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Abstract 

 

Horses’ living conditions have changed through thousands of years; altering their diets, that no 

longer fit the horse’s physiology. Horses were free-ranging grazing animals and their digestive 

system is therefore adapted to cope with large quantities of fibrous feeds. Mixed roughage and 

concentrate diets will consequently affect how horses utilize nutrients. In order to optimize 

feeding rations, it is important to understand how the hindgut microbiota reacts when different 

diets are presented. The aim of this thesis was therefore to investigate the short-term temporal 

dynamics of the equine hindgut microbiota by using 16S rRNA gene and shotgun metagenomic 

sequencing. The microbiota and associated metabolic products were compared to investigate the 

diet effects on the equine hindgut microbiota, through cecal content collected in a time period of 

24 hours from four cecally cannulated horses, given two different diets. Additional fecal samples 

were also collected in the same time range, to investigate whether fecal samples could represent 

the microbial population of the cecum. The detected dominant bacterial phyla, in equine cecum, 

comprised of the predominating phyla Firmicutes and Bacteroidetes, followed by the phyla 

Verrucomicrobia, Proteobacteria, Tenericutes, Spirochaetes, Cyanobacteria and Fibrobacteres. 

Based on the observed temporal patterns of the microbiota, we propose a model where the 

fibrolytic bacteria Fibrobacter succinogenes produce SCFA that lead to a pH decrease in the 

cecum and the resurgence of lactic acid-producing Streptococcus spp., where ultimately growth 

of lactate utilizing Anaerovibrio spp. are believed to prevent the accumulation of lactate in the 

cecum for a prolonged period of time. Further, the cecal content and feces showed significant 

difference, suggesting that feces cannot represent the cecal microbiota in a proper way. This 

study provides a foundation for further understanding of the equine hindgut microbiota and its 

function, allowing production of feeds that are more adapted to this intestinal ecosystem and may 

prevent diseases in the future. 
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Sammendrag 

 

Hestens levekår har endret seg gjennom tusenvis av år; endret sin diett, som ikke lenger passer 

hestens fysiologi. Hester var frittgående beitedyr og deres fordøyelsessystem er derfor tilrettelagt 

for å håndtere store mengder fiberholdig fôr. Rasjoner med grovfôr og kraftfôr vil dermed 

påvirke hvordan hesten utnytter næringsstoffene. For å optimalisere rasjonen, er det viktig å 

forstå hvordan blindtarmmikrobiotaen reagerer når ulike fôrtyper presenteres. Målet med denne 

masteroppgaven var derfor å undersøke den kortsiktige temporale dynamikken av hestens 

blindtarmmikrobiota ved hjelp av 16S rRNA gen- og shotgun metagenom sekvensering. 

Mikrobiotaen og tilhørende metabolske produkter ble sammenlignet for å undersøke effektene av 

diett på hestens blindtarmmikrobiota, gjennom oppsamlet blindtarmsinnhold i en tidsperiode på 

24 timer fra fire blindtarmkanylerte hester, gitt to forskjellige dietter. Ekstra gjødselprøver ble 

også samlet i samme tidsperiode, for å undersøke om gjødselprøver kan representere det 

mikrobielle samfunnet i blindtarmen. De observerte dominerende bakterielle fyla i hestens 

blindtarm bestod av de mest dominerende fyla Firmicutes og Bacteroidetes, etterfulgt av fyla 

Verrucomicrobia, Proteobacteria, Tenericutes, Spirochaetes, Cyanobacteria og Fibrobacteres. 

Basert på de observerte temporale mønstrene av mikrobiota, foreslår vi en modell der den 

fibrolytiske bakterien Fibrobacter succinogenes produserer SCFA som har ført til en pH nedgang 

i blindtarmen og oppblomstring av melkesyreproduserende Streptococcus spp., hvor til slutt vekst 

av laktatutnyttende Anaerovibrio spp. antas å hindre akkumulering av laktat i blindtarmen over et 

lengre tidsrom. Videre viste blindtarmsinnhold og gjødsel signifikant forskjell, som tyder på at 

avføringen ikke kan representere blindtarmmikrobiotaen på en pålitelig måte. Denne studien gir 

et grunnlag for videre forståelse av hestens blindtarmmikrobiota og dens funksjon, slik at 

produksjonen av fôr som er mer tilpasset dette tarmøkosystemet muliggjøres og kan forebygge 

sykdommer i fremtiden. 
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1 1. Introduction 

1. Introduction 

 

Horses’ living conditions have changed through thousands of years; altering their diets, that no 

longer fit the horse’s physiology (Daly et al. 2001). Horses were free-ranging grazing animals 

and their digestive system is therefore adapted to cope with large quantities of fibrous feeds. 

Mixed roughage and concentrate diets will consequently affect how horses utilize nutrients. By 

understanding the digestive system and nutrient utilization by the gut microbiota, feeds that are 

more adapted to this intestinal ecosystem can be created and disease may be prevented.  

 

1.1 The equine digestive system 

1.1.1 The gastrointestinal tract 

Through the different compartments of the equine gastrointestinal tract (Fig 1-1), the feed are 

exposed to enzymatic degradation and microbial fermentation, where the mean total retention 

time has been found to range between 20 and 30 hours (Austbø & Volden 2006; Rosenfeld et al. 

2006). In the mouth, the horse's teeth crush the ingested feed, while it is mixed with produced 

saliva. The horse’s saliva contains no degradation enzymes as in humans (Julliand et al. 2006). 

However, it is functioning as a pH buffer (contains bicarbonate) and lubrication for the horse’s 

esophagus. Through the esophagus the feed enters the stomach followed by acid degradation. The 

digesta only remains in the stomach for a short period of time (2-6 hours) and stomach 

contractions, initiated by newly arrived substances, moves digesta further into the small intestine 

(Van Weyenberg et al. 2006) where the pre-cecal digestion of protein, starch and other 

carbohydrate compounds takes place via enzymatic feed degradation (Santos et al. 2011). The 

digesta moves rapidly (30 cm/min) through the about 20 meters long small intestine, which is 

comprised by duodenum, jejunum and ileum. Pancreatic juices are added in duodenum to 

neutralize the acid from the stomach (Van Weyenberg et al. 2006). The mean pHs in duodenum, 

jejunum and ileum have shown to be 6.3, 7.1 and 7.5 respectively (Mackie & Wilkins 1988). 

Substrates that have not been absorbed in the small intestine are transported from ileum to the 

cecum (Santos et al. 2011). The main function in the equine hindgut, cecum and colon, is 
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microbial degradation and fermentation of fiber into substances utilized for the horse’s energy 

requirements (Julliand et al. 1999). pH decreases in the cecum to about 6.7, due to the 

fermentation process (Mackie & Wilkins 1988). Most digesta reach the cecum and the ventral 

colon within three hours, and thus the main digestion takes place in the hindgut. Finally, the 

digesta reaches the rectum where the remaining water is absorbed (Van Weyenberg et al. 2006).  

 

 

Figure 1-1: The equine gastrointestinal tract. The feed enters the foregut where enzymatic degradation takes place 

and are further transported to the hindgut for microbial fermentation (Kristoffersen, this thesis).  

 

1.1.2 Hindgut microbiota 

The hindgut microbiota live in symbiosis with the host by helping breaking down fiber 

compounds, while the host contributes with a regular carbohydrate source for the gut microbiota 

(Santos et al. 2011). Firmicutes and Bacteroidetes are the predominant phyla in the equine 

hindgut (Costa & Weese 2012; Flint et al. 2008; O’ Donnell et al. 2013). O’ Donnell et al. (2013) 

investigated the core fecal bacterial microbiome of Irish Thoroughbred racehorses and found the 

dominant phyla to be represented by Proteobacteria, Verrucomicrobia, Actinobacteria, 

Euryarchaeota, Fibrobacteres and Spirochaetes, in addition to Firmicutes and Bacteroidetes. Up 

to as much as 80% of the microbiota in the cecum and colon are estimated to be strict anaerobes 

and on average 78% of the microbiota are cellulolytic (Santos et al. 2011).  
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Bacterial fermentation processes in the hindgut produce short-chain fatty acids (SCFA), 

microbial mass, methane and fermentation heat. These patterns indicate microbial activity and 

digestibility of substrates; providing insight into which metabolic pathways the hindgut 

microbiota utilizes (Santos et al. 2011). The SCFA absorbed across the gut mucosa (Costa & 

Weese 2012) constitutes as much as 60-70% of the horse's energy resource (Biddle et al. 2013; 

Costa & Weese 2012) and may be used as substrate in body tissue metabolism (Jansson & 

Lindberg 2012). Acetate and butyrate can be converted into acetyl-CoA which is further used as a 

substrate in the citric acid cycle (aerobic metabolism). Propionate however, is mainly used in 

gluconeogenesis (Jansson & Lindberg 2012). The types and amounts of SCFA produced by the 

hindgut microbiota, depends on substrate availability, microbiota composition and intestinal 

passage rate (Macfarlane & Macfarlane 2003). 

 

1.1.3 Digestive associated disease 

A stable microbiota is crucial for the horse’s health and imbalance in the gut microbiota may lead 

to severe disease (Costa & Weese 2012). Laminitis is, together with colic, a widespread disease 

caused by intestinal complications in the horse. A frequency study by Wylie et al. (2011) reported 

findings of equine laminitis ranging from 1.5% to 34%. Laminitis is a painful disease 

characterized by lameness, which often becomes a chronic problem (Katz & Bailey 2012). And, 

due to animal welfare reasons often results in euthanasia (Sloet van Oldruitenborgh-Oosterbaan 

1999).  

 

Starch induced laminitis is caused by starch overload in the cecum (Katz & Bailey 2012). 

Domestic horses, and especially competition horses, spend much time indoor and on the training 

pitch which practically leads to unfortunate eating habits. Due to the horse’s high energy 

demands, starch-rich concentrates are often fed in greater quantities (Julliand et al. 2006). By 

ingestion of large concentrate rations, with high starch content, the small intestine has trouble 

coping with the major enzyme digestion requirement. Therefore, a large proportion of un-

degraded starch will enter the cecum (Brøkner et al. 2012) leading to a change in cecal 

microbiota, promoting lactic acid producing bacteria (Katz & Bailey 2012). These bacteria favor 

readily hydrolysable carbohydrates as a substrate for fermentation, and therefore they quickly 

multiply in starch-rich environment and produce lactic acid and CO2 (Daly et al. 2012), which 
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further leads to a pH drop. This acidic environment may cause loss of barrier function in the 

cecum through degenerative changes in the epithelial cells. The loss of barrier function may in 

turn result in influx of unknown endotoxin into the circulatory system (Katz & Bailey 2012), 

leading to blood supply disturbance in the laminar region. This process makes the pedal bone 

separate from the hoof wall, due to degradation of the laminae (Sloet van Oldruitenborgh-

Oosterbaan 1999).  

 

1.2 Nucleic acid based technologies 

The availability of nucleic acid based methods, which may replace culture-dependent analysis, is 

increasing. These molecular methods are generally less time- and labor-intensive, which leads to 

increased efficiency in the laboratory and thus increased amount of data. 

 

In general, deoxyribonucleic acid (DNA) from a sample is isolated, and the desired genes are 

amplified by polymerase chain reaction (PCR), and further sequenced. The DNA isolation 

process separates the cell’s DNA from the cell’s other components. Often, the samples do not 

contain enough amount of DNA to appropriate sequencing; therefore, the DNA in the samples 

must be amplified by PCR. Additional reasons for using PCR amplification may be cases were 

sequencing primers are needed to be incorporated for allowing the sequencing reaction to initiate. 

However, single-molecule sequencing are also possible (Harris et al. 2008). The sequencing 

processes result in information about the DNA nucleotide sequences, which further can be used 

to identify bacteria taxonomic relations or their functions depending on the selected DNA 

sample. 

 

1.2.1 Quantitative polymerase chain reaction 

Quantitative polymerase chain reaction (qPCR) is a method which can detect and quantify 

microorganisms independent of cultivation (Yu et al. 2005). Due to the speed, sensitivity and 

reproducibility, qPCR is widely accepted (Mackay et al. 2002). qPCR works in the same way as 

qualitative PCR (denaturation of double stranded DNA, primer annealing and elongation by 

inserting complementary bases), except that the use of fluorescence labeling makes it possible to 

monitor the concentration of the product through the amplification cycles, where the fluorescence 
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intensity reflects the amplicon copy number in real time (Valones et al. 2009). There are different 

types of fluorescent reagents that can be used in qPCR, like dyes which bind to double stranded 

DNA (e.g. EvaGreen) and DNA sequence-specific probes (e.g. TaqMan) (Valones et al. 2009). 

The initial concentration of DNA can be estimated by examining the changes in the PCR product 

concentration through the amplification cycles (Zhang & Fang 2006).  

 

Response curves showing the amplification phase for each individual reaction, describe the 

difference between each sample’s initial template DNA amounts. The amount of template DNA 

is reflected by the number of cycles required to reach a specific fluorescence signal level  

(Kubista et al. 2006). Accordingly, the Ct-values correspond to the cycle number were the 

fluorescence level reach the threshold (Fig. 1-2). 

 

 

Figure 1-2: Quantitative polymerase chain reaction response curves. Ct-values are registered when the sample 

fluorescence signal reach the threshold (Kristoffersen, this thesis). 

 

1.2.2 Next-generation sequencing technologies 

Over the past 10 years there has been a tremendous increase of sequenced genomes, which is due 

to the development and improvement of next-generation sequencing technologies (Forde & 

O’Toole 2013). The first next-generation sequencing system on the marked was the 454 

GenomeSequencer FLX instrument, developed by 454 Life Sciences (Ansorge 2009). However, 
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Illumina, another next-generation sequencing system, has received great popularity recently 

(Nelson et al. 2014). The various next-generation sequencing platforms often have a common 

workflow. Modified DNA fragments, with platform-specific PCR and sequencing primers, form 

the sequencing library. Further, the sequencing library is amplified to form clusters of copies, 

originating from each DNA fragment. Finally, all fragments are sequenced in parallel, where 

each cluster generates information about the DNA fragment nucleotide sequence (Meaburn & 

Schulz 2012). The sequence identity is obtained by comparing the query sequence with a 

database e.g. BLAST (Petrosino et al. 2009) and the DNA is quantified based on sequence reads 

(Ahn et al. 2011). 

 

Illumina/Solexa 

The Illumina technology enables outputs of 2x300 base pair (bp) read length, with up to 25 

million sequencing reads (http://www.illumina.com/systems/miseq.ilmn, 09.05.14 17:22). 

Originally this sequencing technology was developed by the company Solexa, which later was 

acquired by Illumina (http://www.illumina.com/technology/solexa_technology.ilmn, 09.05.14 

17:30). Illumina perform solid-phase amplification that achieves amplified templates, which are 

required to read fluorescence signals during the sequencing reaction. The DNA templates attach 

to a solid surface, which leads to a spatial separation of the templates and also enables thousands 

of sequencing reactions simultaneously (Fig. 1-3) (Metzker 2010). A single stranded DNA 

molecule anneals to a complementary slide-primer and the extension reaction synthesize a copy 

of the template molecule. The double stranded DNA molecule denaturizes and covalently binds 

to another slide-primer forming a bridge, which further leads to synthesis of a new copy. This 

process continues for several cycles until a cluster of copied DNA strands are accomplished 

(Bentley et al. 2008). Universal sequencing primers can then bind to the free ends in the clusters 

and begin the sequencing reaction (Metzker 2010). 

http://www.illumina.com/systems/miseq.ilmn
http://www.illumina.com/technology/solexa_technology.ilmn
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Figure 1-3: Illumina/Solexa solid-phase amplification. The template binds to covalently-attached forward and 

reverse primers on the slide, and by bridge amplification produce millions of separated clusters originating from a 

single DNA template (Metzker 2010). 

 

The cyclic reversible termination method uses modified nucleotides with a protective group that 

terminate DNA synthesis allowing nucleotide reading and further continued DNA synthesis, 

when the protective group is removed (Metzker 2005). The sequencing cycles consist of three 

steps: incorporation of nucleotide, imaging and removing the terminator and the fluorescence 

marking. The available nucleotides are labeled with four different colors, and the DNA 

polymerase incorporates the matching nucleotide. The modified nucleotides do not contain a free 

3’-OH group, and due to the 3’-blocking only one nucleotide can be incorporated by the DNA 

polymerase in each cycle. The remaining nucleotides are then removed and a color of 

fluorescence signal in each cluster is observed. This color identifies the incorporated nucleotide 

in each cluster. Further, the fluorescence marking is removed and the terminator is cleaved off, 

which leads to further extension by the DNA polymerase when new modified nucleotides are 

added. The process continues in several cycles with nucleotide incorporation, imaging and 3’-

unblocking (Fig. 1-4) (Metzker 2010). 
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Figure 1-4: Four-color cyclic reversible termination method. A) Cycles of reversible termination identify the 

template nucleotide sequence. B) An image from each cycle provide information about, by four-color fluoresces 

coding, which base that has been incorporated in the sequencing reaction. The sequences represent the two 

highlighted clusters (Metzker 2010). 

 

1.3 Metagenome sequencing 

Culture-independent investigations of a mixed microbial community, that reside in a specific 

environment, are referred to as metagenomics (Petrosino et al. 2009). The insights into microbial 

communities have increased the recent years due to metagenomics, where 16S rRNA genes from 

the whole microbial community or all DNA from environmental samples are sequenced (Meyer 

et al. 2008). 
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 1.3.1 Data generation 

16S rRNA gene sequencing 

Due to importance of 16S ribosomal ribonucleic acid (rRNA) for the cell during the translation of 

messenger RNA (mRNA) into protein, the 16S rRNA gene is well conserved in all organisms. 

Since certain areas of this gene are more susceptible to mutations (Olsen & Woese 1993), the 16S 

rRNA gene contains both conserved and variable regions. This information can be used to 

classify microorganisms on different taxonomic levels (Zhang & Fang 2006). The conserved 

regions are useful for sequence homology recognition (used for primer design), but give no 

phylogenetic information. Organisms that are distantly related can be distinguished by examining 

slightly variable regions, but organisms that are closely related can commonly be distinguished 

by examining highly variable regions (Olsen & Woese 1993). Comparing detected sequences 

with reference sequence databases, like National Center of Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov/), enables bacterial identification. 

 

Shotgun metagenomics 

Instead of the widespread rRNA gene sequencing, whole-genome shotgun sequencing of 

metagenomic DNA may in future become more attractive (Davenport & Tummler 2013). The 

metagenomic gene pool encodes functional categories, individual pathways and fitness traits, 

which provide insight into the microbial community’s specific features (Davenport & Tummler 

2013). 

 

A common way to prepare metagenomic libraries is by fragmenting the DNA either by 

mechanical force or by enzymatic digestion, followed by end-repairing and adapter ligation (van 

Dijk et al. 2014). Methods that combine both steps also exist, like Illumina Nextera XT DNA, 

where transposomes fragment and adds adapters at the same time in a limited cycle PCR reaction 

(Illumina 2012). Further, a size selection step is performed to remove remaining adapters and for 

selecting molecules of desired size. Due to often low template DNA quantities, PCR 

amplification is performed, and additionally may be performed to add additional adapter 

sequences, resulting in molecules completely ready for bridge amplification and sequencing (van 

Dijk et al. 2014).  

http://www.ncbi.nlm.nih.gov/
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1.3.2 Data analysis 

New and improved sequencing methods are in constant development. However, analysis of this 

increasing amount of raw data creates problems. Therefore, bioinformatic tools play a crucial role 

in the interpretation of these data. 

 

Taxonomic analysis 

The 16S rRNA gene is usually used to generate information about the taxonomy of a single 

bacteria or a metagenome sample containing a whole community of bacterial species. The 

amplicon sequences are compared to a database containing previous sequenced species and are 

assign taxonomic classification. Based on high-throughput amplicon sequencing, Quantitative 

insight into microbial ecology (QIIME) can be used to compare and analyze microbial 

communities with billions of sequences from thousands of samples. The program converts raw 

data by clustering sequences into so-called operational taxonomic units (OTUs), assigns 

taxonomy and constructs phylogenetic trees (Caporaso et al. 2010). 

 

Functional analysis 

In contrast to taxonomical analysis, functional analysis usually converts the raw sequences to 

annotated proteins and wherefrom provide functional information about the sequenced sample.  

Metagenomic RAST server (MG-RAST) is publicly available software for analyzing 

metagenome sequencing data, based on the SEED framework for comparative genomics (Meyer 

et al. 2008). Users may upload fasta formatted raw sequence data and the  data will be normalized 

and processed by comparing to known sequence databases, such as NCBI BLAST, SQLite and 

Grid Engine. The MG-RAST software will automatically generate a summary of each uploaded 

sample and give it a unique internal ID. The server provides the ability to access phylogenetic 

and metabolic reconstructions, and other various data types. It also provides the ability to 

compare the metabolism and annotations in one or more of the uploaded metagenomes (Meyer et 

al. 2008). By end of March 2014, the MG-RAST server contained almost 17 000 publically 

available metagenomes in a total of about 114 000 uploaded metagenomes.  



 
11 1. Introduction 

1.4 Aim of this thesis 

Horses have become part of the everyday domestic animal household, but also become a big part 

of sports and betting. Norwegian Rikstoto had, in 2012, a total totalizator turnover of 3.9 billion 

Norwegian kroner (https://www.rikstoto.no/Hjem/OmRikstoto/, 09.05.14 17:20). A lot of money 

is spent on equestrian sports and the horses’ health is important to enable them to provide 

maximum in sporting events. The main cause of death in domestic horses is diseases related to 

the horse’s gastrointestinal tract. In addition, gastrointestinal diseases are a major cause of 

morbidity and economical loss in the horse industry (Daly et al. 2001). The horse’s health is 

partly determined by feeding, where improper feeding may lead to disease due to microbial 

shifts. The equine hindgut microbiota is complex and has a crucial role in health and despite this, 

the understanding of the microbiota composition and function remains limited (Costa & Weese 

2012). Gaining more understanding of the equine hindgut microbiota and how it affects the host 

may contribute to creation of more equine adapted feed, and further prevent different gut related 

disorders. The aim of this thesis was therefore to investigate the short-term temporal 

dynamics of the equine hindgut microbiota according to dietary changes. 

 

Knowledge about equine hindgut microbiota quantity, characters and metabolic activity is 

limited, due to difficulty in obtaining samples (Dougal et al. 2012). Due to the difficulty in 

collecting equine hindgut samples, fecal samples are often used (Schoster et al. 2013), but 

whether these fecal samples provide a complete insight into the gut microbiota dynamics is rather 

questionable. Therefore, a sub goal in this thesis was to compare cecal content and feces to 

decide whether feces samples may describe the temporal dynamics of the equine hindgut 

microbiota in a proper way. 

 

The approaches chosen, in this thesis to address these goals, were qPCR, Illumina sequencing of 

the 16S rRNA gene and shotgun metagenomes. qPCR was used to decide the quantity bacterial 

stability and, 16S rRNA gene metagenome and shotgun metagenomic sequencing were 

performed to decide the bacterial and functional diet effects of the equine hindgut microbiota 

throughout the collection time range. 

 

 

https://www.rikstoto.no/Hjem/OmRikstoto/
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2. Materials and methods 

2.1 Study design and experimental setup 

Samples were collected from four coldblood geldings, belonging to the Norwegian University of 

Life Science (NMBU), which had a cecal cannula placed close to the ileocecal-junction. This 

cannula makes it possible to sample cecal content without euthanizing the horse, and also 

contribute to the possibility of collecting samples in time series and diet comparisons for each 

individual horse. 

 

The experiment was carried out in a crossover design with 2x2 horses and two diets. Cecum and 

feces samples were collected from the four horses fed the two different diets, only hay and hay 

plus pelleted barley. Sampling was carried out for 24 hours, starting just before the morning 

meal. To prevent intestinal complications, due to change in diets, the horses had a diet adaptation 

period of about two weeks between sampling days. Cecal content was sampled from all four 

horses every hour, plus fecal samples every second hour. A total of 192 cecum samples and 96 

feces samples were collected in this study (Fig.2-1).  

 

Figure 2-1: Study design. Four cannulated horses were given two different diets. A total of 288 cecal and fecal 

samples were collected every hour and every second hour respectively during 24 hour.  
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A flow chart of methods used is presented in Fig. 2-2. All reactions that are not temperature 

referred, has been performed at room temperature. 

 

 

Figure 2-2: Experimental setup. pH and SCFA were measured in all samples. DNA was isolated from collected 

cecal content and feces samples. 16S rRNA gene analysis was conducted both by qPCR and deep sequencing. In 

addition, metagenomic shotgun sequencing was performed on 24 selected cecum samples. 

 

2.2 Sampling and feed analysis 

S.T.A.R. buffer (stool transport and recovery buffer; Roche, Germany) was added to all cecum 

and feces samples in 2:1 and 3:1 ratios respectively. The S.T.A.R. buffer prevents degradation of 

nucleic acids, and inactivates bacteria which protects against possible pathogenic bacteria (Espy 

et al. 2006). The samples were then frozen at -40 ºC until further use.  

 

Sampling was done in collaboration with Rasmus B. Jensen (Ph.D. student at the University of 

Copenhagen), who measured pH and analyzed levels of SCFA in all samples. Cecal content and 

feces pH were measured with a pH electrode (SenTix® 41, WTW GmbH, Weilheim, Germany) 

immediately after sampling. The pH electrode was calibrated (at pH 4 and 9) between each 
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measurement. Additional subsamples were stored at -20ºC for analyses of SCFA composition. 

The SCFA analyses were performed at NMBU. 

 

Nutritional content of the hay and the barley, used in this experiment, were analyzed at the 

Institute for Animal and Aquacultural Science (IHA) with laboratory manager Kari Norberg. 

Neutral detergent fiber (NDF) (IHA-nr:1041), consisting of hemicellulose, cellulose, lignin and 

silicate was measured by digesting the sample in a neutral detergent solution added sodium 

sulfite and thermostable α-amylase. The samples were then filtered, washed, dried and weighed. 

Acid Detergent Fiber (IHA-nr: MSP1037), consisting of cellulose, lignin and silicate was 

analyzed by same procedure as NDF with the exception of adding acid detergent solution instead 

of neutral detergent solution. Starch (IHA-nrMSP 1159), made up of maltose units, constitutes 

the major carbohydrate portion of grain. α-amylase were added to break down the starch three-

dimensional structure to water soluble short chains. Amyloglucosidase enzyme was used for 

further degradation to glucose. Glucose concentration was then determined using a color reaction.  

 

The hemicelluloses content in both hay and barley was calculated according to formula (2.1).  

                                

 

2.3 DNA isolation  

Genomic DNA was isolated using MagLGC
TM 

Total Nucleic Isolation Kit. To ensure disruption 

of cell walls, samples were first subjected to mechanical lysis using glass beads. Samples were 

thawed and homogenized by vortexing and then 300 µl of the sample was transferred into a micro 

tube (Sarstedt, Germany) with acid-washed glass beads (<106 µm, 0.1 g) (Sigma-Aldrich, 

Germany). All the tubes were processed twice in the MagNa Lyser (Roche, Germany) at 2000 

rpm for 40 seconds with 40 seconds rest between runs. Samples were kept cold during rest, to 

prevent DNA degradation. Finally the tubes were centrifuged at 13500 rpm for 5 minutes.  

 

Further, to remove cellular proteins, 50 µl of lysis buffer and 5 µl of proteinase were added to 50 

µl supernatant. The samples were then incubated in the KingFisher® Flex robot 
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(ThermoScientific, USA) at 55 °C for 10 min. From this step all samples were isolated in two 

parallels to detect variation between isolation runs. 

 

The DNA extraction step was also performed on KingFisher® Flex robot (ThermoScientific, 

USA) and DNA extraction plates were prepared using an epMotion 5070 pipetting robot 

(Eppendorf, Germany). All steps were performed according to the manufacturer’s 

recommendations. 

 

The genomic DNA was stored at -20 ºC until further use. 

 

2.4 Polymerase chain reaction 

2.4.1 Quantitative polymerase chain reaction 

Mainly as a control of the DNA isolation, qPCR with PRK primers (Appendix A: PRK341F and 

PRK806R) targeting prokaryotic 16S rRNA gene (Yu et al. 2005) was performed. Each reaction 

contained 1x HOT FIREPol® EvaGreen qPCR Mix Plus (Solis BioDyne, Estonia), 0,2uM 

forward and reverse primers (Life Technologies™, USA) and 1µl genomic DNA. The qPCR 

were performed by a LightCycler 480 (Roche, Germany) with the initial denaturation at 95 ºC for 

15 min continued by 40 cycles of 95 ºC for 30 seconds and 60 ºC for 1 minute. Fluorescence was 

measured in the end of each cycle. Ct-values were calculated using LinRegPCR software (Ruijter 

et al. 2009) and further processed in Microsoft Excel (Microsoft, USA). 

 

2.4.2 Sequencing PCR 

To investigate the microbial content in the samples, Illumina sequencing of 16S rRNA gene was 

performed. The genomic DNA was amplified with PRK primers (Yu et al. 2005) using nested 

PCR approach, in order to increase the amplification success rate. In the second PCR run, primers 

were modified by addition of Illumina-specific adapters (PRKillumina primers; Fig. 2-3) (Hagen 

2012; Jordhøy 2012). The library consisted of 16 forward primers and 36 reverse primers which 

made a total of 576 possible primer combinations (Appendix A: PRKi F and PRKi R).  
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Figure 2-3: PRKillumina Forward (PRKi F) and PRKillumina Reverse (PRKi R) primers (Hagen 2012; 

Jordhøy 2012). These unique primers are modified with an illumina adapter; the 3’end consists of the gene-specific 

part while, the 5’end consists of the adapters with a colony amplification region and a sequencing region. 

 

Each PCR reaction contained 1.25 U HotFirePol® DNA polymerase, 1x HotFirePol® buffer B2, 

2.5 mM MgCl2, 200 µM dNTPs (Solis BioDyne, Estonia), 0.2 µM PRK341F and PRK806R 

primers (Life Technologies™, USA) and 1 µl of template DNA. Amplification was done by 

using a 2720 Thermal Cycler (Applied Biosystems, USA) with initial denaturation at 95 ºC for 15 

minutes and 25 cycles of denaturation at 95 ºC for 30 seconds, annealing at 50 ºC for 30 seconds 

and elongation at 72 ºC for 45 seconds. Finally, polymerization was finished at 72 ºC for 7 

minutes.  

 

The PCR products were then diluted 1:100 and these dilutions were used in the second PCR 

amplification step with unique PRKillumina primer combination for each sample. In this step, 10 

cycles were used and annealing time was increased to 1 minute to ensure annealing of long 

primer oligonucleotides.  
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2.5 DNA quality and quantity control 

Through the entire laboratory process, samples were qualitatively and quantitatively controlled. 

 

2.5.1 PicoGreen 

DNA concentrations were measured by using Quant-iT™ PicoGreen® dsDNA Assay Kit (Life 

technologies™, USA). PicoGreen reagents were prepared according to manufacturer protocol in 

a black 96 well nunc® microtiter plate (ThermoFisher, USA) and added 5 µl DNA. The use of 

black plate prevents background fluorescence and well to well scatter. The plate was incubated 

for 5 minutes allowing PicoGreen to bind the DNA molecules. In order to compare the DNA 

quantity with fluorescence measurements, a standard of known DNA concentrations 

(bacteriophage-λ DNA) was used. Fluorescence was measured by a FLX 800cse Microplate 

reader (BioTek, USA) with excitation at 480 nm, emission at 528 nm and a sensitivity of 50 as 

setup.  

 

2.5.2 Qubit 

DNA concentration was calculated by performing a Qubit® dsDNA HS Assay (Life 

Technologies™, USA). Preparations were done according to the manufacturer protocol (198 µl 

Working solution and 2 µl of sample DNA) and read in a Qubit™ fluorometer. 

 

2.5.3 Gel electrophoresis 

PCR products were controlled by 1% Agarose gel electrophoresis (90 V; 30 min) where the DNA 

fragments are separated by size. Due to DNA’s negative charge, the fragments will migrate to 

positive pole in an electric field. The gel pores slows the migration process for larger fragments, 

leading to separation by fragment size. A 100 bp ladder (Solis BioDyne, Estonia) was added to 

determine DNA fragment sizes. GelRed™ dye (VWR, USA), which binds to DNA and 

fluoresces when exposed to UV light, was used to visualize the bands with a Molecular Imager® 

Gel Doc™ XR Imaging (Bio-Rad laboratories, USA).  
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2.6 Sequencing 

2.6.1 16s rRNA gene metagenome sequencing 

Gel electrophoresis results were used to normalize the PCR product library. All samples were 

ranged by the gel band strength (strong, medium and weak) and pooled (2 µl, 5 µl and 10 µl for 

strong, medium and weak bands) accordingly. E.Z.N.A® Cycle-Pure kit (Omega bio-tek, USA) 

was used to purify the mixed PCR products twice. Finally, the samples were sent to University of 

Oslo for sequencing on a MiSeq® Sequencer (Illumina, USA).  

 

2.6.2 Shotgun metagenomic sequencing 

To investigate the gene content in the samples, shotgun metagenomic analysis with Nextera® XT 

DNA sample preparation kit (Illumina, USA) was performed. 24 cecum samples were selected 

based on the pH results. Samples were taken at start (time point 1) and end point (time point 3), 

in addition to samples which correspond to a drop in pH response in either diet (time point 2).  

 

The Nextera® XT transposome fragments input DNA and simultaneously adds adapter sequences 

to the ends of these fragments, which further enable PCR amplification. In addition to 

amplification of the input DNA, the PCR step adds unique indexes and sequences required for 

cluster formation during the sequencing run. 

 

Nextera® XT DNA sample preparation kit (Illumina, USA) was used according to 

manufacturer’s recommendations with some exceptions. As recommended, the DNA library was 

purified with AMPure® XP beads (Beckman Coulter, USA) to remove remaining nucleotides 

and primer dimmers as well as to select PCR fragments with desired length. However, the 

amount of AMPure® XP beads (Beckman Coulter, USA) was increased to a ratio of 1:1. Further, 

samples were normalized based on DNA concentrations, measured by Qubit, instead of bead-

based normalization recommended in the manual. 10 ng of DNA from each sample was added 

the library pool and then sequenced on a MiSeq® sequencing platform (Illumina, USA). 
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2.7 Data analysis 

All p-values were calculated by Student's t-Test (two-tailed distribution and two-sample unequal 

variance), if not referred otherwise in the result part.  

 

2.7.1 Quantitative Insight Into Microbial Ecology 

The 16S rRNA gene sequencing results were analyzed using QIIME (Appendix B). Sequences 

were quality filtered and clustered at 99% identity level against the Greengenes v.13.5 database 

(Caporaso et al. 2010). Weighted UniFrac analysis was used to assess β-diversity. Mean centered 

principal component analysis (PCA) was performed to detect differentially responding OTUs. 

The analysis was done in MATLAB (MathWorks, USA) using PLS toolbox (Eigenvector, USA). 

Kruskal-Wallis and analysis of variance (ANOVA) statistics were performed on all weighted 

UniFrac diversity calculations.  

 

2.7.2 MG-RAST 

The shotgun metagenomic sequencing results were uploaded to and analyzed in MG-RAST 

(Meyer et al. 2008) for organism and functional classification. Default settings were used with 

maximum e-value of 1e-5, a minimum identity of 60% and a minimum alignment length of 15 

amino acids. The M5NR database was used for taxonomic assignment and the Subsystems 

database was used for functional annotation.  
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3. Results 

3.1 Diet composition 

The nutritional content of the hay and the barley used in this project is shown in Table 3-1 (for 

full analysis results see Appendix C: Table A-1). The hay contained higher proportion of NDF 

than barley. The ADF was also higher in hay than in barley, while starch was only present in 

barley. The morning ration of the hay diet contained 1493.1 g NDF, 828.9 g ADF, 664.2 g 

hemicelluloses and 0 g starch. While, the morning ration of the hay and barley diet contained 

1404.2 g NDF, 689.6 g ADF, 714.6 g hemicelluloses and 1047.9 g starch. The hay ration had 

higher NDF and ADF, while the hay supplemented with barley ration contained higher 

proportion of hemicelluloses and starch. 

 

Table 3-1: Nutritional content of hay and barley used in this project.  

 NDF 

(g/kg) 

ADF 

(g/kg) 

Hemicelluloses
(2.1)

 

(g/kg)
 

Starch 

(g/kg) 

Hay 553 307 246 0 

Barley 142 36 106 499 

NDF=Neutral detergent fiber 

ADF=Acid detergent fiber 

(2.1)
 calculated by formula 2.1 
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3.2 pH and SCFA measurements 

pH was measured in both cecal content and feces during the time period of 24 hours (Fig. 3-1). A 

pH drop, in the time interval 2 to 10 hours after the morning meal, was observed in the cecum 

when the horses were fed the hay and barley diet. Calculated by t-Test, time point 2, 6, 7 and 22 

in the cecum samples showed significant diet difference (p-values were 0.037, 0.040, 0.036 and 

0.046 respectively). Significant total diet difference were also detected in cecum (p=0.033). Feces 

samples did not show any trend or significant diet difference at any time point. 

 

 

Figure 3-1: Measured pH in cecum (A) and feces (B) for both diets during 24 hours (mean ± SEM). Time is 

defined as hours after sampling start/morning meal. The arrows indicate the feeding time points. Asterisk associated 

with the diagram title indicate total significant diet difference, while asterisk associated with graphs indicate 

significant diet difference at specific time points (*0.010<p<0.050). 
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Fig. 3-2 presents SCFA amounts measured in all cecum samples. Total SCFA quantity remained 

relatively stable when the horses ate hay diet (Fig. 3-2A). However, when the horses were fed 

hay supplemented with barley, there was a major peak in total SCFA. This peak showed almost 

doubling of the total SCFA amount in the time range 2 to 8 hours after the morning meal, with 

significant diet difference at time point 2, 4 and 5 (p-values were 0.013, 0.010 and 0.007 

respectively). Total SCFA amounts also showed significant total diet difference (p=0.002) 

although it seemed unaffected of the different hay quantity fed at 8 hours and 16 hours. In 

addition to total SCFA, specific SCFA (acetate, propionate and butyrate) amounts were measured 

in all the cecum samples.  

 

The acetate quantity showed significant diet difference (p<0.001) with stable trend through small 

peaks after each feeding with only hay. In contrast, when the horses were fed the hay and barley 

diet, the acetate quantity dropped, between 0 and 16 hours after the morning meal, with 

significant diet difference at time point 2 to 14, where p-values ranged between 0.004 and 0.045 

(Fig. 3-2B).  

 

The propionate amounts transpired no clear peaks (Fig. 3-2C). However, slightly higher 

propionate amounts was detected in the hay supplemented with barley diet, compared to only hay 

diet (p<0.001), the first 16 hours after the morning meal with significant diet difference at time 

point 8 to 14 (0.016, 0.007, 0.007 and 0.017 respectively).  

 

Butyrate amounts measured within the cecum of hay and barley fed horses peaked in the period 

from 2 to 10 hours while, when fed only hay diet, the butyrate amount remained quite stable (Fig. 

3-2D). However, no significance was detected either in total diet comparison or at specific time 

points.  

 

All the major diet differences in SCFA amount occurred throughout the first 16 hours and the 

butyrate/acetate and propionate/acetate ratio increased when the horses were fed hay and barley. 
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Figure 3-2: Measured SCFA in cecum during 24 hours (mean ± SEM). Time is defined as hours after sampling 

start/morning meal. A) Total SCFA (mmol/l) B) Acetate (mol/100mol) C) Propionate (mol/100mol) D) Butyrate 

(mol/100mol). The asterisk associated with the diagram title indicate total significant diet difference, while the 

asterisk associated with the graphs indicate significant diet difference at the specific time point (*0.010<p<0.050 

**0.001<p<0.010 ***p<0.001). 
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3.3 Metagenome analyses 

3.3.1 16S rRNA gene metagenome analyses 

Sequence analysis was performed in QIIME to generate an OTU table. The sequence data were 

first quality filtered by removing reads with an average score less than Q25 and, additionally, 

removing reads shorter than 200 bp or with at least one nucleotide mismatch in the barcode 

region. The 16S rRNA gene sequencing generated a total of 5 309 669 sequences in 528 samples 

that passed the quality filtering. After quality filtering, sequences were clustered with 99% 

homology threshold and assigned taxonomy based on a closed reference search against 

Greengenes v 13.5 database to construct the OTU table. The OTU table was further edited by 

removing samples that contained less than 2 000 sequences in total, which removed a total of 43 

samples. The numbers of detected sequences were then converted into relative amount (%) by 

dividing the number of detected sequences for each OTU on the total number of detected 

sequences for each sample. All samples combined, the final OTU table showed a total of 7 769 

detected OTUs. 

 

α-diversity comparison 

Rarefaction curves, generated from QIIME, illustrated the α-diversity of observed species within 

different sample categories (Fig. 3-3).  According to sample origin, observed species within the 

feces samples showed higher α-diversity than observed species within the cecum samples (Fig. 3-

3A). The α-diversity within the individual horses was quite similar, with samples collected from 

horse 3 showing the lowest species diversity (Fig. 3-3B). Whereas, the α-diversity within samples 

with different diet demonstrated no clear species difference (Fig. 3-3C). 
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Figure 3-3: Rarefaction curves with observed species categorized as sample origin (A), individual horses (B) 

and diet (C). 
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β-diversity comparison 

Weighted UniFrac diversity calculations showed higher within-group β-diversity between feces 

samples than between cecum samples (p<0.001), and even higher diversity was detected when 

comparing the two types of samples (Fig.3-4A) (Appendix D: Table A-2). Additionally, cecum 

and feces samples clustered separately in the weighted UniFrac plot (Appendix D: Fig. A-1A). 

All horses showed significantly different β-diversity between each other, in both feces (p-value 

between horse 1 and 4 were 0.041, while all other p-values<0.001) and cecum (all p-

values<0.001). Furthermore, respective horses showed significant β-diversity difference between 

cecum compared to between feces. Horse 3 showed the lowest β-diversity between cecum 

samples and the highest between the feces samples and in contrast, horse 2 showed highest 

cecum diversity and lowest feces diversity (Fig.3-4B) (Appendix D: Table A-3). The weighted 

UniFrac diversity calculations, according to diet, showed significant diet difference between both 

cecum and feces samples (both p-values<0.001) with higher diversity in the hay diet compared to 

the hay plus barley diet (Fig.3-4C). Furthermore, respective diets showed significant diversity 

difference in cecum compared to feces (both p-values<0.001) (Appendix D: Table A-4).  

 

In addition to UniFrac, PCA analysis of OTU abundance was used in order to assess an effect of 

diet, time and origin of samples. In the PCA plot by horse, horse 3 was located separately from 

the other three horses (Fig. 3-5A). However, such separate clustering of horse 3 was not detected 

in the feces samples (Fig. 3-5B). Diet effect in the cecum sample, was also observed in the PCA 

plot colored by diet (Appendix E: Fig. A-2). PC3 separated the diets, showing positive values for 

hay diet and negative values for the hay and barley diet, with some overlap in the transition 

between positive and negative PC3 scores. Such trend was indistinct in feces samples, with any 

form of clustering undetected. No pattern was observed in the PCA plot by time (Appendix E: 

Fig. A-3). 
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Figure 3-4: Weighted UniFrac diversity index diagram (mean + STD). A) Compare diversities within feces to 

those within cecum and those between these two groups. B) Compare diversities between the various horses. C)  

Compare diversities between different diets. ***p < 0.001 
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Figure 3-5: PCA plot by horse (PC1 vs. PC2). The numbers indicate horse number A) Cecum samples B) Feces 

samples 
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Dominant taxonomic groups  

The phyla Firmicutes and Bacteroidetes dominated both cecum and feces independent of diet 

(Fig. 3-6A). The remaining phyla, which comprised over 1% of total amount in either diet or 

sample origin, were Verrucomicrobia, Proteobacteria, Tenericutes, Spirochaetes, Cyanobacteria, 

Fibrobacteres, Actinobacteria and Euryarchaeota (Fig. 3-6B).  

 

 

Figure 3-6: Phyla distribution in cecum and feces according to diet (mean + SEM). A) Relative amounts (%) of 

the most dominant phyla: Firmicutes and Bacteroidetes. B) Relative amounts (%) of remaining phyla over 1% in 

either diet or sample origin. *Significant diet difference (*0.010<p<0.050 **0.001<p<0.010 ***p<0.001). 
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Through PCA analysis in MATLAB, loadings for both the cecum and feces samples were 

generated (Appendix F). The OTUs with loadings above 0.1 or below -0.1 was selected and 

summed with other OTUs with the same taxonomy. Student’s t-Test, based on diet in cecum 

samples, was performed on all selected bacterial groups. In addition, a limit of 1% of the total 

bacterial load in cecum, in either diet, was set as minimum for the bacterium to be considered 

dominant. A total of six bacterial groups passed the criteria (Table 3-2). 

 

Table 3-2: Selected bacterial groups based on the selection criteria.  

Taxonomy
1) 

Phylum Loadings | Total 
2)

 Relative 

amount 
3)

 

p-value
4)

 

f_Lachnospiraceae  

 

Firmicutes 

4    | 2056 23.93 0.004 

g_Anaerostipes 1    |     18 2.19  

 

<0.001 

g_Anaerovibrio 1    |       4 6.08 

g_Streptococcus 2    |   126 4.02 

g_Fibrobacter s_succinogenes Fibrobacteres 1    |     12 3.5 

g_Treponema Spirochaetes 3    |     40 2.78 

1) f = family, g = genus, s = species. 

2) Loadings = number of OTUs with loadings above 0.1 or below -0.1 in either cecum or feces samples. 

    Total = total summed OTUs with same taxonomy. 

3) Mean maximum relative amounts (%) of the bacterial groups in cecum detected in either diet.  

4) p-values calculated by cecum diet based t-Tests. 

 

The F. succinogenes group showed significant diet difference in both cecum and feces samples 

(cecum: p<0.001 feces: p=0.002). F. succinogenes contents in the cecum remained relatively 

stable when the horses were fed only hay and consisted of about 1 ± 0.5% of the cecal microbiota 

(Fig. 3-7A). Greater variation in relative amount of this bacterium was detected for the hay and 

barley diet, where the average ranged from 0.4% to 3.5%. Almost immediately after the feed 

reached the cecum, a large peak of F. succinogenes occurred. The bacterium reached a maximum 

of 3.5% at 3 hours (the time point showing most significant diet difference with a p-value of 

0.002) and decreased wherefrom to 0.4% at 9 hours. After new feeding at 8 hours, a small peak 

of this bacterium that reached same quantities as the hay diet occurred. Finally, after feeding at 
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16 hours, last cycle peak with a maximum of 2.6% relative bacteria amount were reduced close to 

the hay diet by sampling end. When investigating each single horse separately, they all showed 

the same trend with two high peaks of F. succinogenes amount according to hay plus barley diet. 

Similar F. succinogenes amount was detected in the feces samples but, this bacterium showed no 

correlating patterns to cecum observations (Fig. 3-7B). 

 

 

Figure 3-7: Relative amounts of F. succinogenes according to diet and different time measurements (mean ± 

SEM). Time is defined as hours after sampling start/morning meal. A) Cecum samples. Arrows indicate feeding time 

points in both diets. B) Feces samples. Asterisk associated with the diagram title indicate total significant diet 

difference, while asterisk associated with the graphs indicate significant diet difference at specific time points 

(*0.010<p<0.05 **0.001<p<0.010 *** p<0.001). 
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The Streptococcus spp. group also showed significant total diet difference in both cecum and 

feces samples (both p-values<0.001). Within this group, the group Streptococcus luteciae 

dominated the cecum samples with a maximum in the hay and barley diet with 2.5% relative 

abundance. A small and relatively stable amount of the Streptococcus spp. group was detected in 

the cecal samples when the horses had been fed only hay (0.2-1.4%) (Fig. 3-8A). However, when 

the horses were fed hay supplemented with barley, this group showed a peak between time point 

5 and 10 with a maximum relative amount of 4% at 8 hours. Cecum correlating patterns of the 

Streptococcus spp. group were detected in the feces samples but, in greater quantities (up to 27%) 

than of cecum samples (Fig. 3-8B).  

 

 

Figure 3-8: Relative amounts of Streptococcus spp. according to diet and different time measurements (mean ± 

SEM). Time is defined as hours after sampling start/morning meal. A) Cecum samples. Arrows indicate feeding time 

points in both diets. B) Feces samples. Asterisk associated with the diagram title indicate total significant diet 

difference, while asterisk associated with the graphs indicate significant diet difference at the specific time point 

(*0.010<p<0.050 **0.001p<0.010 ***p<0.001). 
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The Treponema spp. group showed significant diet difference with a p-value less than 0.001 in 

the cecum samples and the relative amount of Treponema spp. varied (0.7-2.7%), with three 

distinct peaks when the horses were fed the hay supplemented with barley diet (Fig. 3-9A). The 

minimum amount of this bacterium appeared to be associated with feeding time point. In 

contrast, the bacterial amount in hay diet remained stabile throughout the collection period. 

Larger amounts of the Treponema spp. were detected in feces samples (up to 4%) (Fig. 3-9B). 

Still, this bacteria group showed only significant diet difference at time point 2 (p=0.011) in feces 

and no correlating pattern with cecum samples. However, ordinary least squares (OLS) 

regression analysis confirmed linear relationship between these bacteria and F. succinogenes 

(p=0.046) (Appendix G).  

 

 

Figure 3-9: Relative amounts of Treponema spp. according to diet and different time measurements (mean ± 

SEM). Time is defined as hours after sampling start/morning meal. A) Cecum samples. Arrows indicate feeding time 

points in both diets. B) Feces samples. Asterisk associated with the diagram title indicate total significant diet 

difference, while asterisk associated with the graphs indicate significant diet difference at the specific time point 

(*0.010<p<0.050 **0.001<p<0.010 ***p<0.001). 
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The Anaerovibrio spp. group showed significant diet difference with a p-values less than 0.001, 

in both cecum and feces samples. This bacteria group was detected in minute amounts in the 

cecum, less than 0.1% of total bacteria amount, when the horses were fed only hay (Fig. 3-10A). 

In contrast, a considerable quantity of the Anaerovibrio spp. group was observed trough a large 

peak between 7 and 17 hours, with a maximum above 6% of total bacteria amount at 14 hours 

after the morning meal with hay and barley. An increased amount of Anaerovibrio spp. in hay 

plus barley diet were observed as well in the feces samples after 4 hours but, with amounts 

considered non-dominating (<0.1%) (Fig. 3-10B).  

 

 

Figure 3-10: Relative amounts of Anaerovibrio spp. according to diet and different time measurements (mean 

± SEM). Time is defined as hours after sampling start/morning meal. A) Cecum samples. Arrows indicate feeding 

time points in both diets. B) Feces samples. Asterisk associated with the diagram title indicate total significant diet 

difference, while asterisk associated with the graphs indicate significant diet difference at the specific time point 

(*0.010<p<0.050 **p<0.010 ***p<0.001). 
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The Lachnospiraceae family group comprised of up to 24% of the total bacterial load in both 

cecum and feces samples. The Lachnospiraceae family showed a relatively stable trend in both 

diets (Fig. 3-10), but the Lachnospiraceae family amounts, in the two different diets, were 

significantly different from each other in the cecum (p=0.004). A peak in the time period 2 to 10 

hours after the morning meal with hay supplemented with barley was identified in cecum (Fig. 3-

11A). In contrast, a lower abundance in the time range 10 to 18 hours was detected in the hay 

plus barley diet in feces (Fig. 3-11B) with time point 14 and 16 showing significant diet 

difference (p=0.006 and 0.029 respectively). However, no significant total diet difference was 

detected in the feces samples and the growth pattern did not correlate to those of the cecum 

samples. 

 

 

Figure 3-11: Relative amounts of the Lachnospiraceae family according to diet and different time 

measurements (mean ± SEM). Time is defined as hours after sampling start/morning meal. A) Cecum samples. 

Arrows indicate feeding time points in both diets. B) Feces samples. Asterisk associated with the diagram title 

indicate total significant diet difference, while asterisk associated with the graphs indicate significant diet difference 

at the specific time point (*0.010<p<0.050 **0.001<p<0.010 ***p<0.001). 
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Significantly more Anaerostipes spp. was detected in the cecum when the horses ate only hay 

(0.5-2.2%) compared to when they ate both hay and barley (0.1-0.9%) (p<0.001). The detected 

amount showed relatively continuous curves for both diets in cecum (Fig. 3-12A). However, a 

decline before feeding with further increases in the proportion of Anaerostipes spp. in the cecum 

after hay-feeding period occurred. Anaerostipes spp. still showed significant diet difference 

(p=0.030) in the feces samples although the graphical representation (Fig. 3-12B) shows no 

major diet difference. However, these bacteria were, in feces, detected in minimal amounts 

(<0.2%) and were, therefore, considered non-dominating. 

 

 

Figure 3-12: Relative amounts of Anaerostipes spp. according to diet and different time measurements (mean ± 

SEM). Time is defined as hours after sampling start/morning meal. A) Cecum samples. Arrows indicate feeding time 

points in both diets. B) Feces samples. Asterisk associated with the diagram title indicate total significant diet 

difference, while asterisk associated with the graphs indicate significant diet difference at the specific time point 

(*0.010<p<0.050 **0.001<p<0.010 ***p<0.001). 
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3.3.2 Shotgun metagenome analyses 

24 cecum samples were selected for shotgun metagenomic sequencing and the sequencing data 

were analyzed in MG-RAST. Combined, the 24 samples contained a total of 8 507 537 sequences 

with a mean sequence count of about 350 000 sequence reads including an average read length of 

188 bp. Approximately 5% of the sequence reads failed to pass the quality control pipeline of 

MG-RAST. Of the quality control passed sequences, 0.2-0.8% contained rRNA genes, about 38% 

contained predicted proteins with known function and about 47% contained predicted proteins 

with unknown function. Further, roughly 9% of the quality control passed sequence reads had no 

rRNA gene or predicted proteins.  

 

Taxonomic profile 

The taxonomic assignment was carried out by comparing the sequencing data to the M5 non-

redundant (M5NR) protein database, which comprise of several sequence databases, in MG-

RAST.  

 

The Bacteria (88.82% ± 0.13) [mean ± SEM] dominated the cecal microbiota, while the 

Eukaryota (0.68% ± 0.03), Archaea (0.46% ± 0.01) and Viruses (0.08% ± 0.01) only were 

represented in low amounts. 0.01% of the sequences were assigned as other sequences, 9.80% 

unassigned and 0.15% were unclassified sequences. The dominating bacterial phyla were 

Bacteroidetes (50%) and Firmicutes (30%), followed by Proteobacteria (7%), Actinobacteria 

(2%), Verrucomicrobia (1%), Fibrobacteres (1%) (Appendix H). The phyla Euryarchaeota 

dominated the Archaea domain with abundance over 93% of the total detected Archaea. Further, 

fungi comprised of about 20% of the assigned eukaryotic microorganisms. 
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Functional profile 

Functional profiles were constructed using the Subsystem database which compared homology of 

functional genes in the sequencing data against the database and displayed annotated genes 

within the samples. 

 

A total of 28 subsystems were detected, of which 10 subgroups comprised of less than 1% and 

were thus assembled in the group Other (Sulfur Metabolism, Nitrogen Metabolism, Iron 

acquisition and metabolism, Metabolism of Aromatic Compounds, Motility and Chemotaxis, 

Dormancy and sporulation, Secondary Metabolism, Phosphorus Metabolism, Potassium 

Metabolism, Photosynthesis). Clustering-based subsystems, Carbohydrates and Protein 

Metabolism were the three most dominating subsystems (Fig. 3-13). The distribution of the 

functional subsystems was relatively similar in all samples, with no standard deviation of more 

than 0.3%. However, Membrane Transport and Clustering-based subsystems were significantly 

different in the two diets (p-values were 0.014 and 0.040 respectively). 

 

Carbohydrate metabolism, the second most abundant subsystem, was divided into 12 subgroups 

where 8 of them showed significant difference either in diet or in time (Fig. 3-14) (Appendix I: 

Table A-8). Central carbohydrate metabolism and monosaccharide metabolism dominated the 

functional subgroups, with both over 15% of the total carbohydrate metabolic features. These two 

subgroups showed more distinct peak at time point 2 in the hay and barley diet, where central 

carbohydrate metabolism show a negative trend whereas monosaccharide metabolism show a 

positive trend. Both CO2 fixation and fermentation comprised of about 5% of the total 

carbohydrate metabolic features, and fermentation was the only subgroup that showed significant 

difference in diet independent of time (p=0.011). Both subgroups showed a positive peak in the 

hay diet while a negative drop in the hay and barley diet. Further, glycoside hydrolases comprised 

of less than 1% of the total carbohydrate metabolic features. This subgroup showed similar trend 

in both diets with an increase at time point 2.  
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Figure 3-13: Relative distribution of the functional subsystems annotated in MG-RAST (mean). 
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Figure 3-14: Relative sequence amount (%) belonging to carbohydrate related functions (mean ± SEM). CO2 

fixation, Fermentation and Sugar alcohols are plotted against the primary y-axis and, Central carbohydrate 

metabolism and Monosaccharides are plotted against the secondary y-axis. 
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3.4 Controls and parallels 

3.4.1 qPCR 

qPCR with PRK primers was performed primarily to verify the DNA isolation step. The Ct-

values were quite similar in all the samples and showed no typical pattern in the different diets or 

horses. Most of the samples showed Ct-values between 15 and 20. In addition to the samples 

there were also added a negative isolation control and a negative qPCR control, and both controls 

showed Ct-values over 30. 

 

3.4.2 16S rRNA gene metagenome sequencing 

The PRK and PRKIllumina PCR products showed the expected size (ca. 500 bp) by gel 

electrophoresis and the pool concentration before dilution for sequencing, measured by Qubit, 

were 2.7 ng/µl. 

 

Positive and negative controls were added in the PCR reaction and none of the negative PCR 

controls were sequenced due to any band registration by gel electrophoresis. The species 

Escherichia coli was used as a positive PCR control. The positive controls showed low weighted 

UniFrac distance between each other (Fig. 3-15), but as much as 379 different OTUs were 

assigned the two sequenced PCR positive controls. No OTUs had taxonomy as specific as E. coli, 

but 135 OTUs associated with the family Enterobacteriaceae accounted for 95.65% and 97.32% 

of total bacterial distribution respectively. No other OTUs were detected over 0.2% of the total 

bacterial load in the positive controls. Regression analysis showed that the positive PCR controls 

had a linear relationship (R
2
> 0.99) (Appendix J: Fig. A-8A).  

 

Positive and negative controls were added to every DNA isolation run in order to determine 

technical errors in the DNA purification and to trace potential contaminations. Positive controls 

consisted of a sample mix with five randomly selected samples. Cecum mix was used for DNA 

isolation from the cecum samples and feces mix was used for DNA isolation from feces samples. 

No DNA was detected in the negative controls. Weighted UniFrac diversity calculations showed 

short distance between PCR controls plus shorter distance between cecum than of feces controls 

(Fig. 3-15). Greater distance between cecum (or feces) controls and PCR controls was detected 



 
42 Diet Effects on the Short-Term Temporal Dynamics of the Equine Hindgut Microbiota 

(>0.8). Furthermore, comparison of within groups and between groups showed significant 

difference (p<0.001). Additionally, regression analysis showed a linear relationship between the 

sample controls with no cecum controls having lower R
2
-value than 0.87 and the minimum R

2
-

value associated with feces was 0.78 (Appendix J: Fig. A-8B and A-8C). 

 

 

Figure 3-15: Weighted UniFrac diversity index diagram for positive controls (mean + STD). ***p<0.001 

 

Random samples were selected to examine OTU abundance profiles using DNA isolation 

parallels. The parallels were plotted against each other and the regression analysis showed linear 

correlation between the parallels (R
2 

> 0.85). 

 

Through weighted UniFrac plot, the β-diversity according to sampling day showed random 

sample distribution. Thus, no daily sampling result variation was detected (Appendix D: Fig. A-

1B). 
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3.4.3 16S rRNA gene sequencing and shotgun sequencing comparison 

Great variety and significant difference between the methods (p<0.001) was detected at bacterial 

phylum level, except the phylum Fibrobacteres (Fig. 3-16). However, the phyla which were 

detected over 1% of the total bacterial content by shotgun sequencing, was also share of the phyla 

represented in more than 1% by 16S rRNA gene sequencing. 

 

 

Figure 3-16: Phyla distribution comparison between 16S rRNA gene sequencing and shotgun sequencing in 

respective samples (mean + SEM). A) Most dominating phyla Firmicutes and Bacteroidetes. B) Remaining 

common phyla representing more than 1% of the total bacterial content with shotgun sequencing and respective 

phyla in 16S rRNA gene sequencing. ***Significant difference between the two methods at the specific phyla 

(p<0.001). 
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4. Discussion 

4.1 Feces vs. cecum and horse individuality 

Mainly three methods are used to obtain equine intestinal sample material: collection from 

intestinal cannulated horses, postmortem collection of intestinal content and feces sampling. 

Fecal samples are often used to investigate the gut microbiota (Schoster et al. 2013) due to 

difficulty in obtaining other types of intestinal samples (Dougal et al. 2012). This study therefore 

compared fecal and cecal samples to address whether feces are good representatives for 

describing the temporal dynamics of the equine cecal microbiota. 

 

Cecum showed distinct difference from feces. The feces showed no clear dietary pH influence, in 

contrast to cecum.  Fecal pH varied, however, between sampling time points and thus the dietary 

effects might be misinterpreted in studies that only utilize fecal samples. Furthermore, as 

demonstrated in previous study (Dougal et al. 2012), the microbiota diversity were higher in 

feces than cecum. Because of the microbiota diversity difference, overestimation of the cecal 

microbiota diversity will occur when using fecal samples as representatives. Additionally, 

calculations of which feces and meal that correlates are a complex issue in dietary studies, since 

passage rate varies in different intestinal compartments depending on a number of feed and 

animal related factors (Van Weyenberg et al. 2006).  

 

Moreover, the bacterial temporal trends detected in cecum were not supported by the feces 

findings. Several bacteria detected over 1% of the total cecal microbiota were almost absent in 

feces. So, when only analyzing feces, these bacteria would not be considered dominant. 

Interestingly, two of the bacteria showing correlating cecum growth patterns also showed 

correlating growth patterns in feces, suggesting a symbiotic relationship between these bacteria. 

The drastic increase of these bacteria observed in cecum however, was absent in feces. Studying 

different hindgut compartments of five horses, Schoster et al. (2013) concluded that cecum 

showed most resemblance to feces compared to the other hindgut compartments. Nevertheless, 

feces bacterial findings in this study did not correspond to findings in cecum. The temporal 

bacterial growth patterns could to some extent describe some of the findings in this study; 

however the collection time of the samples must be given great focus.  
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Individual variation of the gut microbiota composition affects the results of dietary studies. 

Similar living conditions are beneficial in terms of minimizing individual variation. Despite that 

the horses used in this study were stabled together, large differences in microbiota composition 

between the horses were observed. Horses from different stables are then believed to show even 

greater individual variation. Unlike fecal sampling, postmortem sampling provides limited 

information about digestive process dynamics and difficulties arise with result comparison due to 

variation in sampling time after feeding (Julliand et al. 2006). In addition, the large individual 

differences cause questions to studies using euthanized horses for diet comparison. Basically, the 

observed significant dietary effects may be caused by individual variation, when comparing diets 

based on different horses. In this respect, cannulated horses are a great advantage for studying 

phenomenon that should be unconnected with individuals.  

 

4.2 Taxonomical composition of cecal microbiota 

 Dougal et al. (2013) reported the gut microbiota in grass/hay fed horses to be dominated by the 

phyla Firmicutes (46%), Bacteroidetes (43%) followed by Fibrobacteres, Spirochaetes and 

Proteobacteria, where all phyla comprised by less than 4% of the total microbiota. Although the 

Firmicutes and Bacteroidetes amount in the cecum, in this study according to hay diet, did not 

correspond to the amounts in the study by Dougal et al. (2013), the same phyla were detected as 

dominant in both studies. Additionally, this study suggests that Verrucomicrobia, Tenericutes and 

Cyanobacteria should be added as the dominant microbiota in the cecum as they also comprised 

of more than 1% of the total microbiota. Strong selection pressure in the gut, where well-adapted 

microorganisms benefit from regular carbohydrate digestion, provided by the host, and in return 

give pathogen protection and available nutrients to the host, result in few phyla comprising the 

gut compared to e.g. different soil ecosystems (Claus et al. 2011). Firmicutes and Bacteroidetes, 

the most dominant phyla in the hindgut, were also shown to dominate the gut microbiota of 

numerous vertebrates including human (Ley et al. 2008). These phyla seem to only grow in the 

gut and are probably transferred from parents to offspring (Ley et al. 2006). All other detected 

phyla were also seen in the human intestine with exception of Tenericutes and Fibrobacter (Ley 

et al. 2006). F. succinogenes (phylum Fibrobacteres), one of the three dominant rumen fibrolytic 
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bacteria, were also previously reported present in the equine hindgut (Julliand et al. 1999; Lin & 

Stahl 1995). Only Tenericutes, Spirochaetes, Cyanobacteria and Fibrobacter showed significant 

diet effect where Tenericutes and Cyanobacteria showed highest amounts in the hay diet while 

Spirochaetes and Fibrobacteres showed highest amounts in hay and barley diet. Daly et al. 

(2012) reported a Fibrobacteres decrease in concentrate fed horses (0.4%) compared to grass fed 

horses (2.7%) when studying colonic microbiota of euthanized horses. When considering their 

colonic samples collection time (between 12 and 16 hours after the last meal), our hay and barley 

findings correspond although the Fibrobacteres amount, when the horses were fed only hay, did 

not reach their detected amount. Lin and Stahl (1995) detected 12% of the total microbial content 

in the cecum belonging to the phylum Fibrobacteres. The study only comprised one single horse 

and the high Fibrobacteres amount detected were probably due to this particular individual, since 

this phylum have not shown such dominance in other studies (Daly et al. 2012; Dougal et al. 

2013; Julliand et al. 1999).  

 

4.3 Functional characteristics of cecal microbiota 

The cecal samples selected for shotgun metagenome analyses, to investigating functional 

characteristics of the cecal microbiota, showed relatively stable functional subsystem 

composition. Together with carbohydrates and protein metabolism, clustering-based subsystems 

dominated the functional subsystems found in the equine hindgut. Clustering-based subsystems 

and membrane transport were the only first level functional subsystems that showed significant 

diet difference. The functional characteristics of clustering-based subsystems are not clearly 

understood (Delmont et al. 2012). However, membrane transport involves all forms of molecular 

transport between the bacteria and the environment. The membrane transport significant diet 

difference may indicate an altered ability to excrete e.g. SCFA, which in turn can affect the 

horse’s SCFA uptake. 

 

Carbohydrates, the second most abundant subsystem, involve different features connected with 

carbohydrate metabolism. Central carbohydrate metabolism includes the main glucose catabolic 

pathways. Conversely, monosaccharide metabolism includes functions related to degradation and 

utilization of various monosaccharides, such as xylose, mannose and others. Central carbohydrate 

metabolism related genes decreased, while monosaccharide metabolism related genes increased 
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when the horses were fed hay and barley, suggesting that type of carbohydrate fed reflects the 

microbiota and its functions. Due to higher hemicelluloses and lower cellulose content in the hay 

and barley diet, these findings may indicate an increased possibility to degrade and utilize 

hemicelluloses that contain various monomers, instead of cellulose that only consist of glucose 

monomers linked together.  

 

CO2 fixation is often connected with photosynthesis in plants. The amounts of CO2 fixation 

microbial genes registered can probably be chloroplast derived, since the cecal content also 

contain plant material. However, these genes may also be linked to the Cyanobacteria observed 

with 16S rRNA gene sequencing. The Cyanobacteria in the gut have probably evolved to adapt 

life in the gastrointestinal tract (Ley et al. 2005). 

 

Fermentation occurs during anaerobic conditions where pyruvate, through substrate 

phosphorylation, is converted into various end products. Genes connected with carbohydrate 

fermentation showed decrease when the horses were fed hay and barley, indicating reduced 

possibility to produce SCFA which was in contrast with the observed result of total SCFA 

detected. Then again, regulation of these genes may have a major impact on the observed SCFA 

production. 

 

Glycoside hydrolases are enzymes involved in polysaccharide degradation by hydrolyzing the 

glycosidic bonds that links the monomers together (Qi et al. 2007; Williams et al. 1984). Genes 

connected with glycoside hydrolases showed peak at time point 2 in both diets, indicating equal 

microbiota potential to break down polysaccharides in both diets in addition to increased 

potential in correspondence with meals.  

 

4.4 Model for cecum bacterial succession 

Diet effects on the short-term temporal dynamics of the hindgut microbiota were investigated 

through 16S rRNA gene metagenome sequencing of cecal samples. The temporal growth patterns 

of all bacteria remained stable when the horses were fed hay. In contrast, large variations in pH, 

SCFA and microbiota were detected when the horses additionally ate barley (Fig. 4-1). 
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Figure 4-1: Model of the temporal changes of fibrolytic, lactic acid-producing and lactate utilizing bacteria (B) 

in correspondence with pH and production of SCFA (A) in hay and barley diet. Rapid growth of fibrolytic 

bacteria cause increase in SCFA production leading to decreased cecum pH. Acidic environment favor growth of 

lactic acid producing bacteria that result in further pH decrease. Finally, accumulation of lactate facilitates growth of 

lactate utilizing bacteria that reduce lactate amounts in the cecum and stabilize the pH.   

 

The cecal microbiota showed great variation during the 24 hours after hay and barley feeding. F. 

succinogenes ferment cellulose and produce SCFA (Daly et al. 2012; Stewart & Flint 1989). The 

drastic observed increase of F. succinogenes may have led to rapid fermentation and increased 

total SCFA production, which in turn led to pH decrease (Al Jassim et al. 2005). Acidic 

environment may have favored rapid growth of lactic acid producing bacteria, like Streptococcus 

spp. that ferment starch (Daly et al. 2012), which increased lactate amounts in the cecum and led 

to further pH reduction (Al Jassim et al. 2005). Acidic cecum environment has previously been 

shown to cause disease, like laminitis (Katz & Bailey 2012), indicating that pH drops are 

undesirable. The pH drop was absent when the horses only eat hay. However, the main reason for 

concentrate feeding is the horse’s energy requirement. Feeding order like concentrates before 

hay, and vice versa has shown to provide no significant pH effect. Thus, to avoid pH drop, the 

starch content of the feed ration must be reduced (Jensen et al. 2012).  
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F. succinogenes has an optimum growth pH at 6.8 (Miyazaki et al. 1992) and due to acid 

intolerance (Stewart & Flint 1989), growth may have been suppressed in compliance with pH 

decrease. It is however unclear why the quantity of F. succinogenes was not detected at higher 

level in hay diet, since cecum pH during the entire process remained around 6.8 and the total 

fiber content was higher than that of hay and barley diet. Since hemicelluloses are considered to 

be more easily degradable than cellulose, higher hemicellulose-content of the hay and barley diet 

could be suggested as a probable explanation for the drastic growth of F. succinogenes. Previous 

in vitro studies have shown that F. succinogenes can only break down hemicelluloses in order to 

access more cellulose (Suen et al. 2011), but it cannot utilize them (Osborne & Dehority 1989; 

Suen et al. 2011). However, it cannot be ruled out that this bacterium behaves differently in vivo 

than in vitro.  

 

At the same time, the cause of the large increase in F. succinogenes may be caused by a 

symbiotic relationship promoting growth and cellulose utilization. Bacteroides ruminicola H8a, a 

hemicellulolytic bacteria, have previously shown to increase the total cellulose digestion when 

co-cultured with F. succinogenes (Dehority & Scott 1967). The Spirochaetaceae family produces 

acetate by using H2/CO2 as substrate for acetogenesis (Santos et al. 2011) and are expected be 

involved in SCFA production in the equine cecum and colon (Steelman et al. 2012). The 

Treponema spp. showed similar growth pattern as F. succinogenes with relatively stable growth 

in hay diet and three peaks, after each feeding, in hay and barley diet. In a Treponema bryantii 

and F. succinogenes co-culturing study, Stanton and Canale-Parola (1980) showed that the 

saccharolytic spirochete grew in cellulose containing media, though T. bryantii had not shown 

any cellulolytic activity. They also reported that Treponema enhanced cellulose breakdown by F. 

succinogenes suggesting a symbiotic relationship between these bacteria. They proposed that 

Treponema spp. in the rumen are directed, by chemotaxis, to soluble carbohydrates released from 

cellulose breakdown by F. succinogenes and use these sugars as essential fermentable substrates. 

On the other hand, F. succinogenes are non-motile and Treponema’s high motility may randomly 

push F. succinogenes to new cellulose substrates, leading to increased cellulolytic activity. It is 

likely that this symbiotic event also may occur in the equine cecum and may explain the similar 

growth patterns for these bacteria.  
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Cellulolysis in the rumen have been shown to be reduced when rumen pH decrease due to rapid 

starch fermentation (Stewart & Flint 1989) which may also be true in the equine hindgut. In 

addition, increased amount of lactic acid inhibits absorption of SCFA in the equine intestines 

(Daly et al. 2001). Anaerovibrio spp., belonging to the Veillonellaceae family, utilizes lactate and 

are acid tolerant bacteria that can survive pH drops (Biddle et al. 2013). The large presence of 

these bacteria in the hay and barley diet, and absence in the hay diet, suggests a high lactic acid 

concentration, due to Streptococcus spp., in the cecum at the hay and barley diet. Such lactate 

utilizers are needed to prevent lactate accumulation over prolonged periods of time in the cecum 

during starch fermentation (Mackie & Gilchrist 1979).  

 

Species within the genus Anaerostipes may produce butyrate (Schwiertz et al. 2002) through 

pathways including butyryl-CoA:acetate CoA-transferase (Meehan & Beiko 2014), which by the 

enzyme name indicate the need of available acetate (Duncan et al. 2002). The increase in the 

proportion of Anaerostipes spp. after hay-feeding period may indicate that the bacterial load is 

affected by the new meals. The peaks observed in the hay diet may be caused by utilization of 

acetate produced by other bacteria in the cecum. No correlation between the growth of these 

bacteria and butyrate measurements were observed, suggesting that these bacteria contribute only 

to maintain butyrate production in general and the observed butyrate production increase, when 

the horses were fed hay and barley, was caused by other butyrate-producing bacteria. The 

Lachnospiraceae family contains several species that produce butyrate (Meehan & Beiko 2014). 

The relative amount of this family increased in the time range 2-10 hours after the horses were 

fed hay and barley, which correspond with the measured butyrate peak, suggesting that the 

increased butyrate production were caused by other family members of the Anaerostipes. 

 

4.5 Technical evaluation 

The next-generation sequencing process has revolutionized biological research by producing 

large sequencing data sets within short period of time (Dohm et al. 2008). However, these 

sequencing methods are not error free. Dephasing may occur during the sequencing process by 

incomplete extension or addition of multiple nucleotides. As a result, further incorporated 

nucleotides will no longer be in synchronized position (Metzker 2010) leading to increased 
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fluorescence noise, base-calling errors and shorter reads (Erlich et al. 2008). For Illumina, 

substitution is the most common error, often in connection with guanine incorporation (Dohm et 

al. 2008). Additionally, an underrepresentation of AT-rich and GC-rich regions has been 

observed, possibly occurring during template preparation by the amplification step (Metzker 

2010).   

 

Fibrolytic bacteria are often closely associated with the substrate surfaces (Flint et al. 2008; 

Krause et al. 2003; Suen et al. 2011). Although all samples in this study were vortexed before 

pipetting in connection with DNA isolation, consideration must be given to this phenomenon and 

an underestimation of these fibrolytic bacteria may have occurred. 

 

Differences in the taxonomical microbiota distribution were observed by the two sequencing 

methods used in this thesis. Possible phyla discrimination of the PRK primers used for 16S rRNA 

gene sequencing cannot be excluded, since they were initially produced to only examine 

methanogenic bacteria and archaea. Previous testing of these primers showed a matching 

efficiency of about 87% (Yu et al. 2005), which suggests that certain bacterial and archaeal 

groups are not captured by these primers. The two sequenced positive PCR controls, E. coli, were 

assigned as much as 379 different OTUs and none as specific as E. coli. However, 95.65% and 

97.32% of the OTUs belonged to the Enterobacteriaceae family in respective PCR controls. The 

positive controls should in principle be pure bacterial cultures and the large amount of 

nonspecific OTUs assigned the positive controls may indicate an overestimation of OTUs from 

QIIME (Edgar 2013). Regression analysis showed a linear relationship between the two parallels 

and they additionally show short weighted UniFrac distance between each other, which gives 

reason to believe in a systematic selection of OTUs by QIIME. The phyla distribution designed 

from 16S rRNA gene sequencing and shotgun sequencing demonstrated different percentage 

division of the various phyla. Small differences in the taxonomic profile were found in the 

metagenomic shotgun data, probably due to non-specific classification of organisms by MG-

RAST. Many sequences were unclassified and will hence not show the difference in the same 

manner as 16S rRNA gene sequencing. However, most phyla demonstrated dominance by both 

methods. In addition, previous studies have shown that MG-RAST performs poorer than QIIME 

according to bacterial classification (D'Argenio et al. 2014). Therefore, the 16S rRNA gene 
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sequencing results concludes to be more trust worthy. 16S rRNA gene sequencing data analyzed 

in QIIME are predicted by comparing this specific gene to the Greengenes database (Caporaso et 

al. 2010), while the shotgun metagenomic sequencing data analyzed in MG-RAST are annotated 

to proteins and wherefrom predicted to taxonomical classification (Meyer et al. 2008). The data 

were generated in different manner and may, thus, result in different taxonomic distribution. 

However, all sample origin, horse and diet comparisons were conducted using the same method, 

which means that we still believe in the observed significant effects. 

 

4.6 Future work 

The hindgut microbial community is probably more complex than what has been described in this 

thesis and collaboration between different bacteria cannot be excluded. Additionally, despite low 

abundance of specific bacterial phylum they may be essential, thus further investigation of these 

bacterial groups may also be appropriate. The cannulated horses, at IHA, provide a golden 

opportunity to further work toward gaining more understanding about the bacterial symbiotic 

relationship of the equine hindgut microbiota and how this microbiota affects its host. 

 

Concentrate feeding lowered the microbiota diversity. Reduced gut microbiota diversity has 

previously shown connection to different human diseases (Lozupone et al. 2012; Rook 2013) due 

to poor inflammation control by the immune system (Rook 2013). Probably, the microbiota 

diversity may affect the horse in the same way. Microbiota diversity seems to coincide with pH, 

since the horse with largest pH drop had the least diverse cecal microbiota, whereas the horse 

with the smallest drop in pH showed highest diversity. Additionally, the horse showing the 

smallest pH drop ate the barley much slower than the other horses. Consequently, this indicates 

that prolonged concentrate ingestion may help maintaining a more stable pH as well as 

microbiota. However, this observation concerned only one single horse and prolonged ingestion 

time by feeding machines may be a suggested study design in the future. Additionally, in future 

studies investigating diet effects on the temporal bacterial development, lactate measurements 

should be included in order to gain more validation of the course of bacterial events. 

 



 
53 4. Discussion 

During altered types of carbohydrate available in the cecum, several bacteria have the ability to 

change carbohydrate utilization pathways and due to their adaptability, their growth patterns will 

be more stable. To investigate these bacteria and their active genes in a greater extent, 

metatranscriptomics may be suggested to provide a more complete understanding of the actual 

events of this complex community in the equine cecum. RNA analyzes often provide difficulties 

in practical work because of RNA’s rapid degradation time. However, because the samples are 

collected straight from the cecum, the samples can be directly preserved allowing opportunities 

for metatranscriptomics.  
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5. Conclusion 

 

This study addressed the diet effects on the equine hindgut microbiota, where the microbiota 

composition showed clear difference between the two conducted diets. The microbiota 

composition remained stable when the horses were fed only hay, whereas showed great variation 

when the horses were fed barley in addition to hay. However, the functional traits of the hindgut 

microbiota remained relatively stable in both diets. This study also demonstrated the temporal 

changes of the equine hindgut microbiota and suggests a course of events where fibrolytic 

microorganisms that produce SCFA leads to pH decrease in the cecum and the revival of lactic 

acid producing bacteria, where ultimately lactate utilizing bacteria prevents accumulation of 

lactate in the cecum over prolonged periods of time when the horse is fed hay and barley. The 

equine cecum samples compared to feces samples showed few cecum bacterial findings 

corresponding to the findings in the feces samples. The temporal bacterial growth patterns could 

to some extent describe some of the findings in this study; however the collection time of the 

samples must be given great focus. Ultimately, with this study we claim that feces provide little 

description of the cecal microbiota temporal dynamics, and we therefore do not recommend using 

fecal samples as a proxy for cecum. The understanding of the horse’s hindgut microbiota is still 

not complete, but this study provides a good foundation for further studies to gain a more 

complete understanding of this complex bacterial community. 
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Appendix 

 

Appendix A: Primer sequences 

 

PRK primers targeting prokaryotic 16S rRNA gene: 

Forward (PRK341F):  CCTACGGGRBGCASCAG 

Reverse (PRK806):  GGACTACYVGGGTATCTAAT 

 

PRKillumina primers:  

Forward (PRKi F): 

1. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctagtcaaCCTACGGGRBGCASCAG 

2. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctagttccCCTACGGGRBGCASCAG 

3. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatgtcaCCTACGGGRBGCASCAG 

4. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctccgtccCCTACGGGRBGCASCAG 

5. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtagagCCTACGGGRBGCASCAG 

6. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtccgcCCTACGGGRBGCASCAG 

7. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtgaaaCCTACGGGRBGCASCAG 

8. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtggccCCTACGGGRBGCASCAG 

9. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgtttcgCCTACGGGRBGCASCAG 

10. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctcgtacgCCTACGGGRBGCASCAG 

11. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctgagtggCCTACGGGRBGCASCAG 

12. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctggtagcCCTACGGGRBGCASCAG 

13. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctactgatCCTACGGGRBGCASCAG 

14. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctatgagcCCTACGGGRBGCASCAG 

15. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctattcctCCTACGGGRBGCASCAG 

16. aatgatacggcgaccaccgagatctacactctttccctacacgacgctcttccgatctcaaaagCCTACGGGRBGCASCAG 

Reverse (PRKi R): 

1. caagcagaagacggcatacgagatCGTGATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

2. caagcagaagacggcatacgagatACATCGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 
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3. caagcagaagacggcatacgagatGCCTAAgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

4. caagcagaagacggcatacgagatTGGTCAgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

5. caagcagaagacggcatacgagatCACTCTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

6. caagcagaagacggcatacgagatATTGGCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

7. caagcagaagacggcatacgagatGATCTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

8. caagcagaagacggcatacgagatTCAAGTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

9. caagcagaagacggcatacgagatCTGATCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

10. caagcagaagacggcatacgagatAAGCTAgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

11. caagcagaagacggcatacgagatGTAGCCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

12. caagcagaagacggcatacgagatTACAAGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

13. caagcagaagacggcatacgagatTTGACTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

14. caagcagaagacggcatacgagatGGAACTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

15. caagcagaagacggcatacgagatTGACATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

16. caagcagaagacggcatacgagatGGACGGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

17. caagcagaagacggcatacgagatCTCTACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

18. caagcagaagacggcatacgagatGCGGACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

19. caagcagaagacggcatacgagatTTTCACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

20. caagcagaagacggcatacgagatGGCCACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

21. caagcagaagacggcatacgagatCGAAACgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

22. caagcagaagacggcatacgagatCGTACGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

23. caagcagaagacggcatacgagatCCACTCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

24. caagcagaagacggcatacgagatGCTACCgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

25. caagcagaagacggcatacgagatATCAGTgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

26. caagcagaagacggcatacgagatGCTCATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

27. caagcagaagacggcatacgagatAGGAATgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

28. caagcagaagacggcatacgagatCTTTTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

29. caagcagaagacggcatacgagatTAGTTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

30. caagcagaagacggcatacgagatCCGGTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

31. caagcagaagacggcatacgagatATCGTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

32. caagcagaagacggcatacgagatTGAGTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

33. caagcagaagacggcatacgagatCGCCTGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

34. caagcagaagacggcatacgagatGCCATGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

35. caagcagaagacggcatacgagatAAAATGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 

36. caagcagaagacggcatacgagatTGTTGGgtgactggagttcagacgtgtgctcttccgatctGGACTACYVGGGTATCTAAT 
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Appendix B: QIIME manuscript for analyzing 16S rRNA gene 

metagenome data 

 

1. Attach a volume to a folder in which all the data will be  

1.1 Go to https://console.aws.amazon.com/ec2/home?region=us-east-1#s=Volumes and attach 

one of the volumes (or create a new one). 

Horse data: vol-05106872 (/dev/xvdb1) 

1.2 in Putty, run: ‘sudo fdisk -l’ to identify volume ID 

1.3 then mount it to a directory: 

mkdir /home/ubuntu/data_horse 

sudo mount /dev/xvdb1 /home/ubuntu/data_horse 

2. Copy the files into the folder; make sure to copy sequencing data, mapping files, 

make_split_libr_command_R1R2.py, convert_all_fastq_files.py, uc_fast_params.txt, 

mybashscript.sh 

3. Unzip the files through 

tar –xvf filename.tar 

gzip –d *.fastq.gz 

4. Convert all fastq files into fasta and qual files 

screen –S convert 

python convert_all_fastqfiles.py /home/ubuntu/data_horse/131029_M01132.Project_Rudi-

Horse300-2013-09-27 

(to come back to screen type ‘screen –r convert’; to terminate the screen type ‘screen –S convert –

X quit’) 

5. Check all the mapping files  

check_id_map.py –m ./checked_map_files/Mapping_file_R1.txt –o 

./checked_map_files/qiime_otuput 

6. Terminate the screen after it is finished 

screen –S convert –X quit 

7. Split sequences in each sample file (don’t forget to make changes in the code, specifying the 

mapping files pathway and names of files if different) 

screen –S split_libr 

https://console.aws.amazon.com/ec2/home?region=us-east-1#s=Volumes
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python make_split_libr_command_R1R2.py ./data/131029_M01132.Project_Rudi-Horse300-

2013-09-27/fastaqual Rudi-MiSeq300-Knutrudi210813- ./data/131029_M01132.Project_Rudi-

Horse300-2013-09-27/split_output 

8. Concatenate all the sequences in one file 

(First move all the files from split_output* (forward direction only) into another folder) 

mkdir ./data/131029_M01132.Project_Rudi-Horse300-2013-09-27/split_all 

cat ./data/131029_M01132.Project_Rudi-Horse300-2013-09-27 

/forward/split_output*/seqs.fna > ./data/131029_M01132.Project_Rudi-Horse300-2013-09-

27/split_all 

9. Install mpich2 if it is not installed yet 

sudo apt-get install libcr-dev mpich2 mpich2-doc 

10. Edit the StarCluster config file 

vi  ~/.starcluster/config 

use ‘insert’ or ‘i’ to edit the file, add the information on the volume (check volume id in console 

aws webpage, see p.1) 

 

[cluster qiime-horse] 

node_image_id = ami-64d0af0d 

cluster_user = ubuntu 

keyname=monikakey 

cluster_size=8 

node_instance_type=m2.4xlarge 

plugins=tmux, mpich2 

volumes=qiime-horseData 

 

[volume qiime-horseData] 

VOLUME_ID = vol-05106872 

MOUNT_PATH=/home/ubuntu/data_horse 

 

To save and quit: Esc; Shift+ZZ 

To quit without saving: Esc; :q! 

11. Unmount and deattach the folder from the FileZilla 

sudo umount /home/ubuntu/data_horse 
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then detach it on the webpage  https://console.aws.amazon.com/ec2/home?region=us-east-

1#s=Volumes 

12. Check the spotprice history of m2.4xlarge 

starcluster spothistory m2.4xlarge –d 60 

13. Launch the cluster, bidding the price a bit over the average one 

starcluster start -c qiime-horse spotclusterQiime --bid 1.05 

14. Login to starcluster 

starcluster sshmaster spotclusterQiime –u ubuntu 

15. Check whether the folder /data_horse/temp exists, if not, make new (mkdir) 

16. Edit qiime config file on the starcluster 

vi /home/ubuntu/qiime_software/qiime_config 

i (to insert text) 

a) cluster_jobs_fp start_parallel_jobs_sc.py 

b) temp_dir /home/ubuntu/data_horse/temp 

Esc; Shift+ZZ to quit and save 

17. Check if changes have been made 

print_qiime_config.py 

18. Check uc_fast_params.txt file 

vi uc_fast_params.txt 

i 

pick_otus:enable_rev_strand_match True 

pick_otus:max_accepts 1 

pick_otus:max_rejects 8 

pick_otus:stepwords 8 

pick_otus:word_length 8 

Esc; Shift + ZZ 

19. Check mybashscript.sh file 

export 

reference_seqs=/home/ubuntu/qiime_software/greengenes/gg_13_5_otus/rep_set/99_otus.fasta; 

export 

reference_tree=/home/ubuntu/qiime_software/greengenes/gg_13_5_otus/trees/99_otus.tree; 

export 

https://console.aws.amazon.com/ec2/home?region=us-east-1#s=Volumes
https://console.aws.amazon.com/ec2/home?region=us-east-1#s=Volumes
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reference_tax=/home/ubuntu/qiime_software/greengenes/gg_13_5_otus/taxonomy/99_otu_taxono

my.txt; pick_closed_reference_otus.py -o 

/home/ubuntu/data_horse/131029_M01132.Project_Rudi-Horse300-2013-09-27/myotus99 -i 

/home/ubuntu/data_horse/131029_M01132.Project_Rudi-Horse300-2013-09-27/split_all.seqs.fna 

-r $reference_seqs -a --parallel -O 80 -p /home/ubuntu/data_horse/uc_fast_params.txt -f 

20. Run parallel analysis of out picking 

start_parallel_jobs_sc.py -ms /home/ubuntu/data_horse/mybashscript.sh my_job_ 

21. Check whether the job has finished 

qstat  

If not output is given, then the job has finished. 

22. Check if you had any errors by listing all files  

ls –all 

Check the size of .o and .e files (.e-files give information on errors). If their size is > 0, use cat 

file.e to read the file 

23. Get an overview of sequence reads which were assigned to otu table 

print_biom_table_summary.py –i /home/ubuntu/data_horse/ 130924_M01132.Project_rudi-

MiSeq300-2013-08-27/myotus99/out_table.biom 

24. Choose sequencing depth to use in core diversity analysis (for example 4000 per sequence) 

25. Convert the biom table to text format 

convert_biom.py -i /home/ubuntu/data_horse/ 131029_M01132.Project_Rudi-Horse300-2013-09-

27/myotus99/out_table.biom -o /home/ubuntu/data_horse/ 131029_M01132.Project_Rudi-

Horse300-2013-09-27/myotus99/out_table.txt -b --header_key taxonomy 

26. Check the my_core_diversity_job.sh script 

vi my_core_diversity_job.sh 

i  

core_diversity_analyses.py -o /home/ubuntu/data_horse/131029_M01132.Project_Rudi-

Horse300-2013-09-27/myotus99/e4000 -i 

/home/ubuntu/data_horse/131029_M01132.Project_Rudi-Horse300-2013-09-

27/myotus99/out_table.biom -m /home/ubuntu/data_horse/ 

checked_map_files/Mapping_file_all.txt -e 4000 -c “AgeCategory” -a --parallel -O 80 -t 

/home/ubuntu/qiime_software/greengenes/gg_13_5_otus/trees/99_otus.tree; 

Esc; Shift+ZZ to save changes and quit 

27. Run the script 

start_parallel_jobs_sc.py –ms /home/ubuntu/data_horse/my_core_diversity_job.sh my_core_job_ 
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28. Check whether the job has finished 

qstat  

If not output is given, then the job has finished. 

29. Check if you had any errors by listing all files  

ls –all 

Check the size of .o and .e files (.e-files give information on errors). If their size is > 0, use cat 

file.e to read the file 

30. If you want to delete all the jobs started by the user 

qdel -u ubuntu 

31. Terminate starcluster (first log out from master and do it from the instance where starcluster was 

started) 

starcluster terminate -c spotclusterQiime 

32. Reattach the volume to the folder 

Horse data: vol-05106872 (/dev/sdg) 

32.1 in Putty, run: ‘sudo fdisk -l’ to identify volume ID 

32.2 then mount it to a directory: 

sudo mount /dev/xvdb1 /home/ubuntu/data_horse 

 

33. Transfer the data to PC through FileZilla 
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Appendix C: Full nutritional content of the feed 

 

Nutritional content analysis results of the feed used in this feeding experiment is shown in Table 

A-1. The analysis were performed at IHA and dry matter, ash, crude protein, NDF, ADF, stringy, 

crude fat and starch were analyzed. 

  

Table A-1: Full nutritional content of the hay and barley used in this feeding experiment.  

 Dry matter Ash Crude protein NDF ADF Stringy Crude fat Starch 

Sample ID g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg 

Hay  889 49 83 553 307 275 21 0 

Barley 870 21 84 142 36 26 12 499 
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Appendix D: Weighted UniFrac summary 

Table A-2: Compare diversities within feces to those within cecum and those between these two groups. 

 Feces Cecum Feces to Cecum 

Mean 0.280445 0.198106 0.34915 

STD 0.118203 0.066195 0.08672 

p-values Feces to Cecum Feces to Feces_Cecum Cecum to  

Feces_Cecum 

Kruskal-wallis 0.00E+00 5.12E-122 0.00E+00 

ANOVA 0.00E+00 1.48E-89 0.00E+00 

 

Table A-3: Compare diversities between various horses. 

  Feces Cecum 

  Horse 1 Horse 2 Horse 3 Horse 4 Horse 1 Horse 2 Horse 3 Horse 4 

Mean 0.236323 0.216539 0.307835 0.258328 0.155814 0.167317 0.124889 0.142379 

STD 0.097815 0.100992 0.132071 0.126650 0.052592 0.046022 0.033857 0.038154 

 Kruskal-Wallis 

p-value 

Horse 

1 to 2 

Horse 

1 to 3 

Horse 

1 to 4 

Horse 

2 to 3 

Horse 

2 to 4 

Horse 

3 to 4 

Feces 4.55E-06 4.39E-27 0.041325 4.85E-48 7.01E-12 2.18E-18 

Cecum 3.28E-34 2.41E-122 2.19E-12 2.46E-279 3.35E-98 9.38E-75 

 

  Horse 1 Horse 2 Horse 3 Horse 4 

Feces to Cecum 5.34E-100 4.13E-23 0.00E+00 5.00E-191 

 ANOVA 

p-value 

Horse 

1 to 2 

Horse 

1 to 3 

Horse 

1 to 4 

Horse 

2 to 3 

Horse 

2 to 4 

Horse 

3 to 4 

Feces 1.37E-04 6.43E-32 0.000117 3.72E-52 8.56E-14 1.62E-16 

Cecum 6.35E-17 3.18E-157 7.05E-28 0.00E+00 5.91E-105 7.96E-82 

 

  Horse 1 Horse 2 Horse 3 Horse 4 

Feces to Cecum 2.76E-165 7.51E-78 0.00E+00 0.00E+00 
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Table A-4: Compare diversities between different diets. 

  Feces Cecum 

  Hay+Barley Hay Hay+Barley Hay 

Mean 0.232407 0.309847 0.175168 0.209879 

STD 0.090033 0.124757 0.057821 0.077188 

 Kruskal-Wallis p-value Feces Cecum 

Diet 1 to Diet 2 4.73E-24 4.42E-98 

 

  Hay+Barley Hay 

Feces to Cecum 2.78E-247 0.00E+00 

 ANOVA p-value Feces Cecum 

Diet 1 to Diet 2 1.40E-26 1.94E-104 

 

  Hay+Barley Hay 

Feces to Cecum 0.00E+00 0.00E+00 

 

 

 

Figure A-1: Weighted UniFrac plot colored by sample origin (A) and sampling day (B).   

A B 
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Appendix E: PCA plots 

 

PCA analysis of OTU abundance was used in order to assess an effect of diet, time and sample 

origin. 

 

Figure A-2: PCA plot by diet (PC1 vs. PC3). Diet 1 (hay+barley) marked in red and Diet 2 (hay) marked in green.  

A) Cecum samples. B) Feces samples. 
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Figure A-3: PCA plot by time (PC1 vs. PC2). The numbers indicate different time points. A) Cecum samples B) 

Feces samples 
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Appendix F: OTU loadings 

 

Through PCA analysis in MATLAB, loadings for both the cecum and feces samples were 

generated.  

Table A-5: PC scores of different OTUs in cecum samples. The table only shows OTUs with loadings above 0.1 

or below -0.1 in one of the three PC.  

OTU_id PC1 PC2 PC3 Taxonomy
1)

 

102910 0.05 0.08 0.15 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_; s_ 

670167 0.27 0.28 0.31 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_; s_ 

297613 0.65 0.29 -0.44 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_;s_ 

49817 0.09 -0.03 -0.19 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_;s_ 

348828 0.10 0.10 0.39 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_;s_ 

289958 0.10 0.04 -0.03 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_;s_ 

4438136 -0.10 0.11 -0.03 k_Bacteria;p_Bacteroidetes c_Bacteroidia;o_Bacteroidales;f_;g_;s_ 

325743 -0.53 0.71 -0.21 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_;s_ 

295015 -0.03 0.15 -0.02 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_;s_ 

340727 0.09 0.23 0.11 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_;s_ 

290027 -0.05 0.15 -0.03 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_RF16;g_;s_ 

325340 0.09 0.18 0.02 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_[Paraprevotellaceae];g_YRC22;s_ 

320615 0.15 0.05 0.02 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_[Paraprevotellaceae];g_CF231;s_ 

337167 0.06 0.11 0.53 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_;g_;s_ 

812596 0.11 -0.02 -0.21 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Anaerovibrio;s_ 

541394 0.09 0.06 0.19 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Anaerostipes;s_ 

288448 0.14 0.04 -0.02 k_Bacteria;p_Verrucomicrobia;c_Verruco-5;o_WCHB1-41;f_RFP12;g_;s_ 

1) k = kingdom, p = phylum, c = class, o = order, f = family, g = genus, s = species 
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Figure A-4: Loadings plot according to PC1 (A), PC2 (B) and PC3 (C) for cecum samples. 

A 

B 
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Table A-6: PC scores of different OTUs in feces samples. The table only shows OTUs with loadings above 0.1 or 

below -0.1 in one of the three PC. 

OTU_id PC1 PC2 PC3 Taxonomy1) 

126 0.06 -0.03 0.10 k_Archaea;p_Euryarchaeota;c_Methanobacteria;o_Methanobacteriales;f_Methanobacteriaceae;g_Methanobrevibacter;s_ 

114 0.11 -0.02 0.23 k_Archaea;p_Euryarchaeota;c_Methanobacteria;o_Methanobacteriales;f_Methanobacteriaceae;g_Methanobrevibacter;s_ 

301555 0.13 -0.08 0.34 k_Bacteria;p_Actinobacteria;c_Coriobacteriia;o_Coriobacteriales;f_Coriobacteriaceae;g_;s_ 

292150 -0.01 0.15 0.11 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_;s_ 

290980 0.02 0.11 -0.08 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_;s_ 

297555 -0.14 0.21 -0.09 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_;s_ 

295015 -0.04 0.34 0.06 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_;s_ 

340727 0.03 0.21 0.03 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_;  s_ 

330276 0.00 0.16 0.02 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_;g_;s_ 

330831 0.00 0.11 0.13 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_BS11;g_;s_ 

346659 0.00 0.30 0.28 k_Bacteria;p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_BS11;g_;s_ 

290276 0.08 0.13 -0.13 k_Bacteria;p_Fibrobacteres;c_Fibrobacteria;o_Fibrobacterales;f_Fibrobacteraceae;g_Fibrobacter;s_succinogenes 

300658 0.18 0.00 -0.06 k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Streptococcaceae;g_Streptococcus;s_ 

299918 0.87 -0.02 -0.28 k_Bacteria;p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Streptococcaceae;g_Streptococcus;s_luteciae 

300139 0.07 0.15 0.03 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_;g_;s_ 

313602 0.02 -0.01 0.12 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_;g_;s_ 

292128 0.13 -0.07 0.39 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_[Mogibacteriaceae];g_Mogibacterium;s_ 

291013 0.02 0.15 -0.03 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_;s_ 

353085 0.08 0.00 0.13 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_;s_ 

356061 0.04 0.05 0.28 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_;s_ 

318278 0.07 -0.04 0.14 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_;s_ 

101501 0.08 -0.02 0.14 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_;s_ 

111019 0.03 0.12 0.00 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_;s_ 

314743 -0.01 0.11 0.00 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus;s_ 

299609 0.03 0.20 0.00 k_Bacteria;p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus;s_ 

293999 -0.05 0.31 -0.10 k_Bacteria;p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_RFN20;s_ 

292458 0.00 0.12 -0.03 k_Bacteria;p_Spirochaetes;c_Spirochaetes;o_Spirochaetales;f_Spirochaetaceae;g_Treponema;s_ 

293538 0.01 0.10 -0.08 k_Bacteria;p_Spirochaetes;c_Spirochaetes;o_Spirochaetales;f_Spirochaetaceae;g_Treponema;s_ 

297140 0.03 0.11 -0.04 k_Bacteria;p_Spirochaetes;c_Spirochaetes;o_Spirochaetales;f_Spirochaetaceae;g_Treponema;s_ 

1) k = kingdom, p = phylum, c = class, o = order, f = family, g = genus, s = species 
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Figure A-5: Loadings plot according to PC1 (A), PC2 (B) and PC3 (C) for feces samples. 
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Appendix G: OLS regression analysis of F. succinogenes and 

Treponema spp. 

 

OLS regression analysis of F. succinogenes and Treponema spp. were performed to address 

whether these bacteria showed correlating growth patterns. 

Table A-7: OLS regression analysis summary. 

Dependent Variable VAR(1) 

N 24 

Multiple R 0.410 

Squared Multiple R 0.168 

Adjusted Squared Multiple R 0.131 

Standard Error of Estimate 0.799 

Regression Coefficients B = (X'X)
-1

X'Y 

Effect Coefficient Standard Error Std.  

Coefficient 

Tolerance t p-Value 

CONSTANT 0.544 0.539 0.000 . 1.010 0.323 

VAR(11) 0.596 0.283 0.410 1.000 2.110 0.046 

Analysis of Variance 

Source SS df Mean Squares F-Ratio p-Value 

Regression 2.843 1 2.843 4.454 0.046 

Residual 14.046 22 0.638   

Durbin-Watson D-Statistic 0.526 

First Order Autocorrelation 0.731 

Information Criteria 

AIC 61.253 

AIC (Corrected) 62.453 

Schwarz's BIC 64.787 
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Figure A-6: OLS regression analysis. A) Confidence and prediction intervals. B) Residual plot. 
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Appendix H: Phyla distribution generated from MG-RAST 

 

 

Figure A-7: Shotgun sequencing, Phyla distribution in cecum according to diet (mean ± SEM). A) Most 

dominant phyla: Firmicutes and Bacteroidetes. B) Remaining phyla over 1% in either diet. *Significant diet 

difference (0.010<p<0.050). 
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Appendix I: P-values of the carbohydrate metabolic features 

 

Diet and time difference in carbohydrate metabolism related genes were addressed through t-test.  

Table A-8: t-Test calculated p-values. 

  Diet comparison at 

different time points 

Time point 

comparison in hay diet 

Time point comparison in 

hay+barely diet 

Total diet 

comparison 

Metabolic 

feature 

Time 

points 

1 2 3 1--2 2--3 1--3 1--2 2--3 1--3  

Aminosugars 0.746 0.594 0.940 0.083 0.410 0.043 0.004 0.181 0.023 0.762 

CO2 fixation 0.756 0.017 0.766 0.309 0.181 0.793 0.047 0.092 0.729 0.091 

Central 

carbohydrate 

metabolism 

0.696 0.020 0.854 0.277 0.628 0.312 0.000 0.001 0.381 0.072 

Fermentation 0.210 0.025 0.877 0.116 0.225 0.140 0.105 0.002 0.008 0.011 

Glycoside hydrolases 0.281 0.741 0.036 0.280 0.100 0.073 0.000 0.000 0.288 0.853 

Monosaccharides 0.295 0.006 0.153 0.032 0.746 0.043 0.000 0.000 0.721 0.176 

One-carbon 

Metabolism 

0.701 0.064 0.569 0.437 0.178 0.444 0.011 0.664 0.036 0.131 

Sugar alcohols 0.467 0.004 0.807 0.453 0.659 0.309 0.001 0.001 0.621 0.063 

-- Between time points. 
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Appendix J: Regression analysis plots of controls 

 

Regression analysis were performed in Microsoft excel to generate R
2
-values to describe the linear 

relationship between the positive controls.  

 

 

Figure A-8: Regression plots of positive controls. A) Positive PCR controls. B) Positive isolation controls from 

cecum samples. C) Positive Isolation controls from feces samples.  
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