340	2440,05	390	-340	2447,35
390	0	2449,725	220	340	2444,8	400	-340	2447,325
400	0	2450,375	210	340	2451,95	410	-340	2448,2
410	0	2450,3	200	340	2459,375	420	-340	2447,925
420	0	2450,4	190	340	2466,6	430	-340	2447,725
430	0	2450,25	180	340	2468,725	440	-340	2448,1
440	0	2450,625	170	340	2468,1	450	-340	2448,45
450	0	2450,975	160	340	2468,5	460	-340	2448,375
460	0	2450,7	150	340	2468,825	4/0	-340	2449,025
470	0	2450,825	120	340	2408,423	480	-340	2449,025
400	0	2430,873	120	340	2407,023	500	-340	2446,03
500	0	2430,93	110	340	2400,2	510	-340	2446,75
510	ŏ	2454.95	100	340	2467 825	520	-340	2448.7
520	ŏ	2455.75	90	340	2467.45	530	-340	2448.9
530	õ	2452.475	80	340	2467.425	540	-340	2449.05
540	0	2450.55	70	340	2467,125	550	-340	2449,15
550	0	2450,425	60	340	2467,35	560	-340	2480,25
560	0	2450,7	50	340	2467,3	570	-340	2452,775
570	0	2451,1	40	340	2467,525	580	-340	2452,775
580	0	2454,8	30	340	2461,65	590	-340	2453,875
590	0	2459,95	20	340	2456,5	600	-340	2448,45
600	0	2464,575	10	340	2458,475	610	-340	2447,625
610	0	2479,425	0	340	2462,375	620	-340	2447,9
620	0	2608,775						

Tabell V14 og V15. Målinger av sandlagets høyde ved akkumulasjonsforsøk.

SC_D_	_3_24	_N						
X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]
-10	0	2589,225	620	340	2451	0	-340	2777,5
0	0	2846,425	610	340	2451,15	10	-340	2777,325
10	0	2461,45	600	340	2451,075	20	-340	2588,975
20	0	2460,45	590	340	2450,5	30	-340	2816,825
30	0	2465,2	580	340	2453,65	40	-340	2460,05
40	0	2464,575	5/0	340	2453,3	50	-340	2456,375
50	0	2400,3	500	340	2451,35	70	-340	2400,020
70	0	2465 125	540	340	2450,4	80	-340	2402,5
80	ő	2465.2	530	340	2450.45	90	-340	2462.625
90	0	2465.575	520	340	2449,925	100	-340	2463.075
100	0	2465,925	510	340	2449,85	110	-340	2463,7
110	0	2465,55	500	340	2450,025	120	-340	2462,275
120	0	2466,975	490	340	2449,825	130	-340	2455
130	0	2462,725	480	340	2449,75	140	-340	2448,2
140	0	2455,375	470	340	2450,35	150	-340	2440,65
150	0	2451,425	460	340	2449,9	160	-340	2436,6
160	0	2443,9	450	340	2449,975	1/0	-340	2438,125
1/0	0	2430,9	440	340	2449,65	180	-340	2438,45
190	0	2437,425	430	340	2449,95	200	-340	2439,4
200	ő	2430,223	410	340	2443,473	210	-340	2440,275
210	ő	2438.85	400	340	2449.65	220	-340	2441.475
220	0	2440.55	390	340	2450.125	230	-340	2442.525
230	0	2440,25	380	340	2449,55	240	-340	2442,5
240	0	2440,525	370	340	2449,3	250	-340	2442,55
250	0	2440,925	360	340	2449,225	260	-340	2443,15
260	0	2441,725	350	340	2450,225	270	-340	2443,95
270	0	2441,25	340	340	2450,45	280	-340	2445,025
280	0	2441,625	330	340	2448,95	290	-340	2445,375
290	0	2443,4	320	340	2448,25	300	-340	2445,475
300	0	2444,875	310	340	2447,375	310	-340	2446,5
330	0	2447,3	200	340	2440,275	320	-340	2447,525
330	ő	2447.45	280	340	2445.95	340	-340	2446.9
340	0	2447,975	270	340	2445,375	350	-340	2447,125
350	0	2448,1	260	340	2445,275	360	-340	2446,7
360	0	2447,975	250	340	2444,675	370	-340	2446,75
370	0	2447,85	240	340	2444,55	380	-340	2447,25
380	0	2447,775	230	340	2443,625	390	-340	2447,45
390	0	2448,35	220	340	2443,15	400	-340	2447,45
400	0	2448,2	210	340	2442,3	410	-340	2448,05
410	0	2447,9	200	340	2441,575	420	-340	2447,575
420	0	2448,425	190	340	2440,2	430	-340	2448,275
440	0	2449.05	170	340	2446.9	450	-340	2447.775
450	ő	2448,55	160	340	2453,175	460	-340	2447,925
460	Ő	2448,425	150	340	2459,225	470	-340	2448,15
470	0	2448,275	140	340	2466,725	480	-340	2448,15
480	0	2449,025	130	340	2468,4	490	-340	2448,075
490	0	2448,525	120	340	2467,525	500	-340	2448,45
500	0	2448,475	110	340	2467,725	510	-340	2448,25
510	0	2448,5	100	340	2467,125	520	-340	2448,775
520	0	2448,7	90	340	2467,225	530	-340	2449,575
530	0	2448,5	80	340	2467,075	540	-340	2448,775
540	0	2448,9	70	340	2405,25	550	-340	2448,45
560	0	2449,9	50	340	2401,575	570	-340	2448,95
570	ō	2452.95	40	340	2586.35	580	-340	2448.675
580	0	2452.875	30	340	2621.675	590	-340	2448,825
590	0	2450,925	20	340	2781,5	600	-340	2448,425
600	0	2449,825	10	340	2781,725	610	-340	2451,3
610	0	2449,9	0	340	2781,75	620	-340	2457,8
620	0	2449,425						

X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	Z _M [mm]
-10	0	2589,7	620	340	2452,4	0	-340	2588,9
0	0	2594,175	610	340	2451,725	10	-340	2836,325
10	0	2462,2	600	340	2451,2	20	-340	2457,8
20	0	2459,475	590	340	2451,55	30	-340	2452,925
30	0	2455,775	580	340	2450,65	40	-340	2450,65
40	0	2453,85	570	340	2451,575	50	-340	2447,25
60	0	2452,45	550	340	2450,05	70	-340	2444,925
70	ő	2466.325	540	340	2452.8	80	-340	2454.625
80	0	2465.3	530	340	2450.55	90	-340	2462.65
90	0	2465	520	340	2450,775	100	-340	2463,2
100	0	2465,375	510	340	2451,125	110	-340	2463,575
110	0	2465,775	500	340	2451,025	120	-340	2464,025
120	0	2466,1	490	340	2450,525	130	-340	2464,1
130	0	2465,925	480	340	2450,5	140	-340	2463,95
140	0	2466,75	470	340	2450,525	150	-340	2464,05
150	0	2466,825	460	340	2449,725	160	-340	2463,975
160	0	2466,75	450	340	2449,7	170	-340	2464,55
170	0	2467,325	440	340	2450,075	180	-340	2464,95
180	0	2467,425	430	340	2449,8	190	-340	2464,55
190	0	2467,275	420	340	2450,05	200	-340	2464,/5
200	0	2407,323	410	340	2449,95	220	-340	2405,475
220	0	2407,323	300	340	2443,73	220	-340	2403
230	0	2467,85	380	340	2445,0	240	-340	2403,5
240	ő	2468.525	370	340	2449.3	250	-340	2465.625
250	0	2466.25	360	340	2449.05	260	-340	2462.975
260	0	2459,95	350	340	2448,375	270	-340	2456,9
270	0	2454,55	340	340	2447,75	280	-340	2450,625
280	0	2448,3	330	340	2447,875	290	-340	2444,2
290	0	2441,75	320	340	2448	300	-340	2438
300	0	2438,75	310	340	2447,975	310	-340	2433
310	0	2436,2	300	340	2437,2	320	-340	2431,075
320	0	2435,75	290	340	2434,025	330	-340	2428,125
330	0	2434,3	280	340	2435,25	340	-340	2425,275
340	0	2446,275	270	340	2440,375	350	-340	2425,25
350	0	2446,475	260	340	2438,925	360	-340	2443,95
360	0	2444,925	250	340	2446,6	3/0	-340	2443,1
3/0	0	2445,375	240	340	2452,325	380	-340	2443,55
300	0	2443,5	230	340	2436,6	400	-340	2444,475
400	0	2446.5	210	340	2469.8	410	-340	2444,373
410	ő	2446.55	200	340	2469.825	420	-340	2445.325
420	0	2447.65	190	340	2470.175	430	-340	2445.175
430	0	2447,525	180	340	2469,15	440	-340	2445,65
440	0	2447,675	170	340	2469,2	450	-340	2445,65
450	0	2447,875	160	340	2468,575	460	-340	2445,25
460	0	2447,875	150	340	2468,275	470	-340	2445,475
470	0	2448,125	140	340	2469,425	480	-340	2445,925
480	0	2448,2	130	340	2468,725	490	-340	2445,675
490	0	2448,275	120	340	2468,025	500	-340	2446,075
500	0	2447,825	110	340	2468,35	510	-340	2446
510	0	2448,2	100	340	2468,65	520	-340	2445,825
520	0	2448,625	90	340	2468,2	530	-340	2446,075
530	0	2448,675	80	340	2468,3	540	-340	2446,275
540	0	2448,2	/0	340	2467,575	550	-340	2445,85
550	0	2446,575	50	340	2408,1	500	-340	2440,15
570	0	2448,75	40	340	2400	520	-340	2440,4
580	0	2451 55	30	340	2432,15	590	-340	2440,775
590	0	2450.825	20	340	2451.95	600	-340	2448.125
600	ő	2449.625	10	340	2455.075	610	-340	2447,475
610	0	2448.875	0	340	2459.2	620	-340	2446.6
620	0	2449,15						
			-					

Tabell V16 og V17. Målinger av sandlagets høyde ved akkumulasjonsforsøk.

SC_D_	5_8_1	N				SC
([mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]	X [r
-10	0	2603,05	620	340	2782,5	1.1
0	0	2810,525	610	340	2782,775	
10	0	2460,875	600	340	2611,025	
20	0	2459,45	590	340	2611,075	
30	0	2464,5	580	340	2782,5	
40	0	2463,825	5/0	340	2463,075	
50	0	2400	560	340	2465,75	
20	0	2404,373	550	340	2400,025	
80	0	2465.975	530	340	2450,55	5
90	ő	2463 525	520	340	2450 725	9
100	0	2455.875	510	340	2451.375	1
110	0	2448,875	500	340	2462,8	1
120	0	2442,75	490	340	2456,725	1
130	0	2442,675	480	340	2456,025	1
140	0	2443,675	470	340	2455,35	1
150	0	2445,5	460	340	2457,975	1
160	0	2445,6	450	340	2453,25	1
170	0	2446,175	440	340	2453,05	1
180	0	2446,15	430	340	2451,575	1
190	0	2451,275	420	340	2449,75	1
200	0	2450,925	410	340	2449,875	2
210	0	2450,275	400	340	2450,6	2
220	0	2480,8	390	340	2450,75	
230	0	2440,323	370	340	2450,15	2
250	0	2443,3	360	340	2434,63	2
260	ő	2450.35	350	340	2450.075	2
270	0	2451.8	340	340	2449.975	2
280	0	2451.275	330	340	2449.55	2
290	0	2450,4	320	340	2450,275	2
300	0	2452,175	310	340	2450,175	3
310	0	2451,725	300	340	2450,275	3
320	0	2451,85	290	340	2450,475	3
330	0	2447,025	280	340	2495,075	3
340	0	2447,225	270	340	2453,9	3
350	0	2447,5	260	340	2454,1	3
360	0	2448,75	250	340	2457,4	3
370	0	2451,875	240	340	2448,075	3
380	0	2453,525	230	340	2448,8	3
400	0	2453,15	210	340	2449,05	3
410	ŏ	2432,0	200	340	2450 325	4
420	ŏ	2452.25	190	340	2450.4	4
430	ō	2467.875	180	340	2449.95	4
440	0	2447,975	170	340	2458,925	4
450	0	2447,825	160	340	2453,4	4
460	0	2448,625	150	340	2453,375	4
470	0	2451,6	140	340	2448,225	4
480	0	2453,375	130	340	2447,75	4
490	0	2454,175	120	340	2448,25	4
500	0	2453,15	110	340	2448,775	5
510	0	2454,875	100	340	2448,675	5
520	0	2454,65	90	340	2448,65	5
530	0	2454,925	80	340	2448,325	5
540	0	2451,625	70	340	2448,325	5
550	0	2450,6	50	340	2448,7	5
570	0	2450,35	40	340	2454,375	5
580	0	2450,375	30	340	2401,1	
590	0	2457.95	20	340	2467 575	
600	0	2463.45	10	340	2466.375	6
510	0	2474.65	0	340	2459.4	6
620	0	2610				6
						0

-					
X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	Z _M [mm]
-10	0	2605,05	620	340	2782,65
10	ŏ	2458,9	600	340	2612,9
20	0	2456,275	590	340	2813,45
30	0	2454,35	580	340	2467,25
40	0	2456,225	570	340	2465,35
50	0	2463,575	560	340	2461,35
60	0	2465,275	550	340	2457,65
70	0	2465,35	540	340	2454,425
80	0	2465,475	530	340	2452,9
100	ő	2404,9	520	340	2451,425
110	ŏ	2466.275	500	340	2450,35
120	0	2465.9	490	340	2451.7
130	0	2466,35	480	340	2458,15
140	0	2466,7	470	340	2455,7
150	0	2467,45	460	340	2455,775
160	0	2462,05	450	340	2472,925
170	0	2455,425	440	340	2452,675
180	0	2488,05	430	340	2451,825
190	0	2450,675	420	340	2451,8
200	0	2446,9	410	340	2450,975
220	0	2400,120	300	340	2450,225
230	0	2443,023	380	340	2443,33
240	0	2448,875	370	340	2455.75
250	0	2449,45	360	340	2455.6
260	0	2449	350	340	2451,875
270	0	2449,3	340	340	2451,8
280	0	2449,65	330	340	2452,125
290	0	2454,3	320	340	2451,725
300	0	2453,775	310	340	2451,8
310	0	2453,225	300	340	2451,45
320	0	2451,675	290	340	2451,3
330	0	2446,820	280	340	2449,875
350	ő	2449,123	260	340	2455.3
360	0	2449.95	250	340	2454.8
370	0	2449,7	240	340	2455,15
380	0	2450,225	230	340	2462,85
390	0	2495,975	220	340	2451,125
400	0	2454,025	210	340	2450,575
410	0	2453,775	200	340	2450,35
420	0	2455,5	190	340	2450,05
430	0	2450,175	180	340	2449,525
440	0	2449,475	1/0	340	2448,975
450	0	2449,0	150	340	2451,35
470	0	2443,73	140	340	2458.675
480	0	2450.125	130	340	2474.025
490	0	2450.6	120	340	2466.075
500	0	2469,25	110	340	2469,075
510	0	2454,6	100	340	2468,725
520	0	2455,125	90	340	2468,375
530	0	2458,05	80	340	2468,65
540	0	2451,375	70	340	2468,225
550	0	2450,375	60	340	2467,525
560	0	2450,25	50	340	2467,625
5/0	0	2451,1	40	340	2467,375
580	0	2454,4	30	340	2467,625
590	0	2459	10	340	2407,975
610	0	2403,75	0	340	2400,75
0.0		6.10.1.1.1			2407.0

SC_D	5_24	_N						
X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]
-10	0	2589,675	620	340	2460,75	0	-340	2777,625
0	0	2464,575	610	340	2459,225	10	-340	2589,2
10	0	2461,65	600	340	2452,775	20	-340	2786,25
20	0	2464,95	590	340	2451,1	30	-340	2460,05
40	0	2400,2	570	340	2451,05	40	-340	2450,725
50	0	2404,95	560	340	2451,2	60	-340	2456,35
60	ő	2465.1	550	340	2451,825	70	-340	2463,025
70	ō	2465.775	540	340	2451.375	80	-340	2463.25
80	0	2465,825	530	340	2451,675	90	-340	2463,625
90	0	2466	520	340	2452,125	100	-340	2463,625
100	0	2465,925	510	340	2454,675	110	-340	2463,8
110	0	2467,125	500	340	2453,025	120	-340	2461,725
120	0	2459,65	490	340	2450,45	130	-340	2455,4
130	0	2453,25	480	340	2450,9	140	-340	2452,775
140	0	2445,775	470	340	2450,475	150	-340	2446,8
160	0	2439,275	460	340	2449,75	170	-340	2439,825
170	0	2431,33	440	340	2450,45	180	-340	2433,023
180	ő	2420.375	430	340	2450.05	190	-340	2433.2
190	ō	2427,975	420	340	2450,325	200	-340	2433.2
200	0	2451,25	410	340	2450	210	-340	2433,1
210	0	2450,925	400	340	2449,975	220	-340	2432,525
220	0	2446,775	390	340	2451,6	230	-340	2436,125
230	0	2446,875	380	340	2450,4	240	-340	2448,8
240	0	2446,325	370	340	2450,5	250	-340	2449,05
250	0	2446,875	360	340	2449,875	260	-340	2448,775
260	0	2446,85	350	340	2450,1	270	-340	2484,15
2/0	0	2447,725	340	340	2450,025	280	-340	2445,225
200	0	2443,7	320	340	2430,323	300	-340	2445,175
300	0	2448.075	310	340	2449.45	310	-340	2445.675
310	0	2448,475	300	340	2449,675	320	-340	2446,4
320	0	2448,2	290	340	2450,35	330	-340	2446,3
330	0	2448,5	280	340	2450,15	340	-340	2446,9
340	0	2447,85	270	340	2450,025	350	-340	2447,15
350	0	2447,975	260	340	2448,975	360	-340	2446,725
360	0	2448,25	250	340	2448,625	370	-340	2446,95
370	0	2448,4	240	340	2448,325	380	-340	2446,925
380	0	2449,5	230	340	2448,020	390	-340	2446,725
400	0	2430,45	210	340	2453.05	410	-340	2446 725
410	0	2449.275	200	340	2452.875	420	-340	2447.025
420	0	2448,75	190	340	2452,575	430	-340	2447,4
430	0	2449,325	180	340	2433,575	440	-340	2447,275
440	0	2449,65	170	340	2433,35	450	-340	2448,3
450	0	2448,575	160	340	2434,3	460	-340	2447,65
460	0	2449,575	150	340	2434,05	470	-340	2447,8
470	0	2448,9	140	340	2435,05	480	-340	2447,675
480	0	2449,525	130	340	2441,425	490	-340	2447,4
500	0	2449.875	110	340	2455.4	510	-340	2447.575
510	0	2451.9	100	340	2462.25	520	-340	2447,65
520	0	2453,025	90	340	2468,6	530	-340	2448,025
530	0	2451,75	80	340	2468,2	540	-340	2447,65
540	0	2450,7	70	340	2467,8	550	-340	2448,45
550	0	2450,15	60	340	2467,7	560	-340	2448,3
560	0	2450,275	50	340	2467,475	570	-340	2448,55
570	0	2450,825	40	340	2467,075	580	-340	2449,7
580	0	2450,75	30	340	2466,775	590	-340	2450,375
590	0	2450	20	340	2400,725	600	-340	2449,075
610	0	2450,25	0	340	2465,675	620	-340	2440,0
620	õ	2452.625	- "	540	2400,023	020	540	2443,273
			•					

Tabell V18 og V19. Målinger av sandlage	ets høyde ved akkumulasjonsforsøk.	
	SC_D_5_24_P	

	JC_D_		, ·						
	X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]	X [mm]	Y [mm]	z _M [mm]
	-10	0	2589,6	620	340	2451,1	0	-340	2777,4
J	0	0	2786,3	610	340	2451,9	10	-340	2776,625
	10	0	2460,625	600	340	2452,425	20	-340	2587,075
	20	0	2456,875	590	340	2452,775	30	-340	2808,325
	30	0	2453,8	580	340	2451,625	40	-340	2457,925
	40	0	2451,425	570	340	2450,5	50	-340	2453,125
	50	0	2454,275	560	340	2451,225	60	-340	2448,95
	60	0	2462,05	550	340	2451,225	70	-340	2445,675
	70	0	2465	540	340	2450,45	80	-340	2447,675
	80	0	2465,75	530	340	2450,725	90	-340	2454,925
	90	0	2465,225	520	340	2450,35	100	-340	2462
	100	0	2400,8	510	340	2449,875	110	-340	2403,475
	110	0	2400,175	400	340	2450,6	120	-340	2403,5
	120		2405,95	490	240	2450,125	140	-340	2403,323
	140	0	2400,15	480	240	2450,625	150	-340	2403,375
	150	0	2400,475	4/0	340	2452,25	150	-340	2403,45
	160	0	2400,3	400	240	2451,15	170	-340	2404,0
	170	0	2400,025	440	340	2451,35	180	-340	2403,873
	180	0	2467,375	430	340	2447.075	190	-340	2464.5
	190	0	2466 925	420	340	2446,975	200	-340	2464 975
	200	ő	2467 675	410	340	2446 225	210	-340	2465 225
	210	0	2467 525	400	340	2446 475	220	-340	2465
	220	ő	2468 175	390	340	2443 475	230	-340	2465.35
	230	ő	2467.65	380	340	2443.1	240	-340	2464.875
	240	0	2467.9	370	340	2442.825	250	-340	2465.725
	250	ő	2468.2	360	340	2442.025	260	-340	2465.95
	260	0	2468.325	350	340	2436.625	270	-340	2460.975
	270	0	2468.075	340	340	2436.675	280	-340	2453.55
	280	0	2468,9	330	340	2440,625	290	-340	2447,425
	290	0	2461,85	320	340	2441,675	300	-340	2441,7
	300	0	2454,75	310	340	2448,375	310	-340	2467,225
	310	0	2454,7	300	340	2453,7	320	-340	2435,425
	320	0	2458,075	290	340	2458,8	330	-340	2431,675
	330	0	2449,525	280	340	2465,45	340	-340	2434,325
	340	0	2446,7	270	340	2470,7	350	-340	2434,25
	350	0	2446,575	260	340	2469,175	360	-340	2437,65
	360	0	2451,4	250	340	2469,825	370	-340	2439,875
	370	0	2448,375	240	340	2468,825	380	-340	2441,7
	380	0	2441,35	230	340	2469,05	390	-340	2441,85
	390	0	2435,7	220	340	2468,65	400	-340	2442,4
	400	0	2435,65	210	340	2468,875	410	-340	2443,5
	410	0	2436,375	200	340	2468,375	420	-340	2455,15
	420	0	2435,825	190	340	2468,25	430	-340	2446,85
	430	0	2444,175	180	340	2468,15	440	-340	2447,2
	440	0	2440,25	170	340	2468,925	450	-340	2449,375
	450	0	2440,4	160	340	2468,5	460	-340	2446,025
	460	0	2440,25	150	340	2467,95	4/0	-340	2446,05
	4/0	0	2440,575	140	340	2468,425	480	-340	2446,1
	480	0	2447,725	130	340	2407,85	490	-340	2440,275
	490	0	2440,35	110	240	2407,375	500	-340	2447,15
	510	0	2447,3	100	340	2404,00	520	-340	2440,0
	520	0	2447,6	00	340	2437,375	520	-340	2440,975
	520	0	2440,075	80	340	2445,7	540	-340	2440,025
	540	0	2446,525	70	340	2452 475	550	-340	2449.025
	550	0	2448.85	60	340	2455 975	560	-340	2449 225
	560	0	2440,05	50	340	2459.4	570	-340	2448 225
	570	0	2449.175	40	340	2464.025	580	-340	2447.375
	580	ő	2449.625	30	340	2781.325	590	-340	2447.45
l	590	0	2450.8	20	340	2591 625	600	-340	2448 675
ļ	600	0	2450.9	10	340	2781.475	610	-340	2454.275
ļ	610	0	2450.05	0	340	2781.65	620	-340	2459.875
	620	0	2450,125						
2								-	

Norges miljø- og biovitenskapelige universitet Postboks 5003 NO-1432 Ås 67 23 00 00 www.nmbu.no