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Summary 
 

This study explores the effect of increasing sample units density with 

presence-only data (PO data) on the ability to predict the distribution of three 

common (2e  dwarf shrub heath, 4b  bilberry birch forest and 9c  fen) and 

three rare (3b  tall forb meadow, 8d  rich swamp forest and 9d  mud- bottom 

fens and bogs) vegetation types. 

The chosen study area was Venabygdsfjellet in Ringebu municipality, 

Oppland. In 2001 the vegetation in the study area was mapped by Norwegian 

Institute for Forest and Landscape. The vegetation map was used as material for 

the PO data in the prediction modeling. In beforehand, this map was quality 

assessed. To evaluate the quality of the map, necessary fieldwork and statistical 

analysis was conducted. As a result of this evaluation, 84 % of all observations 

correspond to the mapped distribution on the vegetation map. The PO data for 

distribution modeling were collected in a point grid with different densities (100 

m for common and 25 m for rare vegetation types) within the sample units 

(1500×600m size). The sample unit was equivalent to a Primary Statistical Unit 

(PSU) of the AR18×18 survey system and given in a grid net with five 

densities: 3×3 km, 4,5×4,5 km, 6×6 km, 7,5×7,5 km and 9×9 km. In addition to 

PO data, 12 environmental variables were used as explanatory predictors (the 

digital elevation model, basin, curvatures, flow accumulation, flow direction, 

groundwater, slope, satellite image, the Normalized Difference Vegetation 

Index (NDVI), the Topographic Wetness index (TWI), sediment and soil maps). 

Using the PO data and these environmental variables, each vegetation type was 

modeled in all five densities of the PSU grid using a maximum entropy 

modeling method using a custom-made software called MaxEnt. 

In total, 26 out of 30 planned prediction models were run. The four 

missing models did not have any PO-points in some of the PSU grid density. 

Out of 26, 23 prediction models performed well according to the AUC-measure 

provided by MaxEnt (> 0.80 AUC). The statistical comparison of the predicted 

and true distribution of the modeled vegetation types showed that only 7 

prediction models can be considered as good (2e in densities 3×3 km and 

4.5×4.5 km, 4b in densities 3×3 km and 4.5×4.5 km, 9c in densities 3×3 km and 

7.5×7.5 km and 3b in density 3×3 km). The vegetation types 8d and 9d were not 

modeled successfully any PSU grid densities, although they had high AUC-

values. The best modeled vegetation type was 4b in a 3x3 km PSU grid density. 

The variable importance analysis conducted by MaxEnt trough the Jack-Knife 

test, showed that the DEM (the digital elevation model), NDVI index (the 

Normalized Difference Vegetation Index), slope and satellite images in blue 

band were the most important environmental variables among all vegetation 

type models. 
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1 Introduction 
 

Vegetation mapping is a very important part of resource management and 

environmental research both in Norway (Fremstad 1997; Rekdal & Larson 

2005) and other countries (Lawesson et al. 2000; Parry & Perkins 2002; 

Gudjonsson 2009). An increasing need for accurate environmental data has 

contributed to continuous development of mapping technologies and methods. 

The national governments allocate large funds to get more or less complete 

overview of natural resources that has both economic, social, conservation and 

science benefits. But the mapping process is slow. In Norway, during the last 40 

years only 10 % of the country has been mapped, mostly in the mountain 

regions (Rekdal & Bryn 2010). Each mapping project is closely linked to 

budget that limits both the mapping process and the recruiting of qualified 

specialist. The interaction of these, and other factors, causes a need to finding 

new methods that can accelerate the implementation and increase the efficiency 

of vegetation mapping. This study explores if one of these new methods that are 

capable of predicting the spatial distribution of vegetation types using 

environmental predictors. If the testing of this method ends up with acceptable 

results, then it can be used as a new tool in resource management and 

significantly reduce the time and costs during mapping. 

The term "vegetation mapping" can be interpreted in different ways, and 

there is no worldwide consensus (Rekdal & Bryn 2010). The classification of 

vegetation types was historically closely related to the discipline of 

phytosociology (Braun-Blanquet 1965; Küchler & Zonneveld 1988). 

Worldwide, there are many classification systems. In Norway, the most known 

systems are “Vegetasjonstyper i Norge” (Fremstad 1997) and “Veiledning i 

vegetasjonskartlegging. M 1:20000-50 000” (Rekdal & Larsson 2005).  

In Norway, a growing demand for reliable information about land cover 

and land resources led to the creation of new national survey system AR18×18 

(the Norwegian area frame survey of land resources). This system also 

constitutes a baseline for studying changes in outfield land resources and a 

framework for a national land resource accounting system for the outfields 

(Strand & Rekdal 2010). The AR18×18 survey system is methodologically 

linked to the European Lucas survey (Land use/cover agricultural survey) 

carried out in the EU countries by Eurostat (Eurostat 2003). The Lucas system 

is made up by a grid of 18×18 km mesh size (later condensed to 2×2km) that 

covers whole Europe and consists of points (the sampling units) located in 

intersections. These points are the center of a Primary Statistical Units (PSU) of 

1500 × 600 meters (0.9 km
2
). And in each PSU there are ten sample points. But 

in Norway, this system was modified, and instead of sample points it was added 

a detailed land cover of whole PSU at intermediate scale 1:20.000 (Strand 2013; 

Strand & Rekdal 2010). The Norwegian Forest and Landscape Institute is 
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primarily responsible for conducting the AR18×18 survey in Norway. First this 

system was tested in the mountains of Hedmark district during the summer 

season of 2004 and then carried out each year (Strand & Rekdal 2005). The 

completion of the survey is expected in 2015 depending on available resources 

(Strand & Rekdal 2010). Despite all advantages, the AR18×18 system does not 

provide a full overview of the land resources and continuous land cover in the 

country. But it can give good opportunities to test accelerated mapping 

processes using geostatistical methods (extrapolation).  

The increased use of Geographical information systems (GIS) and new 

statistical techniques in analyzing geodata has led to a rapid development of 

predictive distribution modeling (DM) in ecology. A central issue in DM is 

always related to the analysis of species–environment relationship (Guisan & 

Zimmermann 2000). The development of DM has also advanced in conjunction 

with the development of remote sensing-based vegetation mapping (Franklin 

1995). 

Franklin (1995) used the term predictive vegetation mapping, which has 

the same meaning as DM, and describes this term as predicting the vegetation 

composition across a landscape from mapped environmental variables. Usually, 

common vegetation types are correlated with a large range of environmental 

variables. This can be challenging, as it can be hard to find specific criteria for 

the distribution of the vegetation types and difficult to model. But rare 

vegetation types are often correlated with more narrow variables, which can 

make them easier to model (Halvorsen 2012a), if you have the variables 

available in GIS-formats. The knowledge about gradient analysis and ecological 

niche theory formed the basis of predictive vegetation mapping (Austin 2007; 

Franklin 1995). The successful use of DM for predictive vegetation mapping, 

has led these methods to become a very important tool for resource conservation 

related to e.g. effects of global environmental changes on species distribution 

and understanding the realized niche of species (Graham et al. 2004; Thomas et 

al. 2004; Palmer and Van Staden, 1992; Philips & Dudík 2008). The 

distribution modeling has been used for totally different topics such as the 

spread of invasive species (Thuiller et al. 2005); biodiversity conservation 

(Haines-Young 1991), spatial patterns of species diversity (Graham et al. 2006), 

ecological restoration (Martinez-Taberner et al. 1992), and the potential for 

expansion of forest following land-use change in Norway (Bryn et al. 2013). 

DM has also been applied to model land-cover types (Dobrowski et al. 2008) 

and different species assemblages such as vegetation types (Cawsey et al. 2002; 

Ferrier et al. 2002; Hemsing & Bryn 2012; Weber 2011). 

DM is mostly based on presence observations (presence-only data or PO 

data) of species occurrences (Stokland et al. 2011). The species occurrence data 

with good precision is becoming more and more available from different 

sources like atlases, books, journals, database of museums, as well as digitalized 

internet sources the GBIF (Phillips & Dudík 2008; Ramsen et al. 2011). At the 
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same time accessible digital maps of environmental variables with high 

resolution used in DM as predictors, are becoming more common (Bakkestuen 

et al. 2008; Elith et al. 2006; Crawford & Hoagland 2009; Franklin 2009).  The 

mapping of these variables should be easier than the vegetation mapping itself, 

in order for DM to be a practical or informative exercise (Franklin 1995). The 

nature of environmental variables allows to split them into two groups: direct 

and indirect (Austin 2002). Direct variables influence plants physiologically 

(temperature, soil, geology and solar radiation). Indirect variables have no 

directly impact on plants, but by influencing direct variables, they can limit the 

distribution of species on large geographical scales (latitude and longitude). 

Using different primary environmental variables it is possible to generate 

several surrogate variables such as the slope and flow direction extracted from a 

digital elevation model (DEM). Recently, there has been an increasing use of 

satellite images in DM (for example Sillero et al. 2012; Stokland et al. 2008). 

These can be used to obtain several types of predictive variables such as the 

Normalized difference vegetation index (Weier & Herring 2000) and infrared 

color bands. The accessibility of PO data and continuous digital environmental 

data help to provide a rich basis for DM and give possibility for many 

researchers to use DM for their varying needs. 

There are several types of DM with different types of statistical analysis 

and methods for evaluation of models. Some of these are Expert-based manual 

modelling (Moravec 1998; Hemsing & Bryn 2012), regression methods such as 

generalized additive models and generalized linear models (Elith et al. 2006), 

Rule-based envelope modelling (Bryn 2008) and Statistical predictive 

modelling (Phillips et al. 2006; Phillips & Dudík 2008). Some of these methods 

use presence-only data, others also include absences. A special feature of the 

new methods is their ability to fit more complex models from small datasets and 

prevent model complexity using mechanisms such as “regularization” (Philips 

& Dudík 2008). 

This  master thesis is a continuation and further development of a project 

related to the possibility of using Distribution modelling (DM) for vegetation 

mapping (Hemsing 2010; Ullerud 2013). Hemsing (2010) found that a statistical 

predictive GIS modelling method (MaxEnt) is good to use for the prediction of 

distribution of vegetation types, and this method was explored further and 

evaluated for many aspects in Hemsing & Bryn (2012, table 6). Ullerud (2013) 

studied the possibility to predict distribution of vegetation types in neighboring 

areas that have no presence data, i.e. spatial transferability. Ullerud (2013) 

showed that it was possible to extrapolate the DM, but also that the modeling 

performance varied between different vegetation types. In the modeling Ullerud 

used presence data from only one sample unit (c. 4 km
2
). In this study, instead 

of using only one sample unit, a grid that consist of many sample units in 

different densities was tested and the effect of increasing sample unit density on 

the prediction probability of the whole study area was analyzed.  
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The main objective of this study is to explore the effect of increasing the 

density of the PSU with presence-only data on the ability to predict the 

distribution of three common and three rare vegetation types. The second 

objective is to answer the following questions:  

a) Which density of the PSU grid net is most suitable to predict the 

distribution of selected vegetation types with the aim of decreasing time and 

costs for mapping? 

b) Which vegetation types can be predicted with high reliability using 

DM by MaxEnt? 

c) Which environmental variables are the most important predictors for 

the chosen vegetation types?   
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2. Materials 
2.1 Study area 

2.1.1 Location of the study area 

The study area is located in Venabygdsfjellet at Gudbrandsdalen, in the 

northwestern part of Ringebu municipality, in the eastern part of Oppland 

district, Eastern Norway (Figure 1). The center of the study area is Venabu 

(WGS 1984 UTM-zone 32 Ø555849 N6829297). In total, the study area 

constitutes 161 km
2
. To the west, the study area share borders with Sør-Fron 

municipality (№ 0519), Oppland district. In the north it shares boarders with 

Stor-Elvdal municipality (№ 0430), Hedmark district. The southern boundary of 

the study area goes from Venabygd along road RV27 and Jønnhaltveien to 

Jønnhalt. The eastern boundary goes from Jønnhalt up along the river Døra, 

brook Gråbekken to Mykjørrtjønnet and again along road RV27 to Hedmark 

district. The elevation of the study area is from 330 to 1365 m a.s.l. 

 
Figure 1. Maps showing the location of study area (red line) in the northwestern part of Ringebu 

municipality and position in southern central Norway. The maps were created using ArcGIS 10.1 with 

FKB map data and freely available WMS-service from the Norwegian national geodata coordinator 

Kartverket (source: www.kartverket.no). Map projection: WGS 84/UTM 32N. 

 

2.1.2 Nature 
The study area is characterized by large variations in relief and landform. 

The area has deep V-shaped valleys with steep slopes surrounded by high 



6 

 

mountains in the western and south-eastern parts. The central, northern and 

northeastern parts have mountains and mountain valleys dominated by mashes 

and lakes, but without forest. The southern part has flat terrain in some places, 

more smooth slopes and some mountains. Among the main forms, there are also 

some small hills and mountain ridges. The study area includes a set of high 

mountains, e..g. Ramstindan (1334 m a.s.l.), Nørdre Bølhøgda (1365 m a.s.l.), 

Søndre Bølhøgda (1258 m a.s.l, Svarthammaren (1182), Flakssjølighøgda (1112 

m a.s.l.), Dynjefjellet (1147 m a.s.l.), Svartfjellet (1154 m a.s.l.) and 

Trabelifjellet (1093 m a.s.l.). 

The whole study area has many small and several large lakes, narrow 

rivers and brooks. The largest lakes in Venabygdsfjellet are Flaksjøen (905 m 

a.s.l.), Bølvatnet (1006 m a.s.l.) and Muvatnet (1052 m a.s.l.) in the northern 

part. Most of the brooks and small rivers flow to the two large rivers Frya and 

Nordåa and then flow further down to the great river Lågen in the U-valley at 

Ringebu and Frya cities. In the V-valleys with deep ravines and gorges, the 

river flows hastily and foams. Larger waterfalls are not uncommon in these 

places. Snow and ice sheets are common in the top of valley slopes. The water 

comes from melted snow that accumulated during winter and from rainfall in 

warm seasons. 

The study area belongs to the north-boreal, low-, median- and high-alpine 

and south-arctic vegetation zones (Moen 1999). The vegetation in 

Venabygdsfjellet has a clear zonation. The tree line is around 1050 m a.s.l.. and 

consist of mountain birch forests that dominates in northwestern part (Bryn & 

Rekdal 2002). The mountain birch forest grows on the top of valleys slopes, 

low-lying plateaus and close to mountains. In the low-lying parts the forests, 

both spruce and pine might occur. The study area also has more grazing 

influenced birch forests or meadow birch forests influenced by human activity 

(Puschmann 2005). From around 950 m a.s.l. it is more coniferous trees, and 

further down spruce forests dominates (Bryn & Murvold 2003). The plunging 

and slope terrains into the Frya-valley in the west and into Ringebu and Frya 

cities in the south have birch forest at the top and coniferous forests down to 

valley bottoms. Pine is common in dry gravel or on scanty and often nutrient-

poor rock types and in small quantities in the southern and western part of study 

area. High and especially slim spruces are a character trait in some places 

(Puschmann 2005). Along rivers, around cultivated lands, and in parts of 

properties and around single-homestead deciduous forests dominates 

(Puschmann 2005). At the bottom of valley gorges, there are elements of alder 

forests (Bryn & Rekdal 2002). Above the tree line, there is treeless vegetation 

on or close to mountains. Northern and northeastern parts of the study area are 

dominated by alpine heaths, especially lichen and dwarf shrub heath around 

mountain tops, and wetlands in flat areas of mountain plateaus, especially fen 

and bog. There are also large agricultural areas at Bergstulen, Jønnhalt and 

between Venabygd and Slavolen along the Frya-valley. At Flaksjøen, Venabu, 
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Trabelia, Bergstulen, Dynje and Jønnhalt, there are also cultivated lands and 

grazing meadows. In addition, there are several mountain farms spread in the 

whole study area (Bryn & Rekdal 2002). In older pasturelands, juniper is 

common and forms cultivated land in some places (Puschmann 2005). The 

study area was mapped by the Norwegian Institute land Inventory in 2001 (Bryn 

& Rekdal 2002). 

 

2.1.3 Geology 

According to the bedrock map from National Bedrock database (NGU 

2014), the study area is dominated by grey sandstone, especially grey meta-

sandstone (66 %) and dark grey bad sorted sandstone (22 %). The grey meat-

sandstone is spread in the whole study area, especially in the southern part and 

with a strip in the northern part. The dark grey poorly sorted sandstone is found 

with two wide strips in the northern part (Appendix 1). Both bedrock types are 

the sedimentary thrust fault from late Precambrian (Siedlicka et al. 1987). There 

is also gneiss with a narrow strip from the west near Slavollen to Jønnhalt which 

covers the area between Trabelia, Bergstuen, Venabu and Jønnhalt, and 

constitutes 8 % of the study area. In addition, other bedrock types like dolomite, 

phyllite, granite, conglomerate, quartzite, black slate, schist, meta-gabbro and 

light sandstone are in small quantities in the west, near Trabelia and between the 

dominating bedrocks. Totally, they cover ca 3 % of the study area. 

The mountain areas are mostly covered by a thin moraine layer, but in the 

north of Bølhøgda, the layer is thick. On the tops there is exposed bedrocks and 

boulder fields (Sollid og Trollvik 1991). The mountain areas between lake 

Flaksjøen and mountain Nødre Bølhøgda have soils with depth lower than 30 

cm. In the forest areas, the moraine cover is thick. There are also large marsh 

areas with organic soil at Jønnhalt, around Venabu, Svartåkluftin, Bølvatnet and 

down to Mysætrin (Bryn & Rekdal 2002). Especially for the area in the west 

and south for Trabelia and south of Forbundsfjellet, there are occurrences of 

large rough boulder fields that have extra good drainage and poor water supply 

for plant growth. These boulder fields were deposited by glacial rivers at last Ice 

age (Bergersen 1993). 

 

2.1.4 Climate 

The study area is located in a transition zone between a continental and an 

oceanic climate (Moen 1999). The growing season length constitutes 150-170 

days with mean temperature ≥ 5° C. The annual mean temperature is -0.28°C. 

The average temperature for coldest month January is – 9.7°C and warmest 

month July +10.4°C. The annual precipitation is 700-1500 mm. Number of days 

with snow cover is 175-225, with more than half of the ground covered with 

snow (Moen 1999). According to Norwegian Meteorological Institute, that has a 

meteorological station (930 m a.s.l.., established in 1980) at Venabu, the annual 

mean temperature in 2013 was 0.15°C, the coldest month was January with 
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average of 11.3°C and the warmest July with 12.2°C (Figure 2). The annual 

mean wind speed was 2.63 m/s with strongest indicator 15.3 m/s in 27. June. 

The annual mean precipitation was 68.72 mm with greatest total value of 

monthly precipitation 163 mm in June and lowest 4.9 mm in March. 

 
Figure 2. Monthly mean normal and measured temperature and precipitation at Venabu in 2013. Data 

is taken from Norwegian Meteorological Institute (source: www.met.no) 

 

2.1.5 Cultural influence 

The main features of human activities in the study area are farming 

villages with timber houses and old cultivated lands both near farms and in 

outfields (Puschmann 2005). From 16
th
 century due to a rapidly increasing 

population in Ringebu municipality, there was a marked increasing activity of 

cotter farms in the study area that spread out in the outfields and cultivated new 

land. Number of farms within study area varied greatly during the last three 

hundred years. In 1723 there was registered only 9 cotter farms in Venabygd, 

but in the period 1851-1930 the number increased to 70-80 cotter farms 

(Hovdhaugen 1988). During 20
th

 century, the number decreased to around 45 

cotter farms in 1942, 5 summer dairy farms in 1974 to only 1 active farm in 

2006 (Bryn 2006). Therefore, much of the previously cultivated lands are not 

used anymore, and is becoming reforested by birch. More typically is the spread 

of farming villages with single farms or small hamlets in between. In some 

places, large village communities and hamlets are creating greater associated 

farmlands. 

Meadows and pastures dominate in land use areas and the livestock is 

large, especially in upper mountain areas where cultivated lands are small due to 

soil specificity (Puschmann 2005). Large areas of cultivated land are generally 

located near easily accessible places along roads and greater settlements, for 
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example areas along the road Venabygdsveien from Venabygd church to 

Hovde, at Bergstuen, Dynje, Trabelia and Jønnhalt (Appendix 2). 

There are many cottages that are spread in the whole study area and in 

some places make up cottage fields, especially in areas close to mountains, 

lakes and on forest covered slopes.  The large cottage fields are located in areas 

around Venåssætra, Dynje, Bergstuen, Trabelia, Friskevarpet and Jønnhalt. 

Cottage building in outfields is a new trend in Norway and in specially in 

mountain area (Taugbøl 2002). 

In the study area there are two major settlements that represent the current 

life of region. One of this two is Venabygd. This is a traditional village 

settlement located on the top of the Frya-valley with traditional agriculture 

based on husbandry. Also the use of outfield resources like logging, hunting, 

fishing, the collection of lichens and other types of outfield fodder, and outfield 

scything and grazing, play an important role among farmers (Almås et al. 2004). 

The other settlement is Venabu. This is the tourist settlement related to nature 

experiences and variety of activities like guided ski and snow shoeing tours, dog 

sleigh rides, biking, swimming, mountain hike etc. The settlement includes 

many cottages around, the tourist trade, camping and a shopping mall. From 

Venabu it runs many hiking and skiing trails that cover almost whole study area.  

A little further north from Venabu, at Flakssjøen there is Venabu mountain 

hotel with ski resort. 

 

2.2 Vegetation map data 

In this study a vegetation map from 2001 was implemented. The mapping 

was performed by Norwegian Institute for land Inventory (NIJOS) as a result of 

a project for Ringebu municipality, and in accordance with NIJOS instructions 

for mapping in scale 1:50 000 (Larsson & Rekdal 1997). The fieldwork was 

mainly performed in July (Bryn and Rekdal 2002). The vegetation mapping 

consisted of fieldwork and digitalization of maps. Field registrations were 

drawn on aerial photos from 1992 (in scale 1:40 000) and then digitized by 

using an analytical stereo plotter AP 190. The final vegetation database was 

completed in ArcInfo. The vegetation map was finished in 2002 (Appendix 2). 

Totally 16 1,46 km
2
 (excluding water) was mapped. The largest part of the 

study area is dominated by forest (45.3 %), especially in the western and 

southern parts. The other significant part is dominated by alpine vegetation 

(35.6 %), mostly in the northern and northeastern parts and the center. Wetlands 

cover 11.2% and are spread in whole study area, both in forest and alpine parts. 

Agricultural lands cover 4.1 %. 

 

2.3 Environmental variables 

In the prediction modeling there were used 12 environmental variables 

(Table 1, Appendix 4) in the form of raster map with cell size 10x10 m. Totally, 

each raster map consist of 2 667 249 cells. Some variables were obtained in 
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different resolutions and file formats. Therefore they were transformed to the 

same resolution and format using ArcGIS’s tools. There is a common 

coordinate system for all raster maps of environmental variables: WGS 1984 

UTM Zone 32N. In addition to the right resolution and coordinate system, all 

raster maps must be within the same boundaries. Otherwise the software used 

for prediction modeling will not work. 

The digital elevation model (DEM) generated from the laser scanning 

data (Light Detection And Ranging) was used to make the derived variables, 

namely Basin, Slope, flow accumulation, Flow direction, Curvatures, the TWI. 

and the NDVI. The satellite image in different bands was used to generate the 

Normalized Difference Vegetation Index (NDVI). Also there were used three 

maps that show the distribution of sediments, soil and groundwater in the study 

area. 

Table 1. Overview of environmental variables that were used in the prediction modeling. All variables 

were transformed to a raster map with the same resolution (10×10), within boundaries and inserted in 

the same coordinate system before modeling. All preparations were done in ArcGIS.  

Environmental 

variables 
Generated from 

Original 

resolution 

Transformation to 

10x10 m 

 

1. DEM 

(Digital Elevation 

model) 

 

 

LiDAR 
1
 

 

10×10 

 

2. Basin Flow direction 10×10  

3. Curvatures DEM 10×10  

4. Flow accumulation DEM 10×10  

5. Flow direction DEM 10×10  

6. Groundwater ND_Løsmasser 
3
 continuous 

vector data 

conversion from feature 

to raster (ArcGIS), with 

snap to DEM 

 

7. NDVI  

(the Normalized 

Difference Vegetation 

Index) 

Satellite image in red (VIS) 

and infrared (NIR) band. 

Calculated in the formula: 

     
       

       
 

25×25 resample (ArcGIS), with 

snap to DEM 

8. Satellite image: blue, 

green and red bands 

 

  resample (ArcGIS), with 

snap to DEM 

9. Sediments ND_Løsmasser 
2
 continuous 

vector data 

conversion from feature 

to raster (ArcGIS), with 

snap to DEM 
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10. Soil Berggrunn N50 
2
 continuous 

vector data 

conversion from feature 

to raster (ArcGIS), with 

snap to DEM 

11. Slope DEM 

 

 

10×10  

12. TWI  

(the Topographic 

Wetness index) 

 

 

 

 

 

 

 

 

 

TWI can quantify the control 

of local topography on 

hydrological processes and 

indicate the spatial 

distribution of soil moisture 

and surface saturation: 

   

   
(      )    

    (
           

  
)
 

flac- flow accumulation 

sl – slope 

10 – the size of pixels 

10×10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
 The LiDAR scanning over Venabygdsjellet was done by Statens kartverk in period 2011-2013 (the 

scanning density 1-5 points per m
2
). Generated to DEM (Digital Eleveation Model) in the resolution 

10×10 m. Download from Norge Digitalt. "Copyright Norge digitalt" 
2
 Beggrunn N50. NGU (Norges geologiske undersøkelser) in scale 1:50.000. The mapping was done 

be NGU in 1983 and converted to digital form by scanning and vectorization in 2003. Download from 

NGU net site in shape format (SOSI 4.0). The maps are. 
3 

ND_Løsmasser. NGU (Norges geologiske undersøkelser) in scale 1:50.000. The mapping was done 

by NGU in 1993 and converted to digital form by scanning and vectorisation. Download from NGU 

net site in shape format (SOSI 4.0). 
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3. Methods 
3.1 Vegetation types 

Six vegetation types from three ecosystems (mountain, forest and 

wetland) were chosen for the prediction modeling (Table 2). In every ecosystem 

one rare and one common vegetation type was chosen. This choice was based 

on the present distribution of the vegetation types within the study area. Totally, 

the summed area of all six selected vegetation types covers 52.7 % of the study 

area. 

Table 2. Overview of the six selected vegetation types and their proportion in the study area. 

Type of ecosystem     Vegetation types Occurrence 
Proportion of 

study area, % 

Alpine ecosystem 
2e – dwarf shrub heath common 21.3 

3b – tall forb meadow  rare 1.5 

    

Forest ecosystem 
4b – bilberry birch forest common 22.9 

8d – rich swamp forest  rare 0.4 

    

Wetland ecosystem 
9c – fen common 6.1 

9d – mud- bottom fens and bogs rare 0.5 

 

3.2 Sample units (PSU) and point grid  

For prediction modeling, occurrence information was only gathered for 

the selected vegetation types within the boundaries of the sample units. The 

sample units used in data collection is equivalent 

to a Primary Statistical Unit (PSU) of the 

AR18×18 survey system of 1500×600 m size 

(Figure 4). The PSU have been stratified 

according to different densities. Each PSU was 

inserted in bottom left corner of a grid mesh. The 

distance between sample units was measured 

from and to these corners (Figure 3).  

In the MaxEnt software (see the next 

paragraph), that was used in the prediction 

modeling, the information about presences of 

selected vegetation types is taken in the form of 

point grid and presented as PO data (presence-

only data). Due to significant difference in the 

occurrence of selected vegetation types, rare and 

common vegetation types were tested using 

different presence point density. As a result of 

these tests, rare vegetation types was tested using 

a point grid distance of 25 meters, whereas 100 

meters point grid distance was used for common 

vegetation types (Figure 4). 

Figure 3. The study area (red line) 

covered by a 3x3km grid mesh 

(black line). The distance between 

sample units (latticed rectangles) is 

taken from and to bottom left corner 

of each unit. 
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On the vegetation map the selected vegetation types is shown sometimes 

as mosaics and with additional signs. The mosaics consist of two or more 

vegetation types that are spatially mixed with each other, so that they can’t be 

separated into different polygons. The additional signs were used to show 

important characteristics of the vegetation cover that are not used for the general 

description of the vegetation types. Both the selected vegetation types 

represented as the secondary vegetation types in mosaics and additional signs 

were not taken into consideration and were excluded during the creation of PO 

data (Table 3). This exclusion is seen as a necessity to improve the models to 

recognize selected vegetation types in their specific ecological ranges and 

increase the predictive performance of models. The creation of both sample 

units and point grid, and all other processes related to geographical and 

statistical analyses were done in ArcGIS software (version 10.1).  

 
Table 3. The number of training points (PO data) generated for prediction modeling in each selected 

vegetation type within sample units, their kind of mosaic and additional signs that were and not were 

involved in modeling. Training points were created in ArcGIS (version 10.1). Description of codes an 

additional signs is given in Appendix 3. 

Vegetation type Density 

of sample 

units 

Number of training points 

from sample units taken 

into prediction modeling 

Mosaics and signs 

included in 

presences 

Additional 

signs 

2e – dwarf shrub 

heath 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

374 

115 

59 

91 

52 

2e, 2e/2c, 2e/3b, 
2e/9c 

g, j, H, k, n, s, 

v, ᴐ, o), *,   , + 

3b – tall forb 

meadow 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

355 

53 

48 

21 

not found 

3b, 3b/2e, 3b/9c 
g, j, H, k, s, ᴐ, 

* 

4b – bilberry 

birch forest 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

370 

164 

30 

34 

1 

4b, 4b/2e, 4b/4a, 

4b/4c, 4b/6b, 4b/8d, 

4b/9c, 

g, v, o), *,  , +,  

] 

Figur 4. The sample unit with to two types of point grid: a) with 25m distance for rare vegetation 

types; b) with 100m distance for common vegetation types. The sample unit that was used in 

prediction modeling is originally taken as a Primary Statistical Unit (PSU) in AR18×18 system. The 

size of each unit is 1500×600 m. 

 

a) b) 
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8d – rich swamp 

forest 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

331 

45 

not found 

not found 

25 

8d, 8d/7b, 8d /9c k, o) 

9c – fen 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

132 

26 

18 

19 

12 

9c, 9c/2e, 9c/3b, 

9c/9a, 9c/9d 
ᴐ, o), k, s, g,  

9d – mud- 

bottom fens and 

bogs 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

381 

264 

not found 

109 

264 

9d, 9d/9a, 9d/9c none 

 

3.3 Distribution modeling 

Today there are several methods for DM of vegetation types, but the best 

method was recognized a statistical predictive GIS-modelling method (Hemsing 

& Bryn 2012), a method for presence-only DM. This method is based on 

maximum entropy modeling, often described as a machine learning method, 

which are trying out various interactions between environmental factors 

(Phillips et al. 2006; Phillips & Dudík 2008), and can also be explained as a 

maximum likelihood method (Halvorsen 2012a).  

In this study the MaxEnt software (version 3.3.3k) was used to prepare 

statistical predictive models for the potential distribution of vegetation types 

(Phillips et al. 2004). The main idea of the modeling is to estimate an unknown 

probability distribution of, in our case, vegetation types in relation to a set of 

restrictions. The restrictions put in MaxEnt are that the expected value (the true 

mean) related to each environmental variables should be the same as the 

observed mean (Stokland et al. 2008). It is more about statistical analysis of 

combinations and interactions of environmental variables in the presence-cells 

and finding of locations where the target might be present (Elith et al. 2011; 

Phillips & Dudik 2008).  

The models in MaxEnt were created in the form of rasterized frame-area 

for training and used environmental variables for this frame-area for projection. 

Each cell marks MaxEnt as an observation unit. There are two types of 

observation units: presence and absence. By using extrapolation the frame-area 

generate map representations of model predictions. The prediction results from 

MaxEnt are given as relative predicted probabilities of presence (RPPP) because 

models are based on PO data and the prevalence of the modelled target is not 

known. It is known nothing about eventual presence or absence in the 

uninformed background observation units (Phillips et al. 2006; Ward et al. 

2009). The term “relative” means that model predictions can be compared 

among grid cells, but that their absolute values cannot be used for interpretation 

in terms of probabilities of presence of the modelled target (Ferrier et al. 2002). 
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In order to translate RPPP to predicted probability of presence (PPP), the 

modelled predictions were evaluated with independent data. This independent 

data was generated from the vegetation map where there were spread random 

points in the frame-area for projection and attaching presence/absence 

information to each point.  Evaluation of models results is based on the MaxEnt 

output using the following parameters: 

1) ROC curves and AUC-value 

Evaluation of results from MaxEnt was done by a threshold-independent 

receiver operating characteristic (ROC) analysis with ROC curve and AUC-

values. The ROC curve evaluates a models usefulness to predict the relative 

distribution probability of species (Elith et al. 2006). The curve is obtained by 

“joining the dots” (Phillips et al. 2005) and plotting the species true positive rate 

on the y-axis and the false positive rate on the x-axis for all possible thresholds 

(Phillips et al. 2006). In other words, the curve shows how the sensitivity and 

specificity varies as a function of the threshold. 

The area under the ROC curve is AUC, which measures the quality of a 

ranking of sites or the models relative predictive ability (Fielding and Bell 1997; 

Franklin 2009; Halvorsen 2012a; Pearce & Ferrier 2000). In MaxEnt AUC-

values are not based on a normal ROC curve, but on a presence-versus-random 

ROC curve (Phillips et al. 2006). The AUC is the probability to differentiate 

between presences and pseudo-absences, and that a randomly chosen presence 

site will be ranked above a randomly chosen absence site (Halvorsen 2012a; 

Stokland et al. 2011). It is important to note here that AUC-value become 

higher for predictive object (species) that have narrow ranges of environmental  

parameters (Phillips et al. 2006). AUC-value ranges from 0 up to 1. The closer 

to 1 the AUC-values are, the greater the model’s predictive ability is, whereas 

AUC-value 0.5 is equal to a random model (Pearce & Ferrier 2000). Models 

with values above 0.75 are considered potentially useful (Elith 2002). In this 

study results should be evaluated by the classifying scale shown in Table 4. 
 

Table 4. The scale for classifying of DM’s result from MaxEnt based on the AUC-value. 

Classes Worthless Poor Fair Good Excellent 

AUC-value < 0.60 0.61-0.70 0.71-0.80 0.81-0.90 > 0.91 

 

2) Map representation of the prediction model 

In addition to the statistical results, the MaxEnt exports a raster 

representation of the model that takes the form of a map (Appendix 5). This 

map shows the predicted distribution of the modeled vegetation types. Variation 

of predicted probability of presences (RPPP) conditions is shown in different 

colors. Red color is indicating high probability of suitable conditions for the 

certain vegetation type, green indicating conditions typical of those where 

certain vegetation type is found, and lighter shades of blue indicating low 
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predicted probability of suitable conditions (Phillips et al. 2006). White dots on 

a map show the presence locations used for training and while violet dots show 

test locations. 

3) Response curves 

Response curves show how each environmental variable affects the 

MaxEnt prediction and which variable becomes a good predictor (Phillips et al. 

2006). Each curve presents a different model. There are two types of response 

curves: with marginal and single effect. Marginal effect means that variation of 

each environmental variable will follow to changes in the logistic prediction, 

while all other variables are kept constant. Response curves with single effect 

show the response to only one environmental variable. 

4) Analysis of variable contributions 

After response curves there comes a table that shows estimates of relative 

contributions and permutation importance of the environmental variables to the 

MaxEnt model. By modifying the coefficient for single feature each step of 

modeling algorithm increases the gain. The MaxEnt relates the increase in the 

gain to environmental variables that feature depends on. And at the end of 

training process it become converted to percentages (Phillips et al. 2005). 

5) “Jack-Knife test” 

“Jack-Knife test” was used for to evaluate variables importance and 

contribution to the model in MaxEnt (Phillips & Dudik 2008; Halvorsen 2012a). 

Results of this test come out as a graphic that shows the gain of each 

environmental variable in isolation and point out certain variables, which appear 

to have the most useful information by itself and that isn't present in the other 

variables. Environmental variables with low contribution (less than 0.005 to the 

AUC-value) to the model were excluded and not used in the ultimate model 

tests, following Stokland et al. (2011). 

Before the final model testing, training tests were run to determine the 

right settings for each vegetation type. The ascertainment of the right settings 

was based on the evaluation of the same parameters listed above and 

comparison output raster map with existing vegetation map.  

The logistic output format was used in DM. The reason for this choice is 

that it was easier to analyze output results and conduct further statistical 

comparison with real distribution of selected vegetation types when the 

probability value of presence is represented in scale from 0 to 1. Actually this 

value shows the percentage of probability value to find certain vegetation type 

in a given place in the modelled reality (Phillips et al. 2005). 

Based on training experiments related to improve prediction ability there 

was chosen three types of features: linear, quadratic and product. The linear 

feature is equal to continuous environmental variables and ensures that the mean 

value of environmental variables at where the vegetation type is predicted to 

occur approximately matches the mean value where it’s observed. The threshold 

feature makes a continuous predictor binary derived by thresholding 
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environmental variables and gives value 1 above the threshold and 0 below. The 

quadratic feature is the square of the linear environmental variables. This 

feature constrains the variance in environmental variables where the vegetation 

type is predicted to occur to match observation. The product feature is equal 

products of pairs of continuous environmental variables. In other words, this 

feature constrains the covariance of environmental variables with other 

predictors and is equivalent to interaction terms in regression. The hinge feature 

is like threshold feature, except that a linear function is used (Phillips & Dudik 

2008; Halvorsen 2012b; Merow et al. 2013).  

Threshold- and hinge features were not activated because they often led 

to overfitted models. Changing of parameter “regularization multiplier” (RM) 

under threshold and hinge features didn’t lead to less overfitted models. This 

parameter is used to avoid overfitting in MaxEnt. RM affects how focused or 

closely-fitted the output distribution is (Phillips et al. 2005). The default value 

in MaxEnt’s settings is 1.0. A smaller value than 1.0 will result in more 

localized output distribution that is a closer fit to the given PO data and the 

model doesn’t generalize well to independent test data. A larger value than 1.0 

will result in more spread out distribution, less localized prediction. In addition, 

the potential for overfitting increases as the model complexity increases. 

Other functions and parameters that are available in MaxEnt were not 

used. For those functions and parameters, the default setting was used. 

 

3.4 Comparison of the predicted and real distribution 

The analysis of the MaxEnt results consists of a statistical comparison of 

the output raster map with the ground truth given by the implemented 

vegetation map. In other words, it was carried out comparison of the predicted 

distribution with the real distribution of selected vegetation types (overlay). 

During the preparation of data first it was created a point grid with 10 

meters distance converted from raster map from MaxEnt’s output using 

conversion tool in ArcGIS. Then this point grid was cut out in boundaries of the 

study area. In this way it was covered the whole predicted distribution map and 

incorporated all probability values (RPPP) of each one cell. This conversion 

process was performed separately for each model. Using the join-function in 

ArcGIS, the information about the real distribution from the vegetation map was 

inserted into the same point grid. As result it was obtained one point grid that 

contains information about both predicted probability of presences (RPPP) of 

modelled vegetation type and real presence (PO data) in a given place. This 

information was exported as a table that was further analyzed statistically. 

In the statistically analysis all points were classified to 5 classes (Table 5) 

according to probability value. Then all points were summed with the PO data 

within each class. A successful prediction model was considered as a model 

with such distribution that has an increasing number of PO data form low to 

high probability value, in other words has high probability values 



18 

 

geographically located within the boundaries of real distribution of the modeled 

vegetation type. While the number of points, that are outside the real 

distribution, should decrease from low to high value. The probability values 

located in the cultivated lands and water surfaces were excluded from 

comparison analysis. The final evaluation of the prediction models is based on 

results from MaxEnt’s evaluation and the comparison analysis. 

Table 5. The scale for classifying of probability value from MaxEnt output, which was previously 

transformed by logistic output format in the scale from 0 to 1. 

Classes Worthless Low Middle Good Excellent 

Probability value < 0.60 0.61-0.70 0.71-0.80 0.81-0.90 > 0.91 
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4. Evaluation of the implemented vegetation 

map 
The presence data used for the prediction modeling is taken from the 

digitalized vegetation map implemented in 2001. Before model testing, there 

was the need to evaluate the quality of this map. To evaluate the quality of the 

implemented vegetation map, fieldworks was conducted, and followed by 

subsequent statistical analyses. The fieldwork was conducted in five locations: 

Venassætra, Bølvatnet, Flaksjølia, Bergstulen and Jønnhalt (Figure 5). All five 

locations have differences in landscape, environmental and climatic conditions 

and were subjectively selected to represent as much variation as possible from 

the study area. Bølvatnet and Flaksjølia represent mountain environments with 

elements of alpine heath, meadow communities and wetlands, steep terrain in 

some places and mostly without a bush layer. But, bush layers occur along 

small brooks that flow into the lakes. 

Jønnhalt includes large wetlands, 

especially bogs and fen marshes, 

deciduous forest, alpine heath and 

meadow communities, farm lands, 

and the landscape is more flat than 

the two previous sites. Venassætra 

and Bergstuen have a lot of 

deciduous- and spruce forests, alpine 

meadow communities, and in small 

quantities also becomes elements of 

wetlands and pine forests. Bergstulen 

also includes cultivated land.  

The observation points were 

generated randomly in ArcGIS 

(function: generate random points) 

and then transferred to the GPS. Later 

on, the observation points were 

joined and intersected with the 

vegetation map. To find the 

validation points, there were used the 

GPS navigator and the detailed 

topographic paper map. 

Totally, 220 points were 

observed (Table 6). As a result of the 

statistical analysis, all observation 

points were classified into three 

groups: 

Figure 5. The map shows five locations where it 

was conducted fieldwork related to the evaluation 

of quality of old vegetation map. Each observation 

site is represented in different color: black – 

correspondence, orange – insignificant error and 

red – significant error. 
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1- correspondence: 

- observed vegetation type corresponded with the vegetation type in the 

map 

- specified vegetation type was similar to the observed vegetation type, but 

with different additional symbols 

2 - insignificant errors: 

- specified vegetation type was observed in less than 10 meters away from 

its designated area on the map (this distance is given because of the 

uncertainties in navigation of the GPS and the resolution intended from 

the mapping of vegetation) 

- specified vegetation type is the primary dominant vegetation type in a 

mosaic (the mix of two or more vegetation types), but with different 

secondary vegetation types 

3 - significant errors: 

- vegetation type didn’t exist in a given place on the map 

- specified vegetation type was observed in more than 10 meters away from 

its designated area on the map 

Table 6. Overview of observed locations and classified errors per location and vegetation type. 

Locations 
Number of 

observations 

Total 

number 

of errors  

Number of 

significant 

errors  

Number of 

insignificant 

errors  

Number of errors per 

vegetation type 

 

Bergstulen 

 

38 

 

4 

 

1 

 

3 

   

  1 - alpine vegetation 

  1 - deciduous forest 

  2 - spruce forest 

 

Bølvatnet 50 10 3 7   6 - alpine vegetation 

  4 - wetlands 

 

Flaksjølia 39 1 1    1 - alpine vegetation 

 

Jønnhalt 48 11 8 3   2 - alpine vegetation 

  5 - deciduous forest 

  4 - wetlands 

 

Venassætra 45 9 6 3   3 - alpine vegetation 

  4 - deciduous forest 

  2 - pine forest 

Total 
220 

(100 %) 

35 

(15.9 %) 

19 

(8,6 %) 

16 

(7,3 %) 

13 - alpine vegetation 

10 - deciduous forest 

  2 - spruce forest 

  2 - pine forest 

  8 - wetlands 
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From 220 observation points there were registered 35 errors (15.9 %), 

where 19 - significant errors and 16 - insignificant errors. The largest numbers 

of errors were registered in alpine heath communities (13 errors) and deciduous 

forest there were registered (10 errors). Also it was registered 8 errors in 

wetlands, 2 errors in spruce forest and 2 errors in pine forest. The greatest 

number of errors was registered in Jønnhalt (11 errors) and least in Flaksølia 

(only 1 error). Most of insignificant errors were found in wetlands (9 cases). 

The number of correspondences is 185 that corresponding to over 84 % of total 

number of all observation points.  
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5. Results 
5.1 MaxEnt result 

In total, the modeling resulted in 26 predictions based on different SPU 

grid net size (Table 7). Some vegetation types (4) did not have any training 

points (PO data) in some of the grid densities, and thus did not result in any 

model output. Of these 26 models only four had AUC-values less than 0.80 

(poor models). The other models had AUC-values above 0.80, can be classified 

as good models by MaxEnt, and had strong relationship between environmental 

predictors and the modeled vegetation types. Also the prediction modeling has 

shown that the models of the rare vegetation types had very high AUC- and 

RPPP-values and therefore mostly were classified as excellent models. The 

models of the common vegetation types had less both AUC- and RPPP-values.  

Table 7 shows that the number of training points decreases with 

decreasing density of a Primary Statistical Units (PSU). An exception from this 

overall trend is documented by vegetation type 8d, which has the same number 

of training points in PSU grid-densities 4.5×4.5 km and 9×9 km. Among all 

vegetation types the greatest number of training points is in the 3×3 km PSU 

grid. Vegetation type 4b had only 1 training point in the 9×9 km PSU grid, 

which led to a useless model. The highest AUC-value was gained for vegetation 

type 9d in a 7.5×7.5 km PSU grid.  

Table 7. Evaluation of MaxEnt’s results. This table shows the variation in AUC values as result of 

varying of number of training points in the model at a constant set of environmental variables 

(predictors). The most important variables for each vegetation type is provided in the last column. 

Vegetation type 

PSU grid 

density, 

km 

Number of 

training 

points in 

the model 

AUC 

value 

Highest 

RPPP 

value 

Classificati

on of DM’s 

result 

Most important 

environmental 

variables 

C
o

m
m

o
n

 v
eg

et
a
ti

o
n

 t
y
p

es
 

2e – dwarf 

shrub heath 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

374 

115 

59 

91 

52 

0.807 

0.872 

0.739 

0.845 

0.961 

0.76 

0.74 

0.69 

0.91 

0.82 

good 

good 

fair 

good 

excellent 

DEM, NDVI, 

Blue band 

 

4b – bilberry 

birch forest 

 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

370 

164 

30 

34 

1 

 

0.826 

0.861 

0.662 

0.890 

0.500 

 

0.84 

0.87 

0.86 

0.74 

0.50 

good 

good 

poor 

good 

worthless 

DEM, NDVI, 

Blue band 

 

9c – fen 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

132 

26 

18 

19 

12 

0.898 

0.870 

0.957 

0.954 

0.814 

0.95 

0.89 

0.99 

0.99 

0.86 

good 

good 

excellent 

excellent 

good 

DEM, 

Slope, Sediments, 

Red band 
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R
a

re
 v

eg
et

a
ti

o
n

 t
y

p
es

 

3b – tall forb 

meadow 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

 

355 

53 

48 

21 

not found 

 

0.871 

0.950 

0.946 

0.920 

− 
 

0.99 

0.91 

0.94 

0.99 

− 
 

good 

excellent 

excellent 

excellent 

 

 

DEM, NDVI, 

Blue band, Slope, 

TWI 

 

8d – rich 

swamp forest 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

 

331 

45 

not found 

not found 

25 

 

0.955 

0.926 

− 

− 
0.992 

 

0.96 

0.98 

− 

− 
0.93 

excellent 

excellent 

 

 

excellent 

 

DEM, NDVI, 

Blue band, Slope 

 

9d – mud- 

bottom fens 

and bogs 

3×3 

4,5×4,5 

6×6 

7,5×7,5 

9×9 

381 

264 

not found 

109 

264 

0.989 

0.993 

− 
0.994 

0.993 

0.98 

0.99 

− 
0.99 

0.99 

excellent 

excellent 

 

excellent 

excellent 

DEM, Blue band, 

Sediments, Slope, 

Groundwater, Soil 

 

 

The most important environmental predictors vary among the modeled 

vegetation types, but the most common were altitude (digital elevation model; 

DEM), Normalized Difference vegetation Index (NDVI), LandSat image (blue 

band) and Slope. From these predictors, only DEM is important for all models, 

but contributing in varying degree to the model performance. Among marsh 

communities (9c, 9d), other environmental predictors, such as sediment, soil 

and groundwater were included, based on increased model performance. 

 

5.2 Comparison of predicted and true distribution of vegetation types 

In the statistical analyses, the data with relative probability values (RPPP) 

was based on the output raster maps (10×10m resolution) from MaxEnt. These 

were projected into a point grid that afterwards was clipped within the 

boundaries of the study area. Totally, it resulted in a point grid with 997 638 

points from a 10×10m plot mesh. The proportions of the modeled vegetation 

types given by these points differs from the real distribution of the vegetation 

types (Table 8) provided by the original vegetation map. In a point grid the 

vegetation type 2e includes 303 193 points (30.39 %) in point grid, 4b – 

includes 159 201 points (15.96 %), 9c – includes 84 869 points (8.51 %), 3b – 

includes 18 035 points (1.81 %), 8d – includes 932 points (0.09 %) and 9d – 

includes 6 962 points (0.70 %). 

The main idea behind this statistical analysis is to evaluate if the number 

of points within the true distribution increases with increasing RPPP value, 

while the number of points outside the true distribution (still with increasing 

RPPP) decreases. This method represents an independent evaluation of the 
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model performance, by comparing the model output for the different vegetation 

types with the true distribution. However, such a trend, i.e. an increasing RPPP 

within the true distribution, is only registered in four out of 26 models (Table 8). 

These four vegetation types were: 

 Vegetation type 2e in a PSU grid density 4.5×4.5 km 

 4b - 3×3 km and 4.5×4.5 km 

 3b - 3×3 km 

The other models have more varying results, mostly a decreasing number 

of true points with towards higher RPPP values. Therefore, these models should 

not be considered as good models regardless of their potentially high AUC-

values. In ten of the models the number of RPPP points within the true 

distribution increases only to the fourth class of RPPP value (0.6-0.8), and then 

decreases again in the fifth class (0.8-1.0 RPPP) or have no point in this class. 

Out of 26 models, no model should be evaluated as better than good. 

Thus, the analysis including the evaluation data, show that none of the tested 

models is good enough for a reasonable modelling of vegetation types, 

following the executed methods with the provided environmental layers. Out of 

26, 7 models however, were evaluated as good: 

 Vegetation type 2e in a PSU grid densities 3×3 km and 4.5×4.5 km 

 4b - 3×3 km and 4.5×4.5 km 

 9c - 3×3 km and 7.5×7.5 km 

 3b - 3×3 km 

These results show that the prediction models perform better with more 

dense grid meshes of PSUs, than with more scattered grid meshes. The other 19 

models have been interpreted as unsuccessful, since few of the points with high 

RPPP values falls within their true distribution. Interestingly, the vegetation 

types 8d and 9d got very poor evaluation results, whereas they resulted in the 

highest AUC-values among all MaxEn models. The overall summary of results 

is presented in the table in the next page (Table 8). 
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outside 

Table 8. The statistical comparative analyses of predicted (RPPP) and true distribution of the modeled vegetation types. The table gives information about the 

number of cells of each vegetation type in a raster map, the number of cells inside and outside of true distribution in 5-class scale of probability value (RPPP). 

The last column shows the final interpretation of the MaxEnt models. 
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5.3 Predicted and true distribution on the map 

The raster maps from MaxEnt’s output, that show the predicted 

distribution of the vegetation types, allows a visual interpretation of the models 

precision that vary according to the grid mesh density of a Primary Statistical 

Unit (PSU).  Figure 6 includes five maps of a small area located between 

Flaksjøen and Bølvatnet Lake. These maps show the visual comparison of 

predicted and true distribution of dwarf shrub heath (2e) from five PSU grid 

densities. Only the first two models have been interpreted as good models 

(Table 8). From the statistical analyses of MaxEnt results (Table 7), there was 

no correlation between the reduction of a grid mesh density and increasing 

probability values (RPPP) of the models. The highest RPPP value among these 

models belongs to the fourth model (0.90 in 0-1 scale) and the third model has 

the lowest value (only 0.69), however both of them were interpreted as 

unsuccessful. The second model has the best result from the comparison 

analyses (Table 8) and was nearly equally good as the first model, but the map 

is more clear and cells with highest RPPP value are more close to true 

distribution. 

     

 

 

 
 

The fifth model has the least precise result, and the true distribution is 

mostly covered by cells with low RPPP. The third model had only 7 training 

points less than the fifth model, but the result differs significantly. The reason 

for this difference is that training points (PO data) of the fifth model was taken 
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Figure 6. Visual representation of changing precision of MaxEnt models five maps. The figure shows 

the overlap of the predicted distribution (RPPP) in colors (from blue to red) and the true distribution 

in crosshatch of 2e vegetation type. Below the figure, the following information is provided: the 

density of PSU grid mesh used in the models, the summarized number of training points found in the 

sample units, AUC-values that show the MaxEnt models performance, as well as the highest RPPP 

value for each model. 
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from only one PSU unit, but the third model has got training points from three 

PSU units, located in geographically and ecologically different places. 

Therefore, it is important to note that the precision of the MaxEnt models 

depends not only on how many training points that are used for the modeling, 

but also the distribution of these points. The precision vary quite much among 

all five models in the study area, and are without doubt more accurate close to 

the training points. More detailed maps with comparison of predicted and true 

distribution are attached in Appendix 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

 

6. Discussion 
6.1 Implemented vegetation map 

Based on the conducted fieldwork, the distribution of vegetation types on 

the implemented vegetation map (Bryn & Rekdal 2002) corresponds to the real 

distribution in 185 of 220 observation points (Table 6).  This constitutes 84 % 

of all observation points. This gives the reasons to consider that the vegetation 

map from 2001used in the prediction modeling has a quality which if good 

enough for the purposes of the presented study.  

The cause of insignificant errors in the implemented map could be the 

development of the vegetation types during the last 12 years or incorrect 

navigation caused by the difficulty of landscape, tree layer, weather and quality 

of the GPS receiver. The average GPS accuracy uncertainty during 

measurement of coordinates was 6.97 m, but varied from 5 m to 21 m. In 

addition, all observation points for the fieldwork were generated in ArcGIS with 

random spreading. Many of these points were generated close to the boundaries 

between vegetation types, and could thus be caused by difference in spatial 

resolution among the two very different approaches. The possible reason for 

significant errors on the implemented vegetation map is most probably human 

failure during vegetation mapping. 

 

6.2 MaxEnt models 

The main conclusion from the prediction modeling is that common 

vegetation types cannot be well modeled using a low PSU grid mesh densities, 

and the tested densities are not suitable for modelling of rare vegetation types. 

The main reason for this is probably the shortage of presence-only data (PO 

data) that was provided to present the modeled ecological and geographical 

variation of the vegetation types. In a study from Valdres, South-Central 

Norway, Ullerud (2013), found that some of the same vegetation types could be 

well modeled using MaxEnt with many of the same environmental variables. 

However, Ullerud (2013), used all presence locations for a test of model 

transferability (Randin et al. 2006), and therefore had many more PO points to 

train the MaxEnt models with (Hernandez et al., 2006). Also, as noted in the 

results, the distribution of the PO points is important for the model performance.  

Jimenez-Valverde et al. (2013) found that the distribution of the PO points was 

important for assessing the model performance, and that good models can only 

be achieved when the PO data are representative for the environmental variation 

within the study area. In the presented results, the obvious interpretation of low 

model performance for models run with a low density of PSU grid, should thus 

be that the PO points given by these PSU grids, are not representative for the 

environmental variation within the study area. The other reason that could affect 

the model performance can be the lack of more specified environmental 

variables and errors within the actual vegetation map. Most of the available 
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environment variables used in the MaxEnt modeling describes primarily the 

abiotic environment. But it is recomended to include biotic interactions for 

species modeling, and this could potentionally also influence modeling of 

vegetation types. For example, in a study from Finland, Heikkinen et al. (2007) 

used the distribution of woodpecker species to predict owl distributions since 

woodpeckers provide nesting sites for owls by making cavities in trees.  

Based on the MaxEnt evaluation of prediction models, the accuracy of 

models is greater for the rare vegetation types with more restricted 

environmental range and shown with high AUC values. This result has also 

been demonstrated by other comparable studies (Chahouki et al. 2010; 

Hernandez et al. 2006; Phillips et al. 2006). The common vegetation types had 

lower AUC values as than usually found (Phillips & Dudík 2008). Despite that 

almost all MaxEnt models was performing well according to the AUC values, 

the statistical analyses with evaluation data resulted in only 7 MaxEnt models 

interpreted as good models. It means that the MaxEnt models can be interpreted 

as successful at a first glance, but also that AUC values is not a good indicator 

of true model performance (Merow et al. 2013). Therefore, MaxEnt models 

with a high AUC value can in fact perform poorly when confronted with 

independent evaluation data (Halvorsen 2013). 

Actually, this study supports that MaxEnt can be considered as a useful 

method for modeling the distribution of vegetation types, as found by Hemsing 

& Bryn (2012) and Ullerud (2013), but that it is of vital importance to confront 

the modelling results with independent evaluation data to assess the true 

performance, and furthermore that it is important to have PO training points that 

cover the entire range of environmental variation within the study area 

(Jimenez-Valverde et al. 2013). 

The selection of environmental variables is crucial for the prediction 

modeling and often needs expert knowledge (Guisan & Zimmermann 2000; 

Manel et al. 2001).  The MaxEnt ability to test variable importance using the 

“Jack-Knife test” allows to select the most important predictor variables and in 

turn to improve the model performance, following Halvorsen (2012). Based on 

the results in Table 7, the environmental predictors contribute differently in 

each of the modeled vegetation types. This is not very strange, since the 

vegetation types represent different parts of the ecological space (Bryn 2008; 

Ullerud 2013). The most widely distributed vegetation types, 2e and 4b, are 

seemingly regulated by the same set of environmental predictor variables. Other 

vegetation types that are less abundant within the study area, are regulated by 

other sets of predictors, and slope is becoming the most common environmental 

variable for the given distribution. Elevation is the most important 

environmental predictor variable that regulates the spatial distribution of all 

modeled vegetation types. This is clearly seen from the distribution of the 

vegetation types 2e and 4b, where 2e cover mostly mountainous areas whereas 

4b is located mostly in lower parts. The use of satellite images in the modeling 
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is justified by the fact that the different bands contribute to much of the model 

performance. The use of satellite images thus implies a great potential for 

further development within distribution modelling of vegetation types. From the 

satellite images, the blue band was the most important predictor variable for 

almost all modeled vegetation types (except 9c). The development of technical 

tools provided the opportunity to generate derived environmental variables, 

such as the NDVI (derivative of satellite image), TWI and slope (derivative of 

DEM), where NDVI was the most important predictor variable for MaxEnt 

modeling of forest and mountainous vegetation communities (2e, 3b, 4b and 

8d). Increasing number of derived variables itself enriches the basis for DM and 

helps to investigate the influence of different factors of the distribution of 

vegetation types in a large variety of environmental parameters. 

In this study, it was used a Primary Statistical Unit (PSU) as the sample 

unit for collection of the PO data. During preparation of the PO data, it was 

demonstrated that both shape and size of this unit are well suited to obtain 

enough PO data. The change of design of these units will probably influence the 

predictive performance of the models and provide changes in the modeling 

results (Stokland et al. 2011), because it would increase or decrease the number 

of training PO points for many of the vegetation types, and also change the 

distribution of the environmental predictor variables. Therefore it is probably 

interesting to look into the effect of prediction performance using different form 

of sample units (such us circles, routes, crosses, line grid) and changing their 

sizes. Another alternative for testing of models in different PSU grid densities 

can be the choice of representative sample units based on topographic features, 

because the geographical representation of sample units is probably more 

important than the number of samples, following Hengl et al. (2009). 

The prediction modeling has shown that the use of different density in a 

point grid of presences for common (100×100m) and rare (25×25 m) vegetation 

types probably was a useful approach. However, these densities are probably 

not high enough. Table 7 shows that with increasing PSU grid density the 

number of training point increases significantly. The rare vegetation types had 

no PO data for some greater PSU grid densities. Close to the lowest PSU grid 

density, many modeled vegetation types had less than 100 training points 

collected in the whole study area. Thus, it makes sense to use higher density in a 

point grid of presences, especially for rare vegetation types that are limited by 

more specific environmental conditions. On the other hand, the inclusion of 

more PSU units is probably more important, since more PSU units will provide 

a better distribution of the PO points. Also, including more PO points for the 

common vegetation types, will increase the repeatability of the environmental 

variation, and thus only supply the modelling with redundant PO points, and 

thus slow down the running time for modelling in MaxEnt. 
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6.3 Geostatistical analysis 

The geostatistical analyses that were used in the presented study are 

probably valid. But, during preparation of the data, some technical challenges 

arose in the collection of statistical data. The data was obtained as a point grid 

converted from a raster map that should be compared with true distribution in 

the form of a vector map. Points were located in the center of each raster cell 

and gave one value for a plot of 10×10 m size. During the joining of vegetation 

data onto this point grid, many points got zero values instead of codes for 

vegetation types. The reason for this is that these points were inserted in areas 

between two vegetation type polygons. Therefore, the vegetation map had to be 

converted to raster format in the same cell size and position as the raster map 

with the predicted distribution. In this way, the boundaries between the 

polygons have been deleted, but at the same time the spatial precision was 

reduced (Figure 7). However, the modeling was carried out on fairly large 

datasets, so it would probably not influence the results very much. Areas with 

high levels of human disturbance (cultivated lands and pastures) were excluded 

from this analysis, because MaxEnt will not perform very well for land cover 

types that are only indirectly explained by the available environmental variables 

(Hemsing 2010).  

A possible alternative for this type of analysis, could be to overlay two 

maps with predicted and true distribution, previously converted to common 

format (vector or raster), and then to calculate the overlapped area and the rest 

area of the predicted and true distribution.  The differences between these areas 

can be used further in evaluating and comparison of models. One of the 

preconditions here is that a map that shows predicted distribution will include 

polygons with only high RPPP values.  

  
Figure 7. Visual presentation of changes in form and size of polygons on a map during 

conversion of vegetation map from vector (a) to raster format (b). 
 

The modeling was executed with default settings in MaxEnt. Changing of 

some parameters as regularization multiplier and number of background points 

did not lead to significant improvements in the models. And the use of special 

settings needs adjustment of each model separately that subsequently would 

provide unequal settings among the MaxEnt models. But it opens great 

a) b) 
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opportunities for research regarding the effects of varying settings on the 

performance of prediction models. 

The PO data of selected vegetation types that belong to mosaics and make 

up less than 50 % of the cover within them were excluded from the modeling. 

The reason for this decision was to get the most correct ecological niches where 

modeled vegetation type can exist and were they do not overlapped or are 

mixed up with other vegetation types. On the other side, these mosaics show 

actual presences and can therefore be used as valuable material in the MaxEnt 

models as well as in the geostatistical comparison analyses. It was proven by 

several models that the predicted distribution is located to areas covered by 

mosaic polygons where modeled vegetation type was not dominant. Figure 8 

show that in many places that are covered by mosaics, where 2e is secondary 

vegetation type, the probability of presence is very high. This gives reason to 

say that involvement of these mosaics into the modeling and model evaluation 

is very important and can improve the precision of prediction models. 

  
Figure 8. Comparison of predicted (background) and true (black crosshatch) distribution of 4b 

vegetation type included mosaics (purple crosshatch) where 2e cover less than 50 % of area 

(secondary vegetation type in a mosaic polygon).        

The nature is a dynamic system that changes constantly as a result of 

various factors such as the species competition, climate changes, vegetation 

succession, invasive species, grazing, avalanches, wildfire, human influence and 

so on (Russell et al. 2011; Sala et al. 2000; Rosenzweig at al. 2007; Hernaux 

1997; Bergeron and Archambault 1993, Weber and Flannigan 1997; Didier 

2001). The interaction of these factors changes both the species composition 

within vegetation types and the species distribution area within the limits of 

environmental parameters. This can cause inaccuracies and challenges in the 

DM. The vegetation type is considered as a set of certain plant species that 

dominate both in tree, field and bottom layer (Rekdal & Larsson 2005). Many 

plant species have the same ecological niches and environmental conditions, 

while they belong to different vegetation types. Some plant species grow in 

several vegetation types. This can led to that the two or more vegetation types 

can have the spatial distribution limited by the same range of environmental 
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parameters. As result of this “overlapping”, the MaxEnt can generate high 

RPPP in the areas outside the true distribution (Figure 8). Therefore it is 

reasonable first to model the distribution of the most important and dominant 

species separately and then by using overlapping to get summarized picture of 

modeled vegetation type, as done by Hemsing & Bryn (2012). On the other 

hand, we can consider these imprecisions on the map as potentially suitable 

distribution area for modeled vegetation types. This consideration can be used 

in the studies related to the potential natural vegetation types in areas strongly 

influenced by human activities, as in a study from Valders, Hemsing (2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

7. Conclusion 
The presented study has shown that distribution modeling of some 

vegetation types is possible using a frame area survey approach. It was obtained 

successful results for some vegetation types, indicating the clear relationships 

between modeled vegetation types and their environmental conditions, 

especially among common vegetation types in small densities of the PSU grid. 

The collection of PO data was carried out in five densities of PSU grids 

for each vegetation type. Totally, of 30 planned models only 26 got PO data. 

Four models got no PO data and did therefore not contribute further in the 

prediction modeling. The PO data was obtained from the implemented 

vegetation map, which was structurally assessed for quality and errors before it 

was taken it use. The assessment was based on randomized field-observations 

within five areas of the map. The results showed that 84 % of the classified map 

corresponded with the real distribution.  

Most of the prediction models were well evaluated by MaxEnt in 

according to the relative predictive ability. Of 26 tested models, 3 models have 

AUC-value less than 0.80 (more poor models). There was only one worthless 

model with an AUC-value of 0.500 (random model).  It was not found any 

relationship between the number of presences in PO data and the AUC-value. 

 The comparison of the predicted and real distribution of modeled 

vegetation types has shown that only 6 of 26 prediction models can be 

considered as good models. Vegetation types 2e (dwarf shrub heath) and 4b 

(bilberry birch forest) were good modeled in 3×3 km and 4.5×4.5 km PSU grid 

densities. Vegetation type 3b (tall forb meadow) was good modeled in only 3×3 

km PSU grid density. The vegetation type 9c (fen) has equal results for 3×3 km 

and 7.5×7.5 km PSU grid densities. The PO data for 9c were randomly located 

in the same PSU of these two densities. The best modeled vegetation type is 4b 

in 3x3 km PSU grid density. The vegetation types 8d (rich swamp forest) and 

9d (mud- bottom fens and bogs) were not modeled successfully in any PSU grid 

densities, although they had high AUC-values.  

The most important environmental variable that contributed to the 

prediction ability of all the modeled vegetation types was the DEM (the digital 

elevation model), NDVI index (the Normalized Difference Vegetation Index), 

slope and satellite image in blue band. The analysis of the variable importance 

conducted by MaxEnt (Jack-knife test) has shown that these variables have the 

most useful information. But the relative importance varies between the 

vegetation types and different PSU grid densities. These results show that the 

data generated from LIDAR-data and the satellite images contribute greatly to 

the performance of the prediction modeling.  

This study could be repeated using the different form and size of the PSU, 

less PSU grid densities, different densities of point grid of the PO data, varying 

starting coordinates of the grids and alternative comparison analyses.  
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Appendices 

 

Appendix 1. Bedrock map of the study area.  
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Appendix 2. Vegetation map of the study area. 
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Appendix 3. Additional signs used to describe variation within the modeled 

vegetation types (table 3). 

Additional signs Described variation 

o) deciduous trees, unspecified 

+ Scots pine 

* Norwegian spruce 

j more than 50 % cover of Juniperus 

ᴐ 25-50 % cover of willows 

s more than 50 % cover of willows 

g grass-rich vegetation 

v 25 – 50 % cover of lichens 

x more than 50% cover of lichens 

 50-75 % cover of stone and block 

] 25-50 % cover of trees 

k calcareous vegetation 

n more than 50 % cover of Nardus stricta 

H cut areas or young forest 
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Appendix 4. Environmental variables. In the prediction modeling all variables 

were used as the raster maps. Below, the maps show the variety (in colors) of 

each environmental parameter in the study area. The red line shows the 

boundary of the study area. 
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Appendix 5. Comparison analysis. The maps show the comparison of 

predicted and real distribution of modeled vegetation types. The predicted 

distribution is shown as a raster map in colors. Warmer colors show higher 

probability of presence. The red line shows the boundary of the study area. The 

black crosshatch shows the true distribution of the modeled vegetation types.  
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