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Abstract 

 

Partial least squares (PLS) is a class of statistical methods for multivariate data 

analysis. In the PLSR algorithm, regression, reducing dimensions and analyzing 

correlations among variables are simultaneously performed. In the recent 20 years， 

as high-dimensional data have emerged in large numbers, PLS has been improved 

and applied in many fields.  

In this research, a variable-selection procedure, which is derived from Lenth 

method, was embedded into PLSR. This algorithm known as Truncation PLS was 

tried out on several simulated datasets with different designs for the parameters. 

In order to simulate dataset with different properties, an R package relsim was 

applied. Another well-known wrapper method Jackknife PLS was also applied to 

the same datasets as a reference. The purpose of this research is to evaluate these 

two methods and explore how the properties of dataset will affect the performance 

of a specific method. 

After applying these two PLS methods to different datasets, the value of root mean 

squared error of prediction (RMSEP) for every parameter setting was obtained 

through cross validation. RMSEP is a statistic indicating the capability of a model 

for prediction. In addition, by comparing the beforehand known relevant variables 

in the datasets, the accuracies of variable selection were calculated to evaluate the 

capability of a method for variable selection. 

Considering the results, both of these two methods performed well and produced 

satisfying values of RMSEP and accuracy. However, the truncation PLS showed a 

better capability of dealing with datasets of high multicollinearity in X-variables 

and smaller variance in its relevant component. Besides, Truncation-PLS method is 

more efficient than Jackknife PLS from the aspect of calculation and time 

consumption. 
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CHAPTER 1   Introduction 

 

Various types of high-dimensional data have appeared in the recent 20 years, such as 

multimedia graphics video data, time series data, and huge amount of measurement 

information generated by modern analytical instruments. Especially in the research 

of bioinformatics, following the development of some high throughput measuring 

technologies, exponential growth of the amount of nucleotide data leads to much 

more variables, in contrast to scant number of observations. Therefore, datasets 

become “wider” and “wider”. The biggest problem in dealing with high-dimensional 

data is commonly referred to as "the curse of dimensionality" problem, which 

indicates that when the dimension rises, complexity and cost of data analysis grow at 

an exponential rate. Moreover, caused by increasing the probability of including 

irrelevant variables into model, it may become more difficult to explain a complex 

system with high-dimensional data.  Therefore, it is a great challenge to utilize the 

data effectively in practice. 

Multivariate regression models are widely employed to explore possible 

relationships between responses and variables. Some classic methods, such as least 

squares regression and hierarchical classification methods, may have some 

difficulties in dealing with high-dimensional data. The increment of dimensions will 

lead to enormous amount of computation; the number of samples may be not 

sufficient to meet the requirement of these multivariate methods. 

In the situation where we have many predictor variables but a small number of 

observations, even if some variables are uncorrelated in the population, they might 

seemingly appear correlated in small samples. Thus, a problem of multicollinearity 

may arise. As a result of multicollinearity, some statistics are difficult to achieve 

asymptotic, and hence give inaccurate parameter estimates. 

And worse still, least squares regression sometimes fails to estimate parameters in 

multivariate model if the number of samples “n” is smaller than the number of 

predictor variables “p”.  
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PLS is a statistical method for multivariate analysis. With relatively less constraints of 

variables, PLS is suitable in many situations where classic low-dimensional method 

cannot be applied, such as when the number of observations is less than the number 

of predictor variables or some variables are highly correlated. Consequently, PLS 

attracts more and more attentions of scientists and statisticians. In the PLSR 

algorithm, regression, reducing dimensions, and analyzing correlations among 

variables are simultaneously performed. However, without variable selection, PLSR 

model may not be stable for prediction and it cannot be easily interpreted.(Tahir 

Mehmood 2012) 

In this thesis, we applied a truncation based variable selection method in the 

procedure of PLSR algorithm, which was introduced in (Liland et al., 2013). The 

algorithm was tried out on simulated data. In statistical inferences, people mine the 

features of the data by different methods. Data simulation is a critical tool to evaluate 

methods. It provides us a way not only to understand the dynamic processing of these 

methods but also to check the variety of inferential results against the true 

information. Different types of datasets containing Y and X are simulated, where some 

variables in X are relevant to Y while others are irrelevant. On that way, within 

beforehand known information of the simulated data, we can evaluate different 

methods by comparing the estimated parameters with the real ones. Vice versa, by 

applying a method to different types of simulated datasets, we can explore types of 

datasets to which the specific method performs well. 
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CHAPTER 2   Background  

 

2.1 Linear Model  

2.1.1 General Linear Model 

Generalized linear models were formulated by John Nelder and Robert Wedderburn 

as a way of unifying various other statistical models, including linear regression, 

logistic regression, and Poisson regression (Nelder and Wedderbu.Rw, 1972). In 

statistical analyses, the General Linear Model (GLM) is the foundation for various 

methods, such as analysis of variance (ANOVA), regression analysis, and many of the 

multivariate methods including least square method, principal component analysis 

(PCA), and partial least squares (PLS). 

Consider n observations noted           , in which                    

Further,            
     is considered as a continuing response. 

           
  is a matrix with a dimension     . 

The general linear model (GLM) might be written as  

                                                                      (1) 

The distribution of the error term of every observation is often assumed to be the 

same in GLM, so that   is a matrix containing errors following a normal distribution 

with a mean 0 and a variance   .            
  is a vector of coefficients 

for                 in this model is an intercept. It might be interpreted as the 

expected value of Y when all the variables in X are setting to 0, which could be 

unrealistic sometimes.   

Therefore, to make the computation and interpretation easier, an alternative way is 

to center the data by subtracting the mean of every variable from X and Y.  In such a 

way, the intercept    is equal to 0 and can be ignored in the model. Within the 

http://en.wikipedia.org/wiki/John_Nelder
http://en.wikipedia.org/wiki/Robert_Wedderburn_(statistician)
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Logistic_regression
http://en.wikipedia.org/wiki/Poisson_regression
http://www.socialresearchmethods.net/kb/dummyvar.php
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centered data    and   , the model can be expressed in the form 

                                                                     (2) 

The coefficient vector   in form (2) is the same as   in form (1). And the expected    

in form (1) should be exactly the same as the mean of values observed in Y.  

2.1.2 Ordinary least squares (OLS) 

The least squares method is a standard approach to estimate   in a linear regression 

model. By applying least squares method, the solution should be found to minimize 

the sum of the squares of the residuals    . A residual is defined as the difference 

between an observed value and the fitted value provided by the model. 

 

                  ∑         

 

   

 

 

In least squares regressions, estimation of   is calculated by 

 

 ̃             

 

The solution gives the best approximation of the data. However, least squares 

regression requires that     to be positive definite, otherwise it fails to estimate 

parameters in multivariate model in a situation that the number of samples “n” is 

smaller than the number of predictor variables “p”. 

Consider the     matrix   of sample data. The rank of   is at most the minimum of n 

and p, thus n in n<p cases. Therefore the rank of     matrix     won't be larger 

than  , which is the rank of  . In respect that sample covariance matrix     is 

singular and non-invertible if n<p, least squares regression will lose the unique 

solution and fail to estimate parameters then. 

http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
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2.2 Variable selection 

In statistical modeling and inference, variable selection is an elementary step. The 

basic logic of these methods is to find an easily interpretable model with a set of 

predictor variables, which gives a good fit to data. Moreover, the model may be 

applied for prediction. It has been shown by many researches that including non-

informative variables in a model may harm the precision of estimation and 

prediction(A. J. Miller, 2002). Some serious problems could be brought in by including 

irrelevant variables, such as colinearity and over-fitting of models. 

 

From the 1970s different methods of variable selection have been proposed. The 

frequently used methods may be classified into four categories: all subset method, 

stepwise methods, coefficient shrinkage methods and projection methods.  

2.2.1 All Subset Method  

In order to select a best subset of predictors from all candidates of predictor variables, 

All Subset Method compares all the possible combinations of predictors. Several 

evaluation criteria can be used to compare the candidate models, such as   , PRESS, 

Mallow’s Cp, and AIC. Although the method can guarantee the best subset, sometimes 

it involves too much computation and lead to long computational time. Suppose the 

number of predictor variables is p, the number of all possible subsets is   , which 

could be a huge number when p is large. Therefore, subsets method might be applied 

properly in the cases with a small p.  

2.2.2    Stepwise Method 

2.2.2.1 Forward Selection 

Forward Selection method starts with a model of size 0 and proceeds by adding 

variables that fulfill a defined criterion. Typically the added variable at each step is 

the one that minimizes SSE. This can be evaluated also by F- test, defined by 

 

    
           

             ⁄
 

 

where      and        are the sum of squares for the error of the models with    and 
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 +1 variables respectively.     is used as a stop criterion, corresponding to the 

probability α, with the freedom of one degree for the numerator and         for 

the denominator. 

2.2.2.2 Backward Elimination 

Backward Elimination method proceeds in an opposite way. It starts from a model of 

size p where p is the total number of variables.  Non-relevant variables will be 

eliminated step by step. In this case, the detected variable is usually the one that gives 

a minimum increase in SSE. Analogy to the Forward Selection method might be 

evaluated by F-test, defined by 

 

     
           

           ⁄
 

 

where        and      are the sum of squares for the error of the models with    and 

 -1 variables respectively.      is used as a stop criterion, corresponding to the 

probability α, with the freedom of one degree for the numerator and         for 

the denominator. 

2.2.2.3 Stepwise regression 

The original algorithm was later improved by Efroymson in 1960 by combining 

Forward Selection and Backward Elimination(Efroymson, 1960). It starts with 

Forward Selection. After each variable is added to the model, a test should be made to 

check if any of the selected variables could be eliminated without largely increasing 

the SSE.  The variables already been selected in the model could become insignificant 

after adding a new one which correlated with them. The test here might be F test as 

well as a test based on other criteria such as   . To avoid an infinite loop, the 

significant level for adding variables should be less than the one for eliminating. 

2.2.3 Coefficient shrinkage method 

Researchers have proposed some methods that are able to perform both regression 

and variable selection simultaneously through coefficient shrinkage. In contrast to 

the discrete process of subset methods, variable selection methods based on 

coefficient shrinkage are more continuous. Depending on few parameters and 



 9 

without consuming many degrees of the freedom in the selection process, coefficient 

shrinkage methods avoid high variability.  

 

2.2.3.1 Lasso (Least Absolute Shrinkage and Selection Operator) 

By Lasso, as was introduced in (Tibshirani, 2011), we can select some   that minimize 

the following function as our estimator 

∑         

 

   

  ∑|  |

 

   

 

 
The first part of this function shows the fitness of model, while the second part can be 

considered as a penalty term. The general idea is to shrink coefficients to some level 

that some of them are forced to be 0.   is a tuning parameter which can be used to 

decide the model complexity, and hence the number of variables to be excluded from 

the model. Unlike variable selection methods that are based on subset, Lasso selects 

variables through a relatively mild way and make the model more stable. 

 

2.2.3.2 Ridge Regression 

By Ridge regression, as introduced in(Rubio and Firinguetti, 2002), we can select 

some   that minimize the following function 

∑         

 

   

  ∑|  |
 

 

   

 

  is a tuning parameter ,which decides that to what extent we will shrink the 

coefficients. But it does not force any coefficient to 0 as Lasso. By penalizing the size 

of the regression coefficients by  ∑ |  |
  

   , Ridge regression has an advantage of 

dealing with the multicollinearity problem. We mention Ridge here as the motivator 

of the next method. 

2.2.3.3 Elastic net 

In genomic data, genome sequences are more likely correlated because some of them 
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tend to operate in molecular pathways. Among a set of strong but correlated 

variables, the lasso penalty is somewhat indifferent (Trevor Hastie, 2008). It tends to 

select only one of them but to ignore the others. 

Elastic net is another regression method based on coefficient shrinkage, as 

introduced in (Zou and Hastie, 2005), the estimates of   should minimize the 

following function. 

∑|      | 
 

   

   ∑|  |

 

   

 

   ∑|  |

 

   

 

Just as the above, the first term of this function shows the fitness of model. But as a 

compromise between Lasso regression and Ridge regression, elastic net employs 

both ∑ |  |
 
   

 
 and ∑ |  |

 
    as penalty terms to regularize their parameters. An 

equivalent way to write the penalty term is 

 ∑( |  |       |  |
 
)

 

   

 

The value of   and   can be chosen by cross-validation. With keeping the first term of 

penalty function, elastic net shares the same feature of variable selection as Lasso. In 

other words, some of coefficients can be forced to 0.  In contrast to Lasso regression, 

the second term of the function encourages to shrink the coefficients of highly 

correlated variables meanwhile. 

2.2.4 Projection methods 

In some situations, we have massive number of variables and some of them are 

believed to be collinear. PCR and PLSR represent a class of methods based on 

projections to latent components. The philosophy of these methods is to produce 

latent variables by projection, which is designed to optimally describe these 

correlated ones in the original dataset. On that way, projection methods can be used 

as dimension reduction technique coupled with a regression model.  
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2.2.4.1 Principal component regression (PCR) 

The names of PCR stems from the fact that we use PCA (Principal Component 

Analysis) to extract the orthogonal components from the X dataset (Jolliffe, 1982). 

The concept of principal components implies the most meaningful basis that 

represents the data. In every step, the component corresponding to the largest 

eigenvalue of the covariance matrix of residuals is extracted. This procedure 

guarantees that the component contains the largest variance in the remaining data. In 

the practical implementations of PCA, the components are sorted in according to their 

variance information. Then a dataset can be represented well with A components 

(   ). Thus, the dimension of data is reduced at the cost of little information loss. In 

many cases, these components present a systematic way to understand variables. 

  

Several numerical algorithms lead to the same PCA solution. Instead of presenting it 

in the most common way, we choose to explain PCA in an alternative algorithm as 

follows, which is most similar to PLSR. 

 

At first X and y is centered into 

       ̅ 

       ̅ 

 

where 1 is a vector of ones which has the same length of y ;  ̅ is the mean value of y; 

and  ̅ is the row vector containing the average values for each of the columns in X. 

 

Suppose the number of components for prediction is chosen to be A (   ). For 

a=1,2…A, the following algorithm are iterated for every component. 

The loading-weight vector    is defined as the eigenvector with the largest 

eigenvalue of covariance matrix of     .  

The component   , which extracts the maximum variance from matrix      is defined 

as          . In other words, it satisfies the following function. 

 

         {‖      ‖
 }        {‖  ‖

 }         {(∑   
 

 

   

)} 
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The residual matrix    can be found by subtracting the  th principal components 

from     : 

                   
    

   

 

In the practical implementations of PCA, we iterate these procedures for A times 

(   ), until they produce a satisfying small residual   .  

 

After extracting the orthogonal components, the PCR is obtained by regressing   on 

these components T={  (a=1,2…A)}. The regression coefficients for model        

is defined as  

      

 

X-loadings P can be calculated as least squares solution of the model X=TP+ , 

 

             

 

Y-loadings Q can be calculated as least squares solution of the model y=TQ+ , 

 

             

 

2.2.4.2 Partial least squares regression (PLSR) 

Partial least squares was firstly introduced by Herman Wold (Wold., 1973, Wold, 

1966), then developed further by his son Svante Wold who applied it to regression 

(Wold et al., 1984). Although PLS was originally applied in econometrics and social 

sciences, after being improved by many researchers in these years (Helland, 1988, 

Martens H, 1989), a variety of PLS methods are more widely used in many other 

fields, such as bioinformatics, economics, and pharmaceutical science. In 

chemometrics, PLSR was used as a standard multivariate modeling tool. 

Generally, by giving a loading-weight to each variable, PLS method extracts some 

orthogonal components, noted as t and u, from dataset X and Y respectively with the 

http://en.wikipedia.org/wiki/Herman_Wold
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following constraints in every iterative process: (1) optimally present the variance 

information in X and Y respectively; (2) maximize the covariance between t and u. 

Then X is regressed on t by least square regression; Y is regressed on u by least 

square regression. The above procedures are repeated until satisfied residual 

matrixes are obtained. These components as latent variables are used in regression. 

Thus dimension reduction is performed at the same time as regression. Moreover, by 

employing orthogonal components in regression, PLS avoids collinear problem in 

building models effectively. PLS can also be applied for discrimination as in (Barker 

and Rayens, 2003). 

Among variety of algorithms of PLS, the most commonly used algorithm with 

orthogonal scores is presented as follows. Suppose y is a single response vector. 

At first, X and y is centered into 

 

       ̅ 

       ̅ 

 

A (   ) is the number of components chosen for regression. For a=1, 2…A, the 

following algorithm are iterated for every component. 

(1) Compute the loading-weights vector     

 

       
      

 

and scale it into a vector with length equal to 1  

 

  
  

  

‖  ‖
    √  

    

 

(2) Compute the score vector     
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(3) Compute the X-loadings    by regressing the variables in      on the score 

vector    

       
      

    
   

 

Compute the Y-loadings    by regressing the variables in      on the score 

vector    

       
      

    
   

 

(4) Subtract the information explained by the  th component to compute the 

residual matrices   ,    

 

            
  

             

 

In the regression procedure, we save the loading weights, scores, and X-loadings 

above into matrices or vectors:   {        },   {        }, 

Q = {        }. Finally, the vector   of estimated regression coefficients for model 

           can be computed by  

 

 ̂             

 

The intercept    can be estimated by 

 

  ̂   ̅   ̂  ̅ 

 

PLSR can also be generalized in the situation with multiple responses in the Y matrix. 

The algorithm is presented as follows: 

 

Center the matrices X and Y into 

       ̅ 

       ̅ 
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where  ̅ is now the row vector containing the average values for every one of the 

columns in Y. The number of components for regression is A (   ). For a=1, 2…A, 

the following algorithm is iterated for every component. 

(1) Initialize    to the column of     matrix of the largest variance. 

(2) Compute the loading-weights vector     

 
       

    
 
and scale it into a vector with length equal to 1  
 

  
    

  

‖  ‖
    √  

    

 
(3) Compute the score vector     

 
         

  
 

(4) Compute the X-loadings    by regressing the variables in      on the score 

vector    

 
       

      
    

   
 
Compute the Y-loadings    by regressing the variables in      on the  

score vector    

 
       

      
    

   
 

(5) Update    by regressing the variables in      on the Y-loadings    
 

       
      

    
   

 
(6) Repeat the above procedures (1)-(4) until the score vector    converges. The 

goal is to maximize the covariance between    and   .  

(7) Subtract the variance caused by the  th component to compute the residual 

matrices   ,    
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In the regression procedure, we save the loading weights, scores, and X-loadings 

above into matrices or vectors:   {        },   {        }, 

Q = {        }. Finally, the matrix B of regression coefficients for model 

           with   components can be estimated by  

 
 ̂             

 
and the intercept vector can be estimated by 
 

  ̂   ̅   ̂  ̅ 
 

2.2.4.3 Variable selection in PLSR 

Although PLSR has an inherent process of assigning different weights to variables, it 

does not exclude the directions spanned by noisy variables. It was shown by (Chun 

and Keles, 2010) that in a situation with large p and small n, PLSR may fail to give 

asymptotic consistency estimators for responses, thus it produces a predicted 

response with large variance. Moreover, without variable selection, regression 

models in PLSR may not be easily interpretable. An ideal model should not only 

perform well in prediction, but also provide an understanding of how the system 

works. Therefore, varieties of variable selection methods integrated with PLS are 

applied in practice.  

In (Tahir Mehmood 2012), these methods were presented in 3 categories such as 

filter methods, wrapper methods, and embedded methods.  

Filter methods use the output of the PLS algorithm to select variables. Variables are 

selected based on the magnitude of the filter measures. The filter measures could for 

instance be loading weight   , PLS regression coefficients   ̂ and variable importance 

on projection (VIP). The VIP measure is defined as  

 

   √ ∑[   (   ‖  ‖ ⁄ )]

 

   

∑     

 

   

⁄  
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where     is the variance in   explained by  th component, which could be expressed 

as   
   

   , and     is the  ’th element in the loading-vector   . Hence, (   ‖  ‖ ⁄ ) 

represents the contribution of    in the  ’th component. Generally, if    is larger than 

1,    is considered to be an important explanatory variable.  

Wrapper methods are generally based on iterating procedures between model fitting 

and variable selection. The variables, which are selected by filter method, are 

recycled in next PLSR procedure to get an optimal variable set. Some of these 

methods contain random procedures such as the Genetic algorithm combined with 

PLS regression which was introduced by (K. Hasegawa, 1997), and Monte-carlo 

variable elimination with PLS (Han et al., 2008). Another very popular wrapper 

method is the Jackknife selection method. 

Embedded methods nest the variable selection to the PLSR algorithm. During the 

iterations in PLSR, variables are selected for every component. The best-known 

methods in this category are interactive variable selection(Lindgren et al., 1994, 

Lindgren et al., 1995), soft-threshold PLS(Saebo et al., 2008), sparse-PLS(Le Cao et al., 

2008), and powered PLS(Indahl et al., 2009). 

2.3 Evaluation criteria for model comparison  

Various criteria could be used for selecting variables and comparing models. In 

practice, a criterion should be chosen according to the purpose of research. Here a 

short overview of common criteria is presented. 

2.3.1 Likelihood based criteria 

AIC 

The Akaike information criterion (AIC) was proposed by Akaike in 1974. (Akaike, 

1974), under the name of "an information criterion". 

In the general case, the AIC is given by 
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where k is the number of parameters in the statistical model, and L is the maximized 

value of the likelihood function for the estimated model. AIC not only rewards the 

goodness of fit by        , but also includes a penalty which discourages overfitting 

by increasing AIC as the number of estimated parameters increase. Given a set of 

candidate models for the data, the preferred model is the one with the minimum AIC 

value. 

 

BIC 

Bayesian information criterion (BIC) is a criterion which was developed by Gideon E. 

Schwarz, who gave a Bayesian argument for adopting it.(Schwarz, 1978) 

The formula for the BIC is: 

 

                    

 

where k is the number of parameters in the statistical model, n is the number of 

observations, and L is the maximized value of the likelihood function for the 

estimated model. 

Both BIC and AIC solved the overfitting problem by introducing a penalty term for the 

number of parameters in the model. The penalty term increasing with n is larger in 

BIC than the one in AIC with             . 

 

2.3.2     or adjusted    

The coefficient of determination is given by 

 

     
   

   
 

 

Theoretically, models with larger    should be preferred. Since we all know SSE 

always will decrease when we include more predictors, we should add predictor 

http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Likelihood_function
http://en.wikipedia.org/wiki/Overfitting
http://en.wikipedia.org/wiki/Bayesian
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Likelihood_function
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variables until    increases significantly. 

Adjusted    is a modification of    which is given by 

 

  
         

   

   
 

 

It adjusts for the number of variables in a model. Shown by the formula, this criterion 

will select the model with smallest MSE. Since MSE, unlike SSE, can increase or 

decrease while we include more variables,   
  will increase only if the new term 

improves the model significantly.   
  is always less than or equal to   .  

 

2.3.3 Prediction based criteria 

A common purpose of modeling is to predict the future value of Y. Therefore there are 

some criteria based on the error of prediction. The following statistics are used for 

measuring the error of prediction of a model. 

PRESS and RMSEP  

The prediction error sum of squares (PRESS), is given by 

 

      ∑      ̂  
  

   =∑   
  

    

 

After a fitted model is tried out on a test-dataset of   observations,    is the actual 

value of  for the  -th observation in test dataset;  ̂  is the predicted value for    with 

the model under evaluation. 

The root mean squared error of prediction (RMSEP): 

 

      √
     

 
 √

∑      ̂    
   

 
 √

∑   
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Both above statistics give more or less the same information. In practice, RMSEP 

values are preferred than PRESS, because RMSEP is in the same units as the  , thus 

it’s easier to be interpreted. 

 

2.3.4 Mallows’s    

Mallows proposed the statistic as a criterion for selecting among many alternative 

subset regressions (Mallows, 1973). Mallows's    is a statistic given by 

 

   
    

    
          

 

where      is the mean squared prediction error for the model with p regressors, 

calculated by  

     ∑    

 

   

    
  

 

  is the number of predictor variable in the subset model, n is the number of 

observations, and      is the MSE for the full model. It is suggested that one should 

choose a subset that has a smallest   . In an ideal state, the value of    is expected to 

approaching  . (Daniel, 1980) 

 

2.4 Validation 

Prediction error obtained by residuals of a regression model may be over-optimistic, 

since we actually use the same dataset to train model and evaluate residuals. Instead, 

a validation should be performed to qualify the model we assumed. In this validation 

step, predicted values with the model under evaluation are tested independently with 

a test dataset, which is different from those for training the model. In practice, we can 

either choose a K-fold Cross Validation (K-CV) or Leave-One-Out Cross Validation 

(LOO-CV). In K-CV, a dataset should be divided into K groups. Every of them is used as 

http://en.wikipedia.org/wiki/Mean_squared_prediction_error
http://en.wikipedia.org/wiki/Regressor
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testing set once and others as training set. In general, a smaller K will produce a 

relatively poor model estimate but a smaller variance of prediction error. On the 

contrary, a larger K will lead to a better estimate with smaller bias but potentially 

higher variance of prediction error. When K is approaching N (total number of 

observations), K-fold Cross Validation is getting closer to the limit case: LOO-CV. In 

LOO-CV, every observation in the data set is used as testing set once, and others as 

training set. In both K-CV and LOO-CV, we calculated the average residuals in the end 

to measure prediction error. LOO-CV is more reliable and persuadable than K-CV, 

since it does not depend on grouping process. On the contrary, K-CV does not cost 

much computation time. It is preferred when we have large number of observations. 

The PRESS and RMSEP are simple functions of cross validation. The model with the 

smallest PRESS and RMSEP should be considered as the best model for prediction. 
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CHAPTER 3 Material and methods 

 

3.1 Variable selection 

3.1.1 Truncation PLS  

In this thesis, a variable selection method was integrated with PLS in order to 

improve the prediction and interpretability of a PLSR model. Truncation PLS here 

might be considered as one of the embedded methods. As presented in PLSR step (2), 

for every component in PLS regression, an X loading weight vector    is found 

proportional to     
   . 

Every element in the loading weight vector corresponding to a specific variable could 

be considered as a sum of n equally distributed random variables. 

 

                               

 

where   is a scale which makes the length of    into 1. According to central limit 

theorem (CLT), the arithmetic mean and sum of a sufficiently large number of the 

iterates of independent random variables, each with a well-defined expected value 

and well-defined variance, will be approximately normally distributed. 

Approximately, loading weights for uninformative predictors would distribute 

normally with a mean of 0.  On the contrary, those loading weights for important 

predictors would approach to a normal distribution with a non-zero mean. In 

truncation PLS here, all loading weights inside a confidence interval, which is 

believed to be independent of response, are forced to be 0. Therefore, Lenth’s method 

is employed in this research for determining the cut-offs between the inliers and 

outliers. Lenth’s method which was presented firstly by Lenth [Lenth, 1989 #46] is a 

method for deciding which effects are active in the analysis of non-replicated 

experiments, when the model is saturated and hence there are no degrees of freedom 

for estimating the error variance. In the presentation of the method, Lenth showed a 

reasonable estimator of the standard deviation of contrast when there were only a 

few significant effects. Similarly, the standard deviations of loading weights in PLS are 

estimated to determine the confidence interval of the loading weights of unimportant 

variables.  The algorithm is as follows. 

http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Normal_distribution
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Consider a loading weights vector      from a PLS regression, every element in the 

loading weight vector    is corresponding to a specific variable   .           

First, let 

             {| |} 

 

Exclude those loading weights exceeding 2.5   and get a new vector    

 

   {| |       } 

 

Then standard deviation is defined as  

 

             {|  |} 

 

Then upper and lower cut-off value can be calculated by      .  

Here 𝛼 denotes a truncation level, which can be set to different values between 0 and 

1 (𝛼        ). A smaller 𝛼 leads to a larger      , thus more loading weights in 

vector   are forced to be 0. Vise versa, if 𝛼   , we will get the same result as in 

normal PLSR, which does not include variable selection procedure. Different 

truncation levels were tried out in this thesis to minimize RMSEP of the truncation 

PLSR model. In every iteration of the truncation PLSR, we employed the truncated 

loading weight vector instead of the previous one to get a corresponding component.  

3.1.2 Jackknife selection  

In order to explore the capability of selecting relevant variables of the Lenth 

truncation PLS method, it is worthwhile to employ some other variable selection 

methods as a reference. Jackknife method was firstly introduced by (Quenouille, 1949) 

(Quenouille, 1956)and developed by (Tukey, 1958). As bootstrap method, it is one of 

the most commonly used methods for estimating variance of a complicated statistics. 

In addition to Lenth method, Jackknife method was also applied to select variables in 
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this thesis. Variances of coefficients for every variable in PLSR model are estimated 

by leave-one-out Jackknife method.  

Consider a dataset containing   variables of   random samples from a population, 

            is the coefficient for   th variable in PLSR model. To get the variances 

of the estimated coefficients for every variable in PLSR model, leave-one-out 

Jackknife method is to fit a PLSR model with a subset omitting the  th (i = 1, 2, …n) 

sample to obtain   estimated coefficients for   times. By reusing the same data as   

sub-samples,                  are obtained. An average of these   estimated 

coefficients is taken as the Jackknife estimator for              

 

  ̂
̅  

 

 
∑                  

 

   
 

 

Estimates of the variances of estimated             are defined as 

 

      ̂
̅  

   

 
∑        ̂

̅                  
 

   
 

 

Thus, statistic              for the variables can be calculated as 

 

  = 
   ̂
̅̅ ̅̅

      ̂ 
 = 

   ̂
̅̅ ̅̅

√
   

 
∑        ̂

̅̅̅     
   

                

 

Variables corresponding to the larger |  | are believed to be more relevant. For every 

truncation level of       in this thesis, the         variables with largest |  | are 

selected. 
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3.2 Data simulation 

In order to explore the relationship between the performances of the truncation -

based PLS and the properties of datasets to which the method is applied, some 

datasets with varying properties were simulated in this thesis using the relsim R 

package (Saebo, 2014). The structure of these datasets might be noted as        , 

in which            
     is considered as a continuing response of n 

observations.             is a     predictor matrix containing p predictor 

variables.  

 

Within the relsim function inside the package, some features of a dataset can be fixed 

in data simulating such as: 

   

The number of observations used for training data 

       

The number of observations used for testing data 

   

The number of predictors 

    

The number of relevant predictors 

   out of   predictors in X are simulated relevant to  , others are irrelevant. 

    

The number of relevant latent components 

  out of   latent components are simulated relevant to  , others are irrelevant. 

     

The coefficient of determination, which is defined as the proportion of total 

variance in Y explained by X 

    

A parameter indicates the degree of collinearity in X 

      

The position of the relevant components 

To put it simple, at most 2 levels for every of these parameters are tried out as follows.  
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 n p m q pos      ntest 

Level 1 50 500 2 25 c(1,2) 0.1 0.5 100 

Level 2    100 c(4,5) 0.9 0.9  

 

Moreover, for every combination of the parameters, 10 different random datasets are 

simulated. In that way, after applying truncation-based PLSR on these datasets, more 

robust accuracy of variable selection and       can be obtained by calculating the 

mean of these 10 repetitions. 

 

The main steps of the data simulation proceeding are demonstrated as the below. 

(1) To create a matrix W=(Y, Z), in which          
     is considered as a 

continuing response of n observations.           is a     matrix.       are p 

components of the response Y. A normal distribution is assumed for every component 

in this datasets.  

 

[

 
  

 
  

]  ([
  

  
]  [

  
    

 

    
])  

 

(2) To put it simple, we make all means of variables in Y and Z equal to 0 (      

 ) and variance in Y equal to 1 (  
 =1). Since the components are always orthogonal, 

the covariance matrix of them is a diagonal matrix with all the eigenvalues 

             in the diagonal positions, denoted   here. The eigenvalues    are given 

by a declining function              in this package. In such a way, that larger   

indicates a steeper decline structure of eigenvalues, thus more multi-collinearity in X; 

so does the smaller   indicates a more gradual decline structure of eigenvalues, thus 
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less multi-collinearity in X. To simulate   out of   components to be relevant to Y, for 

these components            whose corresponding elements in covariance vector 

        
 should be simulated to be different from 0; while for the others,     

      

              . Furthermore, to make the covariance matrix ∑   to be 

positive definite, the values of     
         must be restricted by a given 

coefficient of determination in [0,1] and satisfying: 

 

      
        ∑

    
 

  

 

   

 

 

After that, the covariance matrix ∑   might be made by combining   
          

   as 

assumed in step (1). 

(3) The covariance matrix ∑   might be decomposed as 

 

∑       . 

 

Here               , in which    is the orthogonal eigenvector corresponding to   . 

The square root matrix of ∑   can be found by 

 

∑         
   

  
 

 

 where      is a diagonal matrix with √   (j=1,…,p) in its diagonal positions. U is 

generated as a         matrix in which all elements are randomly sampled from a 

standard normal distribution. Matrix W=(Y,Z) can be calculated by  ∑  
   
   Y is the 

first column of W and Z is the rest columns of W. 
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(4) In order to make an “observable”     matrix  , in which n refers to the number 

of observations and   refers to the number of predictors in  , QR decomposition is 

employed in the package to create a random rotation matrix. Instead of using a full 

(     ) random rotation matrix, a block-diagonal matrix as the following one is 

generated in order to make   out of   variables in X simulated relevant to  , others 

are irrelevant. 

 

  [
    

     
] 

 

The two rotation matrices             are generated separately by decomposing a 

standard normal data matrix of the corresponding dimension.    is a matrix of a 

dimension      and      is a matrix of a dimension            . 0 is a null 

matrix of a dimension        . 

(5) At last, the “observable”   is generated as a rotated Z:  
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CHAPTER 4 Results 

 

4.1 Factorial two level design in data simulation 

In the relsim R package, a total of 7 parameters are chosen to determine the 

properties of a dataset. 3 of them were investigated in this research:    ,  , and   . 

In the full factorial two level design, all combination of the levels of the 3 factors 

were analyzed, hence      types of dataset. Under every parameter setting, 10 

replicated datasets were simulated.  

 

In contrast, the number of observations used for testing      , which will affect the 

precision of evaluating performance of the models is kept constant equal to 100 all 

along in this research to make the results comparable. 

 

Some other parameters in the relsim R package were chosen as: 

the number of observations used for training data     ; 

the number of predictors      ; 

the number of relevant predictors     . 

 

The following table displays the design of parameter setting in data simulation.  

 

 

Table 1. The design of parameter setting in data simulation 

          

Design 1 - - - 

Design 2 - - + 

Design 3 - + - 

Design 4 - + + 

Design 5 + - - 

Design 6 + - + 

Design 7 + + - 

Design 8 + + + 
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The levels of the factors in Table 1 were set as follows: 

 

 

 

 

 

 

 

Table 2. The levels of factors in the factorial design 

 

The components were ordered in data simulation, from the component containing 

the largest eigenvalue to the one containing the smallest eigenvalue. Consequently, 

f    h  d          h   “ ”       , the dataset has relevant components in the 

position 4 and 5. In other words, the components containing the 4th and 5th largest 

     v             v        h                       f    h    d         h   “-”       , 

the dataset has its 1st and 2nd components relevant to the response. 

 

The models were evaluated from two perspectives: the capability of predicting new 

observations and the capability of selecting the true relevant variables. According to 

these purposes, truncation-PLS was applied to every simulated dataset with various 

designs for the parameters. RMSEP and accuracy of variable selection for a certain 

component, truncation level, and type of dataset were obtained by calculating the 

mean value of the 10 results from the 10 replications. Meanwhile, RMSEP and 

accuracy of variable selection of another method PLS with Jackknife selection were 

calculated as a reference. 

 

4.2 ANOVA of RMSEP  

In order to apply the Truncation PLS methods, a certain number of components 

(    ) and truncation level (𝛼) should be set. In this research, all the component 

numbers from k=1 to k=8 were tried out. The truncation levels 𝛼 were chosen to be 

0.01, 0.05, 0.1, and 0.25.  

 

 - + 

    (1,2) (4,5) 

  0.1 0.9 

   0.5 0.9 
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In the process of applying Jackknife PLS method, a normal PLS regression model 

with a certain number of components was fitted before any variable selection 

procedure. Based on the estimated coefficients of the model, Jackknife method was 

used to select the most relevant variables. The number of relevant predictors to be 

selected was chosen to be   𝛼, where p is the number of predictors; 𝛼 is the same 

value as the corresponding truncation level in Truncation PLS methods. And then, 

only the selected variables were used to refit the model. The best number of 

components, which lead to the smallest PRESS (or RMSEP), was chosen to predict 

afterwards. The number of components in the results for Jackknife PLS regression 

indicates the number of components that we used to fit the regression model before 

variable selection. The optional number of components used in the refit varied from 

dataset to dataset. 

 

The 5 parameters    ,    ,  , 𝛼, and      were set as factors. Then a linear model 

was fitted in R with a set of these 5 main factors, the terms obtained by taking all the 

second order interactions of them, and a response of RMSEP. RMSEP values were 

obtained earlier by applying Truncation-PLS method to the various datasets. The 

second order ANOVA model might be written in R syntax as 

 

                                      (4.1) 

 

To study the effects of these factors, ANOVA was used to analyze the linear model 

above. The output is as follows. 

s: 0.08196 on 188 degrees of freedom 

Multiple R-squared: 0.9443, 

Adjusted R-squared: 0.9245  

F-statistic: 47.59 on 67 and 188 DF, p-value: < 2.2e-16 

 

As can be seen from the output, Multiple R-squared is larger than 0.94. Therefore, 

most variance in RMSEP can be explained by some of these factors and their 

interactions. Furthermore, the result of ANOVA F-test shows an extremely small p-

value, which is smaller than 2.2e-16. In general, these factors are significant. 
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 DF Sum Sq Mean Sq F value Pr(>F) 

Intercept 1 2.45814 2.45814 365.9482 < 2.2e-16 *** 

𝛼 3 0.03716 0.01239 1.8441 0.1406366 

comp 7 2.61224 0.37318 55.5556 < 2.2e-16 *** 

  1 0.08347 0.08347 12.4257 0.0005319 *** 

pos 1 0.01314 0.01314 1.9563 0.1635534 

   1 1.13471 1.13471 168.9258 < 2.2e-16 *** 

𝛼:comp 21 0.45404 0.15135 22.5315 1.656e-12 *** 

𝛼:   3 1.7706 0.59020 15.7040 3.728e-09 *** 

𝛼:pos 3 0.00379 0.00126 0.1880 0.9044428 

𝛼:    3 0.16054 0.05351 7.9664 4.995e-05 *** 

comp:   7 1.88343 0.26906 40.0556 < 2.2e-16 *** 

comp:pos 7 0.14219 0.02031 3.0241 0.0049132 ** 

comp:    7 0.66004 0.09429 14.0373 1.341e-14 *** 

 :pos 1 0.06128 0.06128 9.1230 0.0028752 ** 

 :    1 0.75209 0.75209 111.9657 < 2.2e-16 *** 

pos:    1 0.02140 0.02140 3.1865 0.0758594 

Residuals 188 1.26283 0.00672   

Significant. Codes:   '***' 0.001    '**' 0.01     '*' 0.05 ' 

 

Table 3.  The analysis of variance for the linear model (4.1) 

 

According to the figures shown in the Table 3, we can see that     ,  , and    as 

main factors are highly significant with p values smaller than 0.001. The other 

main factors, 𝛼 and     are not significant as a main factor, but both of them have a 

strong interaction with some other parameters, for instance, the interaction 

between     and     ,     and  ,      and  , 𝛼 and  , & 𝛼 and   . 
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4.3 RMSEP in Truncation-PLS regression 

The following figures show interaction plots for various choices of the ANOVA model 

factors. The values in the plots are mean values of RMSEP under the chosen factor 

values. 

  

  

 

Figure 1. RMSEP in Truncation-PLS regression when   equals to 0.1. The plots present the 

mean RMSEP in Truncation-PLS regression with four different truncation-levels. The plot in 

upper left panel corresponds to the truncation level (𝛼) of 0.01. The others correspond to the 

Truncation-PLS regression with a truncation level of 0.05, 0.1, and 0.25 respectively. The 
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scales in vertical axis indicate the value of RMSEP in Truncation-PLS regression model. The 

scales in the horizontal axis indicate the number of components being used in the regression. 

At the position with 0 component, RMSEP is always set to 1, which is the assumed 

unconditional variance of the response in data simulation. The coefficient of determination 

(  ) and the position of relevant components (   ) are distinguished by colors.  

 

  

  

 

Figure 2. RMSEP in Truncation-PLS regression when   equals to 0.9. The plots here have the 

same structure as those in Figure 1. 
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A list of main features can be read from the plots. 

 

1. The effect of    

The Figure shows that the RMSEP values on the datasets of   =0.9 (red and blue 

lines) are significantly smaller than those on the datasets of   =0.5(black and 

green lines). 

 

2. The effect of   

After considering the information in the two above figures, we might conclude 

that the RMSEP values in Figure 1 where       are generally larger than those 

ones in Figure 2 where      . 

 

3. Interaction between comp and   

In Figure 1 where      , the plots reveal that the RMSEP values are smaller 

with less components but increase while using more components. In contrast, in 

Figure 2 where r=0.9, RMSEP values do not increase much as more components 

are used. 

 

4. Interaction between     and   

In Figure 1 where      , the position of relevant components is not very 

important, from the fact that green lines and black lines are close to each other; 

the red lines are close to the blue lines. In contrast, in Figure 2 where r=0.9, the 

black and red lines reach their best prediction earlier than the green and blue 

lines. In other words, by comparison with a situation of          , more 

components are needed to get the minimum RMSEP when          . 

 

5. The effect of 𝛼 

The following figures illustrate the effect of 𝛼 in in Truncation-PLS regression. 
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Figure 3. Effect of truncation level in Truncation-PLS regression when   equals to 0.1. 

 

The plots present the mean RMSEP in Truncation-PLS regression obtained from datasets with 

different parameter setting. The scales in vertical axis indicate the value of RMSEP in 

Truncation-PLS regression model. The scales in the horizontal axis indicate the number of 

components being used in the regression. The four truncation levels are distinguished by 

colors.  
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Figure 4. Effect of truncation level in Truncation-PLS regression when   equals to 0.9. 

The plots here have the same structure as those in Figure 3. 

 



 38 

In contract to the plots in Figure 4 where      , the plots in Figure 3 where       

show a marked increase in RMSEP as more and more components are included in the 

truncation-PLS regression. 

In general, the truncation level (𝛼) does not show any significant level as a main 

factor. But from the two plots at the bottom of the figure where the           and 

     , which is the most difficult situation for predicting, the truncation level (𝛼) 

shows an effect on RMSEP. With 𝛼 = 0.01, the method reaches a satisfying RMSEP by 

using only one component. 

 

4.4 Comparison with Jackknife method 

In the following figure, the RMSEP values of Jackknife-PLS method are plotted against 

those ones of the Truncation-PLS method as a contrast.  
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          Figure 5. RMSEP in Truncation-PLS and Jack-knife PLS regression when   equals to 0.1.  

The four plots present the mean RMSEP in Truncation-PLS regression and Jackknife PLS      

regression with four different truncation-levels. The plot in upper left panel corresponds to 

the truncation level (𝛼) of 0.01. The others correspond to the Truncation-PLS regression with 

a truncation level of 0.05, 0.1, and 0.25 respectively. Results from Truncation-PLS regression 

are labeled with  , while the results from Jack-knife PLS regression are labeled with  . The 

scales in the vertical axis indicate the value of RMSEP. The scales in the horizontal axis 

indicate the number of components being used in the regression. The coefficient of 

determination (  ) and the position of relevant components (   ) are distinguished by 

colors. At the position with 0 component, RMSEP is always equal to 1, which is the assumed 

variance of response in data simulation. 
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Figure 6. RMSEP in Truncation-PLS and Jackknife PLS regression when   equals to 0.9. 

The plots here have the same structure as those in Figure 5. 

 

As we can see in Figure 5 where   =0.1, in contrast to the results from Truncation-

PLS regression, the RMSEP values in Jackknife PLS regression do not increase much 
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with the number of components. In figure 6 where   =0.9, no increase in RMSEP is 

shown for both of the two methods as more components are used. 

 

Moreover, we have noted from figure 6 that in Jackknife method there are more 

problems than in Truncation-PLS method when   =0.9 and          . With a 

dataset of such a feature, both of the methods need more components to achieve the 

minimum RMSEP. As it is shown thoroughly in Table 4 and Table 5, both of the 

methods often achieve more or less the same minimum RMSEP, but Jackknife method 

needs even more components.  

 

The best predictions of the two methods are more or less the same; the RMSEP values 

of Jackknife-PLS method is slightly lower than those ones of Truncation-PLS method 

in most design of datasets. (See section 4.6, Table 4 and Table 5 for the exact values) 

 

4.5 Accuracies of variable selection in Truncation-PLS and Jackknife PLS regression  

The accuracy of variable selection is calculated by the percentage of the variables that 

are classified correctly as relevant and irrelevant.  

 

         
      

 
 

 

where    indicates the number of selected true relevant predictors;     indicates the 

number of non-selected true irrelevant predictors;   is the number of all predictors. 

 

In the following figure, the accuracies of variable selection of Jackknife-PLS method 

are plotted against those ones of Truncation-PLS method as a contrast. The 8 plots 

present the accuracy results from datasets of 8 different parameter setting.  
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Figure 7. Accuracies of variable selection in Truncation-PLS and Jackknife PLS regression. 

 

Results from Truncation-PLS are labeled with  ; results from Jackknife PLS method are 

labeled with  . The scales in the vertical axis indicate the value of accuracy in Truncation-PLS 

regression model. The scales in the horizontal axis indicate the number of components being 

used in the regression. The four different truncation levels are distinguished by colors. 
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Figure 8. Accuracies of variable selection in Truncation-PLS and Jackknife PLS regression. The 

plots here have the same structure as those in Figure 7. 

 

After considering the information in Figure 7 and Figure 8, the accuracies of variable 

selection calculated by Truncation PLS method with different 𝛼 steadily decline with 

the number of components raised, while the curve of Jackknife PLS method has 

leveled off. 
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Considering all the different settings of truncation level, the accuracies of variable 

selection calculated by Truncation PLS method with a truncation level 𝛼       are 

always higher than those with other truncation levels. The accuracies of variable 

selection calculated by Jackknife PLS method with a test level 𝛼       are close to 

those with 𝛼      . 

 

Moreover, we have noted from the bottom plots of figure 8 that Jackknife method 

needs more components to find the correct variables than Truncation-PLS method 

when   =0.9 and          . 

 

The best accuracies of variable selection of the two methods are more or less the 

same; the accuracy values of Truncation-PLS method is at its maximum slightly 

higher than those ones of Jackknife-PLS method in most design of datasets. (See 

section 4.6, table 6 and table 7 for the exact values) 

 

4.6 The best choice of 𝛼 and      

For every design of datasets, the best choice of a truncation level and number of the 

components of truncation-PLS method were chosen by identifying the minimum 

RMSEP, and its corresponding truncation level and the number of components.  

 

The following table shows the result of best combination of truncation level and 

number of component of truncation-PLS for different types of datasets. 
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 Truncation 

level 

Number of 

components 

Minimum 

RMSEP 

Minimum 

achievable 

RMSEP 

D1:   =0.5,pos=(1,2),  =0.1 0.05 1 0.74 0.71 

D2:   =0.9,pos=(1,2),  =0.1 0.01 1 0.34 0.32 

D3:   =0.5,pos=(1,2),  =0.9 0.1 2 0.71 0.71 

D4:   =0.9,pos=(1,2),  =0.9 0.25 2 0.33 0.32 

D5:   =0.5,pos=(4,5),  =0.1 0.1 1 0.72 0.71 

D6:   =0.9,pos=(4,5),  =0.1 0.1 3 0.36 0.32 

D7:   =0.5,pos=(4,5),  =0.9 0.01 5 0.75 0.71 

D8:   =0.9,pos=(4,5),  =0.9 0.05 5 0.34 0.32 

 

Table 4. The truncation level and number of components corresponding to the smallest 

RMSEP for Truncation-PLS method. The minimum achievable RMSEP for a certain 

dataset is given by    √    , where    is the coefficient of determination. 

 

After considering the information in Table 4, it might be concluded that when 

          more components are needed for Truncation-PLS method to achieve the 

minimum RMSEP. Especially in the designed datasets D7 and D8, where   =0.9 and 

         , 5 components are used to obtain the best prediction. 

 

Similarly, the best combinations of test level and number of components for the 

Jackknife-PLS method were chosen by identifying the minimum RMSEP, and its 

corresponding truncation level and number of components. In the Jackknife method, 

the test level was used to decide the number of variables to be selected. The result is 

shown as follows. 
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 Test 

  level 

Number of 

components 

Minimum 

RMSEP 

Minimum 

achievable 

RMSEP 

D1:   =0.5,pos=(1,2),  =0.1 0.01 2 0.73 0.71 

D2:   =0.9,pos=(1,2),  =0.1 0.05 2 0.33 0.32 

D3:   =0.5,pos=(1,2),  =0.9 0.1 2 0.72 0.71 

D4:   =0.9,pos=(1,2),  =0.9 0.25 2 0.32 0.32 

D5:   =0.5,pos=(4,5),  =0.1 0.1 1 0.72 0.71 

D6:   =0.9,pos=(4,5),  =0.1 0.01 3 0.32 0.32 

D7:   =0.5,pos=(4,5),  =0.9 0.01 7 0.74 0.71 

D8:   =0.9,pos=(4,5),  =0.9 0.05 8 0.33 0.32 

 

Table 5. The test level and number of components corresponding to the smallest RMSEP 

for Jackknife-PLS method. The minimum achievable RMSEP for a certain dataset is given 

by    √     

 

By comparison with Table 4, the minimum RMSEP values of Jackknife-PLS method in 

table 5 are slightly lower than those of truncation-PLS method in most designs of 

datasets except for D3 and D5. However, Jackknife-PLS needs more components than 

truncation-PLS to achieve the best prediction in all the designs of datasets. Especially 

in the designed datasets D7 and D8, where   =0.9 and          , 7 and 8 

components are used to obtain the best prediction respectively. 
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 Truncation  

level 

Number of 

components 

Maximum 

accuracy 

D1:   =0.5,pos=(1,2),  =0.1 0.01 1 0.978 

D2:   =0.9,pos=(1,2),  =0.1 0.01 1 0.982 

D3:   =0.5,pos=(1,2),  =0.9 0.01 1 0.99 

D4:   =0.9,pos=(1,2),  =0.9 0.01 1 0.988 

D5:   =0.5,pos=(4,5),  =0.1 0.01 1 0.973 

D6:   =0.9,pos=(4,5),  =0.1 0.01 1,2 0.973 

D7:   =0.5,pos=(4,5),  =0.9 0.01 2 0.971 

D8:   =0.9,pos=(4,5),  =0.9 0.01 1 0.968 

 

Table 6. The truncation level and number of components corresponding to the highest 

accuracy of variable selection for Truncation-PLS method 

 

As it is shown in table 6, in most designs of datasets, truncation-PLS method achieves 

the maximum accuracy of variable selection with a truncation level equals to 0.01, 

and only one component, or at most two.  

 

 Test 

level 

Number of 

components 

Maximum 

accuracy 

D1:   =0.5,pos=(1,2),  =0.1 0.05 1 0.965 

D2:   =0.9,pos=(1,2),  =0.1 0.05 2,3 0.971 

D3:   =0.5,pos=(1,2),  =0.9 0.05 1 0.978 

D4:   =0.9,pos=(1,2),  =0.9 0.05 3 0.999 

D5:   =0.5,pos=(4,5),  =0.1 0.01 2 0.96 

D6:   =0.9,pos=(4,5),  =0.1 0.05 4 0.973 

D7:   =0.5,pos=(4,5),  =0.9 0.05 7 0.990 

D8:   =0.9,pos=(4,5),  =0.9 0.01 1:8 0.94 

 

Table 7. The test level and number of components corresponding to the highest accuracy 

of variable selection for Jackknife-PLS method 
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By comparison with Table 6, the maximum accuracy of Jackknife-PLS method in Table 

7 is lower than the maximum accuracy of truncation-PLS method in most designs of 

datasets except for D4 and D7. Moreover, Jackknife-PLS needs more components than 

truncation-PLS to achieve the maximum accuracy of variable selection.  

 

4.7 The inconsistency in the best choice of truncation level and number of 

components 

After applying Truncation PLS with all the component numbers from 1 to 8 to 

different designs of datasets, the best number of components, which is used to 

achieve a minimum RMSEP, is not always identical to the one leading to the maximum 

accuracy of variable selection. The following plot shows the inconsistency.  

  

 

Figure 9.  The best number of components for truncation PLS method.  

 

This bar plot compares the best number of components for prediction with the best number 

of components for variable selection in all 8 designs of datasets. The blue bars indicate the 

number of components, which is used to achieve a minimum RMSEP; the red ones indicate 

the number of components, which is used to achieve the maximum accuracy of variable 

selection. 
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Figure 10. The best number of components for Jackknife PLS method. This plot has the 

same structure as Figure 9. 

 

Figure 9 shows that in most designs of dataset, such as D3, D4, D6, D7 and D8, the 

best number of components for prediction is larger than the best number of 

components for variable selection. In the other datasets such as D1, D2, D5, the 

number of components for prediction is the same as the one for variable selection.  

 

In contrast, for Jackknife PLS method, the best number of components for variable 

selection and for prediction is comparable with one another in every design of 

datasets as it is shown in Figure 10. 

 

The following tables demonstrate some extreme examples in this research showing 

the inconsistency. Table 8 shows the number of variables selected by truncation PLS 

with a truncation level 𝛼       and 1 component which produced the maximum 

accuracy of variable selection in datasets of design 8, while Table 9 shows the number 

of variables selected by truncation PLS with a truncation level 𝛼       and 5 

components which produced the minimum RMSEP in datasets of design 8. On the 

contrary, in datasets of design 2, truncation PLS achieved both the minimum RMSEP 

and the maximum accuracy of variable selection with a truncation level 𝛼       and 

1 component. The number of selected variables is shown in Table 10. 
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 True 

relevant 

True 

irrelevant 

Sum 

Estimated 

relevant 

5 2 7 

Estimated 

irrelevant 

20 473 493 

Sum 25 475 500 

 

Table 8. The number of variables selected by truncation PLS which produced the 

maximum accuracy in datasets of design 8. 
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Since the most variables are irrelevant in the simulated data, the accuracy can be high 

        even if the sensitivity is low (0.2). 

 

 True 

relevant 

True 

irrelevant 

 

Sum 

Estimated 

relevant 

21 77 98 

Estimated 

irrelevant 

4 398 402 

Sum 25 475 500 

 

Table 9. The number of variables selected by truncation PLS which produced the 

minimum RMSEP in datasets of design 8. 
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     f      
   

   
      

 

         
      

   
       

 
The specificity and accuracy from Table 9 are lower than those from Table 8. But the 

sensitivity is relatively higher which means 21 of the 25 true relevant variables are 

selected in the model.  

 

In some datasets of a parameter setting like design 2, the best choice of truncation 

level and number of components are consistent for the truncation PLS to achieve its 

minimum RMSEP as well as its maximum accuracy of variable selection. 

 

 True 

relevant 

True 

irrelevant 

Sum 

Estimated 

relevant 

22 1 23 

Estimated 

irrelevant 

3 474 477 

Sum 25 475 500 

 

Table 10. The number of variables selected by truncation PLS which produced the 

minimum RMSEP (or the maximum accuracy) in datasets of design 2. 
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According to the figures shown in Table 10, the variables selected by the model have 

high sensitivity, specificity, and accuracy.  
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4.8 The effect of   

In order to explore the effect of  , we repeated the experiment with every parameter 

being set at the same value as before except the true number of relevant predictors   

is set at 100 instead of 25 in all the simulated datasets. The following tables (Table 11, 

12, 13, and14) show the results of the new experiment with      .  And they are in 

the same structure as Table 4,5,6,7 in section 4.6.  

 

      Truncation 

level 

     Number of 

components 

 Minimum 

     RMSEP 

     Minimum 

achievable 

RMSEP 

D1:  =0.5,pos=(1,2),  =0.1 0.25 1 0.72 0.71 

D2:   =0.9,pos=(1,2),  =0.1 0.25 2 0.36 0.32 

D3:   =0.5,pos=(1,2),  =0.9 0.25 2 0.72 0.71 

D4:   =0.9,pos=(1,2),  =0.9 0.05 2 0.32 0.32 

D5:   =0.5,pos=(4,5),  =0.1 0.05 1 0.74 0.71 

D6:   =0.9,pos=(4,5),  =0.1 0.1 3 0.36 0.32 

D7:   =0.5,pos=(4,5),  =0.9 0.25 5 0.74 0.71 

D8:   =0.9,pos=(4,5),  =0.9 0.05 5 0.35 0.32 

 

Table 11. The truncation level and number of components corresponding to the 

minimum RMSEP for Truncation-PLS method when q=100.  
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      Test 

level 

Number of 

components 

  Minimum   

RMSEP 

Minimum 

achievable 

RMSEP 

D1:   =0.5,pos=(1,2),  =0.1 0.25 1 0.72 0.71 

D2:   =0.9,pos=(1,2),  =0.1 0.1 2 0.32 0.32 

D3:   =0.5,pos=(1,2),  =0.9 0.25 2 0.72 0.71 

D4:   =0.9,pos=(1,2),  =0.1 0.05 5 0.32 0.32 

D5:   =0.5,pos=(4,5),  =0.1 0.05 2 0.74 0.71 

D6:   =0.9,pos=(4,5),  =0.1 0.05 6 0.34 0.32 

D7:   =0.5,pos=(4,5),  =0.9 0.01 8 0.74 0.71 

D8:   =0.9,pos=(4,5),  =0.9 0.01 5 0.32 0.32 

 

Table 12. The test level and number of components corresponding to the minimum 

RMSEP for Jackknife-PLS method when p=100. 

 

 Truncation 

level 

Number of 

components 

Maximum 

accuracy 

D1:   =0.5,pos=(1,2),   =0.1 0.05 1 0.88 

D2:   =0.9,pos=(1,2),   =0.1 0.01 1 0.9 

D3:   =0.5,pos=(1,2),   =0.9 0.01 2 0.98 

D4:   =0.9,pos=(1,2),   =0.9 0.01 2 0.988 

D5:   =0.5,pos=(4,5),   =0.1 0.05 1 0.87 

D6:   =0.9,pos=(4,5),   =0.1 0.01 1 0.9 

D7:   =0.5,pos=(4,5),   =0.9 0.01 4 0.99 

D8:   =0.9,pos=(4,5),   =0.9 0.01 1 0.97 

 

Table 13. The truncation level and number of components corresponding to the 

maximum accuracy for Truncation PLS method when q=100.  
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 Test 

level 

Number of 

components 

Maximum 

accuracy 

D1:   =0.5,pos=(1,2),   =0.1 0.1 1 0.87 

D2:   =0.9,pos=(1,2),   =0.1 0.1 2 0.90 

D3:   =0.5,pos=(1,2),   =0.9 0.1 1:4 0.90 

D4:   =0.9,pos=(1,2),   =0.9 0.25 2 0.92 

D5:   =0.5,pos=(4,5),   =0.1 0.1 2 0.87 

D6:   =0.9,pos=(4,5),   =0.1 0.1 3:4 0.90 

D7:   =0.5,pos=(4,5),   =0.9 0.1 5 0.89 

D8:   =0.9,pos=(4,5),   =0.9 0.05 8 0.99 

 

Table 14. The test level and number of components corresponding to the maximum 

accuracy for Jackknife PLS method when q=100. 

 

In general, after comparing the results form Table 11-14 (q=100) with the results 

form Table 4-7 (q=25), both the Truncation PLS method and the Jackknife PLS 

method achieved a satisfying minimum RMSEP, which was approaching to the 

minimum achievable RMSEP. When q=100, both of the methods had smaller 

accuracies of variable selection than those from previous experiment when q=25 in 

most designs of datasets. 

 

After comparing the information in Table 13 and Table 14 where q=100, to achieve 

the maximum accuracy, Jackknife PLS needed larger test level, whereas a small 

truncation level was still preferred in Truncation PLS. 
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Figure 11. Comparison of the best truncation level which leads to minimum RMSEP for 8 

designs of datasets with different q.  

 

This bar plot compares the best truncation level of Truncation PLS which leads to minimum 

RMSEP when q = 25 with the one when q = 100 in every design of datasets. The horizontal 

axis indicates the 8 designs of datasets. The vertical axis indicates 4 truncation levels in this 

research. The scales in the vertical axis are adjusted to show the distinctness better. 

 

The bar plot of Figure 11 shows that for the truncation PLS to achieve the minimum 

RMSEP, a larger truncation level is preferred when q=100 in most datasets except 

design 4 and design 5. 
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CHAPTER 5 Discussion of results 
 

5.1 The effect of the factors and their interactions 

By applying truncation PLSR on the 8 different designs of simulated datasets, the 

performance of truncation-PLS method might be evaluated by RMSEP.  The output of 

the analysis of variance for the linear model (Table 3) with a response of RMSEP 

shows that     ,  , and    affect the RMSEP significantly, so do the interactions 

between     and     ,     and  ,      and  , 𝛼 and  , & 𝛼 and   . Figure 1 and 

Figure 2 demonstrate the detail of the effect. After considering the information from 

Figure 1 and Figure 2, we might draw conclusions as follows. 

 

1. The effect of    

It is easier for truncation PLSR to make good prediction when a dataset has a higher 

coefficient of determination (  ). Likewise, this is obviously also true for most other 

methods, because we can only make a prediction with the limited information 

contained in the datasets. Hence, the minimum achievable RMSEP equals to √    , 

which is lower when the coefficient of determination increases. 

 

2. Interaction between     and   

             means that the relevant components have smaller variances. 

More components are needed to get the minimum RMSEP when the relevant 

components have smaller variance (smaller eigenvalue), especially when there is a 

great disparity in the eigenvalues of the components.  

The reason is the below. 

 

                     √        √       

 

where    is a component ;           is the covariance of response   and component 

  ;        is the variance of response  ;         is the variance of component   ; 

           is the correlation of response   and component   . 
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PLS method firstly chooses the component with largest          . Since        is 

constant in a dataset, if a component has smaller        , even if            is large, 

          could still be too small to be chosen by PLS at the prior stage. For certain, 

the larger the disparity in the eigenvalues of the components is, the more extents 

the selection process could be impacted by        .  

 

3. The effect of   

Conversely, when the eigenvalues of the components are relatively even 

(   f        ), the variance of the components does not impact the selection 

process much. Hence, the components chosen by PLS at the prior stage are more 

likely to be of higher correlation to the response. If we continually select more 

components into the model, it could be noisy. It is also the reason why in Figure 1 

where      , the RMSEP values are smaller with less components but increased 

while using more components.  

 

The same tendency is shown in Figure 5 for Jackknife PLS method, whereas the 

increment of RMSEP is slower than those for truncation PLSR when more 

components are used. This is probably due to the fact that Jackknife PLS provides 

the second chance to fit the model with selected variables, and then makes 

prediction with its best number of components chosen by cross-validation. 

Therefore, even if some irrelevant components are included in the model at the 

latter stage, the damage could be compensating by choosing only the best number of 

components for prediction. 

 

When      , there is a larger error as the number of components increases, 

especially when an extremely small truncation level is chosen such as 𝛼=0.01 in this 

research. The reason is as follows. 

 

As it is shown in Figure 7 and Figure 8, the truncation PLS method tends to bring 

more irrelevant variables when using more components anyhow. When      , the 

predictors in X are relatively independent. To form the most relevant component, 

the normal PLS tends to select more variables by putting more even loading weights 
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on them. However, a too small truncation level toughly makes it select only a few of 

them while ignoring the others.  

 

When      , the components chosen by PLS at the prior stage might not be the 

most correlated to the response; however after the Lenth truncation process, the 

most important variables in the component are retained. After several components 

were added into the model, we reached more or less the same RMSEP value as we 

got in the prior stage when      .   

 

4. The effect of 𝛼 

In general, the truncation level (𝛼) does not show any significant level as a main 

factor. But from the two plots at the bottom of the figure where the           and 

     , which is the most difficult situation for prediction, the truncation level (𝛼) 

shows an effect on RMSEP. With 𝛼 =0.01, the method reaches a satisfying RMSEP by 

using only one component. 

 

The reason is similar as before. When       and          , the components 

chosen by PLS at the prior stage might not be the most correlated to the response, 

actually it is the worst situation in this research to get a correlated component. But 

the Lenth truncation process helped here to retain the most important variables in 

the component. Therefore, as it is shown in Table 4, when       and          , 

it is better to choose a small truncation level (𝛼=0.01 or 0.05 in this research), 

because it could be more irrelevant variables in one component. 

 

5. The effect of      

After comparing the best number of components for Truncation-PLS method in 

Figure 9, the best number of components, which is used to achieve a minimum 

RMSEP, is not always identical to the one leading to the maximum accuracy of 

variable selection. Sometimes, although a certain number of components for a 

highest accuracy are selected, the Truncation PLS tends to select more components 

to make the best prediction, especially in the datasets with a larger   and small 

variances in the relevant components such as design 7 and design 8. Table 8, Table 9, 
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and Table 10 demonstrate some extreme examples in this research showing the 

inconsistency. In order to make a good prediction, it is more important for 

Truncation PLS to have a high sensitivity in variable selection than a high specificity, 

due to the property that PLS algorithm can alleviate the impact of irrelevant 

variables to some extents by assigning small loading weights to them.  

 

6. The effect of   

In general, the true number of relevant predictors   did not show a significant effect 

on prediction in both Truncation PLS and Jackknife PLS models. However, when 

there are more relevant predictors in the dataset, the accuracies of variable 

selection for both methods decreased.  

 

In the datasets with larger q, to achieve the maximum accuracy, Jackknife PLS needs 

larger test level  , whereas a small truncation level is still preferred in Truncation 

PLS. Jackknife PLS is a wrapper method, which has iterating procedures between 

model fitting and variable selection. The number of selected variables is decided by 

the test level directly. Truncation PLS is an embedded method, in which variables 

are selected for every component. Hence, number of selected variables is not only 

related to the truncation level but also the number of components and the 

distribution of all the loading weights. But still, to achieve the minimum RMSEP, a 

larger truncation level is preferred in Truncation PLS when there are more relevant 

predictors in datasets. 

 

5.2 Comparison with Jackknife-PLS method 

We have noted from Figure 6 that Jackknife method has more problems than 

Truncation PLS method when   =0.9 and          . Both of the methods often 

reach more or less the same minimum RMSEP, but Jack-knife method needs more 

components.  

 

The phenomenon is due to the different variable selection process in the two 

methods. In order to select variables in every component, truncation-PLS method 

uses the loading weight as a filter, which is proportional to the covariance of X and y. 
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Although a component used in the prior stage is not relevant, the variables in the 

component most relevant to the response could be retained. On the other hand, 

Jackknife method selects variables by the coefficient obtained by normal PLS. If some 

components used in the prior stage are not relevant, normal PLS might produce some 

inaccurate coefficients. As a result, the variable selection process in Jackknife method 

does not make things better at the earlier stage until the relevant components are 

included into the model. The two bottom plots in Figure 8 reveal the fact that 

Jackknife method does not have a good performance in variable selection until more 

components are used. 

 

5.3 Conclusion 

1. The best truncation level for prediction will depend on the number of true relevant 

predictors  . If   is smaller in the comparison with  , probably a small 𝛼 is preferred. 

Conversely, if   is larger in comparison with  , probably a large 𝛼 is preferred. 

Anyway, the best truncation level will vary from one case to another. In practice, the 

value of 𝛼 must be determined by cross-validation. 

 

2. The simulation in this research also confirmed that Truncation-PLS increases the 

number of selected variables for every component, while Jackknife PLS keeps a more 

constant size of the set of selected variables. 

 

3. Considering the information of minimum RMSEP and maximum accuracy of 

variable selection obtained by the two methods, both of them performed well and 

produced satisfying values. However, the truncation PLS showed a better capability of 

dealing with datasets of high multicollinearity in X-variables and smaller variance in 

its relevant component. 

 

4. The truncation-PLS method is more efficient than Jackknife PLS from the aspect of 

calculation and time consumption, due to the fact that the Jackknife PLS method fits a 

PLS model twice and runs the cross-validation twice. 
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5.4 Further research 

Besides the parameters investigated in this research, there are more parameters 

determining the property of the simulated datasets, such as the number of 

observations used for training data (noted  ), the number of predictors (noted  ), the 

number of observations used for testing data (noted      ), and the number of 

relevant components (noted  ). As it is verified in many other researches, a 

comparatively smaller n to p could lead to larger variances of estimation, thus 

frustrate prediction sometimes. Since the Truncation PLS estimates a model with 

some components instead of variables, hypothetically this frustration could be 

diminished somehow. It might be interesting to observe the effects of those 

parameters in the further research. Moreover, the range of parameter setting is 

limited, only 2 levels for each in this research. In practice, more levels of 𝛼 and      

could be tried out in applying Truncation PLS. 
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Appendices 
 

Tables 
 

ANOVA of RMSEP 

Call: 

lm(formula = y ~ (R2 + pos + gamma + alpha + comp)^2, data = rmsep.tmp) 

 

Residuals: 

     Min           1Q            Median          3Q            Max  

-0.23565         -0.02847        0.00297       0.02950       0.62607  

 

Coefficients: 

                    Estimate Std.    Error    t value     Pr(>|t|)     

(Intercept)             0.86238     0.03973   21.705     < 2e-16 *** 

R2(0.9)                -0.47201     0.03474  -13.585     < 2e-16 *** 

pos(1)                 -0.01442     0.03474   -0.415     0.678634     

gamma(0.9)             -0.22063     0.03474   -6.350     1.58e-09 *** 

alpha(0.05)            -0.13815     0.04520   -3.056     0.002565 **  

alpha(0.1)             -0.14125     0.04520   -3.125     0.002059 **  

alpha(0.25)            -0.11947     0.04520   -2.643     0.008903 **  

comp(2)                 0.10958     0.05099    2.149     0.032917 *   

comp(3)                 0.26882     0.05099    5.272     3.68e-07 *** 

comp(4)                 0.42153     0.05099    8.267     2.44e-14 *** 

comp(5)                 0.53515     0.05099   10.495     < 2e-16 *** 

comp(6)                 0.66749     0.05099   13.090     < 2e-16 *** 

comp(7)                 0.68267     0.05099   13.388     < 2e-16 *** 

comp(8)                 0.90464     0.05099   17.741     < 2e-16 *** 

R2(0.9):pos(1)          0.02980     0.01927    1.546     0.123674     

R2(0.9):gamma(0.9)      0.22968     0.01927   11.918     < 2e-16 *** 

R2(0.9):alpha(0.05)     0.07139     0.02726    2.619     0.009532 **  

R2(0.9):alpha(0.1)       0.06868    0.02726    2.520     0.012573 *   

R2(0.9):alpha(0.25)      0.10080    0.02726    3.698     0.000285 *** 

R2(0.9):comp(2)         -0.08861    0.03854   -2.299     0.022606 *   

R2(0.9):comp(3)         -0.15786    0.03854   -4.095     6.26e-05 *** 

R2(0.9):comp(4)         -0.21042    0.03854   -5.459     1.50e-07 *** 

R2(0.9):comp(5)         -0.24179    0.03854   -6.273     2.38e-09 *** 

R2(0.9):comp(6)         -0.25348    0.03854   -6.576     4.64e-10 *** 

R2(0.9):comp(7)         -0.25245    0.03854   -6.549     5.37e-10 *** 

R2(0.9):comp(8)         -0.30492    0.03854   -7.911     2.13e-13 *** 

pos(1):gamma(0.9)        0.10411    0.01927    5.402     1.98e-07 *** 

pos(1):alpha(0.05)       0.05521    0.02726    2.026     0.044226 *   

pos(1):alpha(0.1)        0.08417    0.02726    3.088     0.002318 **  

pos(1):alpha(0.25)       0.10003    0.02726    3.670     0.000316 *** 
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pos(1):comp(2)          -0.03740    0.03854   -0.970     0.333120     

pos(1):comp(3)          -0.07562    0.03854   -1.962     0.051245 .   

pos(1):comp(4)          -0.11881    0.03854   -3.082     0.002363 **  

pos(1):comp(5)          -0.12945    0.03854   -3.358     0.000949 *** 

pos(1):comp(6)          -0.14566    0.03854   -3.779     0.000211 *** 

pos(1):comp(7)          -0.14606    0.03854   -3.789     0.000203 *** 

pos(1):comp(8)          -0.18966    0.03854   -4.921     1.88e-06 *** 

gamma(0.9):alpha(0.05)   0.21703    0.02726    7.963     1.56e-13 *** 

gamma(0.9):alpha(0.1)    0.24959    0.02726    9.157     < 2e-16 *** 

gamma(0.9):alpha(0.25)   0.25407    0.02726    9.322     < 2e-16 *** 

gamma(0.9):comp(2)      -0.10094    0.03854   -2.619     0.009547 **  

gamma(0.9):comp(3)      -0.18178    0.03854   -4.716     4.68e-06 *** 

gamma(0.9):comp(4)      -0.27892    0.03854   -7.236     1.14e-11 *** 

gamma(0.9):comp(5)      -0.36232    0.03854   -9.400     < 2e-16 *** 

gamma(0.9):comp(6)      -0.41324    0.03854  -10.721     < 2e-16 *** 

gamma(0.9):comp(7)      -0.44158    0.03854  -11.456     < 2e-16 *** 

gamma(0.9):comp(8)      -0.53264    0.03854  -13.819     < 2e-16 *** 

alpha(0.05):comp(2)     -0.04451    0.05451   -0.816     0.415260     

alpha(0.1):comp(2)      -0.06530    0.05451   -1.198     0.232474     

alpha(0.25):comp(2)     -0.07689    0.05451   -1.411     0.160025     

alpha(0.05):comp(3)     -0.08746    0.05451   -1.604     0.110307     

alpha(0.1):comp(3)      -0.11310    0.05451   -2.075     0.039357 *   

alpha(0.25):comp(3)     -0.13939    0.05451   -2.557     0.011345 *   

alpha(0.05):comp(4)     -0.11951    0.05451   -2.192     0.029576 *   

alpha(0.1):comp(4)      -0.15826    0.05451   -2.903     0.004134 **  

alpha(0.25):comp(4)     -0.18375    0.05451   -3.371     0.000910 *** 

alpha(0.05):comp(5)     -0.14397    0.05451   -2.641     0.008958 **  

alpha(0.1):comp(5)      -0.19518    0.05451   -3.581     0.000437 *** 

alpha(0.25):comp(5)     -0.22782    0.05451   -4.179     4.47e-05 *** 

alpha(0.05):comp(6)     -0.20448    0.05451   -3.751     0.000234 *** 

alpha(0.1):comp(6)      -0.26510    0.05451   -4.863     2.43e-06 *** 

alpha(0.25):comp(6)     -0.29741    0.05451   -5.456     1.52e-07 *** 

alpha(0.05):comp(7)     -0.17938    0.05451   -3.291     0.001193 **  

alpha(0.1):comp(7)      -0.24007    0.05451   -4.404     1.78e-05 *** 

alpha(0.25):comp(7)     -0.28213    0.05451   -5.176     5.80e-07 *** 

alpha(0.05):comp(8)     -0.26809    0.05451   -4.918     1.90e-06 *** 

alpha(0.1):comp(8)      -0.34643    0.05451   -6.355     1.53e-09 *** 

alpha(0.25):comp(8)     -0.39012    0.05451   -7.157     1.80e-11 *** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

s: 0.07709 on 188 degrees of freedom 

Multiple R-squared: 0.9525, 

Adjusted R-squared: 0.9356  

F-statistic: 56.26 on 67 and 188 DF,  p-value: < 2.2e-16  
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R-code 
 

#1. LENTH FUNCTION 

lenth.trunc <- function(w, alpha){ 

  s0<-1.5*median(abs(w)) 

  w0<-w[abs(w)<2.5*s0] 

  sd<-1.5*median(abs(w0))  

  upper<-qnorm((1-alpha/2),0,sd) 

  lower<-qnorm(alpha/2,0,sd) 

  lo<-sum(w>lower&w<upper) 

  w[w>lower&w<upper]<-rep(0,lo) 

  idx<-which(w!=0)#idx of improtant variables 

 if (lo==length(w)){ 

    idx<-which.max(abs(w)) 

    w<-w[idx]}   

  return(list(sd=sd,upper=upper,lower=lower,w=w,idx))} 

 

#2. TRUNCATION PLS FUNCTION 

     NIPALS<- function(Y, X, ncomp, lenth.alpha){ 

  X0<-scale(X,scale=FALSE) 

  Y0<-scale(Y,scale=FALSE) 

  meanX<-attr(X0,"scaled:center")#meanX<-apply(X,2,mean) 

  meanY<-attr(Y0,"scaled:center")#meanY<-apply(Y,2,mean) 

  m<-ifelse(is.null(dim(Y)), 1, dim(Y)[2]) 

  n<-dim(X)[1] 

  p<-dim(X)[2] 

  T<-matrix(nrow=n,ncol=ncomp) 

  W<-matrix(nrow=p,ncol=ncomp) 

  P<-matrix(nrow=p,ncol=ncomp) 

  Q<-matrix(nrow=m,ncol=ncomp) 

  U<-matrix(nrow=n,ncol=ncomp) 

  B <- array(0, dim = c(p,m, ncomp)) 

  res <- array(0, dim = c(n,m, ncomp)) 

  mse<-matrix(nrow=m,ncol=ncomp) 

  X<-X0 

  Y<-Y0 

  for (i in 1:ncomp)  

  { 

    if (m == 1) {u <- Y;t.old<-0} 

    else { 
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      u<- Y[,which.max(colSums(Y * Y))] 

      t.old <- 0 

    } 

    repeat{ 

      w<-t(X)%*%u%*%solve(t(u)%*%u) 

        w<-w/as.numeric(sqrt(t(w)%*%w)) 

      t<-X%*%w 

      if(sum(abs((t - t.old)/t))<1.0e-5)break 

      else{q<-t(Y)%*%t%*%solve(t(t)%*%t) 

           p<-t(X)%*%t%*%solve(t(t)%*%t) 

           u<-Y%*%q%*%solve(t(q)%*%q) 

           t.old<-t}  

    } 

    w<-lenth.trunc(w,alpha=lenth.alpha)$w #alpha=0.1 

    W[,i]<-w 

    T[,i]<-t 

    P[,i]<-p 

    Q[,i]<-q 

    U[,i]<-u 

    X<-X-T[,i]%*%t(P[,i,drop=F]) 

    Y<-Y-T[,i]%*%t(Q[,i,drop=F]) 

    res[,,i]<-Y 

B[,,i]<W[,1:i,drop=F]%*%solve(t(P[,1:i,drop=F])%*%W[,1:i,drop=F])%*%t

(Q[,1:i,drop=F]) 

    for (j in 1:m){mse[j,i]<-(res[,j,i])%*%res[,j,i]/n} 

  } 

return(list(coefficients = B, scores = T, loadings = P, 

loading.weights = W,  

Yscores = U, Yloadings = Q, meanY=meanY, meanX=meanX,            

ncomp=ncomp))} 

 

#3. PREDICT FUNCTION 

predicttrunc<-function(fit,newX){ 

#testX0<-newX-fit$meanX 

  testX0 <- scale(newX,center=fit$meanX, scale=FALSE) 

#newY<-matrix(0,ncol=length(fit$meanY),nrow=dim(newX)[1]) 

  newY<-array(0,c(nrow=dim(newX)[1],length(fit$meanY),fit$ncomp)) 

  for (i in 1:fit$ncomp){ 

   newY[,,i] <- testX0%*%fit$coefficients[,,i]} 

 return(newY)} 
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#4. RMSEP FUNCTION FOR CONTINUOUS DATA 

rmsep <- function(A, B){ 

  sqrt(mean((A-B)^2)) 

} 

 

#5. ERROR RATE FOR CATEGORICAL DATA 

er<-function(A,B){ 

  A<-as.vector(A) 

  B<-as.vector(B) 

  B[B<1.5]=rep(1,sum(B<1.5)) 

  B[B>=1.5]=rep(2,sum(B>=1.5)) 

 return(sum(abs(A-B))/length(A)) 

} 

 

# 6. CROSS VALIDATION 

comps <- 8 

alphavek <- rev(c(0.25,1.0e-1, 0.05, 0.01)) 

#Remove som null variables 

#sumtest <- apply(X,2,sum) 

#keep <- which(sumtest!=0) 

N <- dim(X)[1] 

K <- 10 

segs <- cvsegments(N,K) 

rmsepmat <- matrix(0,length(alphavek), comps) 

for(j in 1:length(alphavek)){ 

  rmsepvek <- rep(0,comps) 

  for(i in 1:comps){ 

  rmsep.c<-rep(0,K)   

  for(k in 1:K){ 

    testY <- Y[segs[[k]],,drop=F] 

    testX <- X[segs[[k]],,drop=F] 

    trainY <- Y[-segs[[k]],,drop=F] 

   trainX <- X[-segs[[k]],,drop=F] 

 trainY0<-scale(trainY,scale=FALSE) 

 meanY<-attr(trainY0,"scaled:center") 

 testY0 <- scale(testY,center=meanY, scale=FALSE) 

 newY0<-predict(fit=NIPALS(trainY,trainX,comps, 

lenth.alpha=alphavek[j]),newX=testX) 
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 rmsep.c[k]<-rmsep(testY0, newY0[,,i]) 

 } 

 rmsepvek[i]<-mean(rmsep.c) 

  cat(paste("Component",i,", alpha-value",alphavek[j]," finished\n")) 

  } 

  rmsepmat[j,] <- rmsepvek 

} 

matplot(t(rmsepmat), type="b") 

 

#7. FIT MODEL AND CALCULATE RMSEP, ACCURACY 

library(pls) 

#D1 (R2=0.5,pos=(1,2),gamma=0.1) 

sim1<-

relsim(n=50,p=500,m=2,q=25,relpos=c(1,2),gamma=0.1,R2=0.5,ntest=100) 

alpha<-c(0.01,0.05,0.1,0.25) 

#betamat1<-array(0,dim=c(500,8,4)) 

rrmsep1<-rmsep1<-racc1<-acc1<-array(0,dim=c(10,4,8)) 

for (j in 1:4) 

{ 

  for(i in 1:10){ 

    sim<-

relsim(n=50,p=500,m=2,q=25,relpos=c(1,2),gamma=0.1,R2=0.5,ntest=100,s

im=sim1) 

    fit<-NIPALS(sim$Y,sim$X,8,alpha[j]) 

    fit0<-plsr(sim$Y~sim$X,ncomp=8,validation="LOO",jackknife=TRUE) 

  #betamat1[,,j]<-betamat1[,,j]+drop(fit$coefficient) 

    tru1<-sim1$relpred 

    for(k in 1:8){ 

    #variable selection by lenth-trunc   

    est1<-which(drop(fit$coefficient[,,k])!=0) 

    tp1<-length(intersect(tru1,est1))#number of true positive 

    tn1<-500-length(unique(c(tru1,est1)))#number of true negative 

    acc1[i,j,k]<-(tp1+tn1)/500 

    predY<-predicttrunc(fit,sim$TESTX) 

    rmsep1[i,j,k]<-rmsep(drop(sim$TESTY),predY[,,k]) 

    #variable selection by jackknife 

    p.beta<-jack.test(fit0,k) 

    rest1<-order(p.beta$pvalues)[1:(alpha[j]*500)] 

    rtp1<-length(intersect(tru1,rest1)) 

    rtn1<-500-length(unique(c(tru1,rest1))) 
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    racc1[i,j,k]<-(rtp1+rtn1)/500 

    #refit model with jackknife selected variables 

    refit<-plsr(sim$Y~sim$X[,rest1],ncomp=min(k,length(rest1)- 

1),validation="LOO") 

    bestk <- which.min(refit$validation$PRESS) 

    tX <- sim$TESTX[,rest1,drop=FALSE] 

    rpredY<-predict(refit,tX,ncomp=bestk) 

    rrmsep1[i,j,k]<-rmsep(drop(sim$TESTY),rpredY[,,1])} 

    cat(paste("iteration j=",j,"i=",i,"\n"))} 

  #betamat1[,,j]<-betamat1[,,j]/10 # p*ncomp 

  }  

rmsep1<-apply(rmsep1,c(2,3),mean) 

rrmsep1<-apply(rrmsep1,c(2,3),mean) 

acc1<-apply(acc1,c(2,3),mean) 

racc1<-apply(racc1,c(2,3),mean) 

 

#8. PLOT ACCURACY RESULTS 

plot(1:8,acc1[1,],type="b", ylim=c(0,1),ylab="accuracy", 

xlab="components",main="D1:R2=0.5,pos=(1,2),gamma=0.1") 

points(1:8,acc1[2,],type="b", col=2) 

points(1:8,acc1[3,],type="b", col=3) 

points(1:8,acc1[4,],type="b", col=4) 

points(1:8,racc1[1,],type="b", pch=4) 

points(1:8,racc1[2,],type="b", pch=4,col=2) 

points(1:8,racc1[3,],type="b", pch=4,col=3) 

points(1:8,racc1[4,],type="b", pch=4,col=4) 

legend(0.5,0.55,legend=c("alpha=0.01", 

                             "alpha=0.05", 

                             "alpha=0.1", 

                             "alpha=0.25"),lty=1,col=1:4,bty="n") 

legend(x="bottomleft",legend=c("   lenth plsr","   jackknife 

plsr"),pch=c(1,4),bty="n") 

 

#9. PLOT RMSEP RESULTS 

#tp1 

plot(0:8,c(1,rmsep1[1,]) ,type="b", ylim=c(0,2.0),ylab="fitted 

rmsep", xlab="components",main="alpha=0.01,gamma=0.1") 

points(0:8,c(1,rmsep2[1,]),type="b", col=2) 

points(0:8,c(1,rmsep5[1,]),type="b", col=3) 



 69 

points(0:8,c(1,rmsep6[1,]),type="b", col=4) 

points(0:8,c(1,rrmsep1[1,]),type="b",pch=4,col=1) 

points(0:8,c(1,rrmsep2[1,]),type="b",pch=4,col=2) 

points(0:8,c(1,rrmsep5[1,]),type="b",pch=4,col=3) 

points(0:8,c(1,rrmsep6[1,]),type="b",pch=4,col=4) 

legend(x="topleft", legend=c("R2=0.5, relpos=c(1,2)", 

                             "R2=0.9, relpos=c(1,2)", 

                             "R2=0.5, relpos=c(4,5)", 

                             "R2=0.9, 

relpos=c(4,5)"),lty=1,col=1:4,bty="n") 

legend(0,1.57,legend=c("   truncation plsr","   jackknife 

plsr"),pch=c(1,4),bty="n") 

 

#10. GROUPED BAR PLOT FOR TRUNCATION PLS 

barplot(rbind(c(1,1,2,2,1,3,5,5), c(1,1,1,1,1,1.5,2,1)), main="Best 

number of components for truncation pls", 

        ylab="Best Number of Components",  

        xlab=c("Design of dataset"), 

        col=c("blue","red"), 

        , legend=c("for prediction","for variable selection"), 

beside=TRUE, 

        args.legend=list(x="topleft")) 

axis(1, at=seq(2,23,by=3), labels=paste("D",1:8, sep="")) 

 

#11. GROUPED BAR PLOT FOR JACKKNIFE PLS 

barplot(rbind(c(2,2,2,2,1,3,7,8), c(1,2.5,1,3,2,4,7,4.5)), main="Best 

number of components for jackknife pls", 

        ylab="Best Number of Components",  

        xlab=c("Design of dataset"), 

        col=c("blue","red"), 

        legend=c("for prediction","for variable selection"), 

beside=TRUE, 

        args.legend=list(x="topleft")) 

axis(1, at=seq(2,23,by=3), labels=paste("D",1:8, sep="")) 

 

#12. GROUPED BAR PLOT FOR q=25 VS q=100 

barplot(rbind(c(2,1,3,4,3,3,1,2), c(4,4,4,2,2,4,4,2)),  

        main="Best truncation level when q=25 VS q=100", 
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        ylab="Best truncation level",  

        xlab="Design of dataset", 

        col=c("blue","red"), 

        legend=c("q=25","q=100"), beside=TRUE, 

        args.legend=list(x="topleft"), 

        ylim=c(0,5),axes=F) 

axis(1, at=seq(2,23,by=3), labels=paste("D",1:8, sep="")) 

axis(2,at=1:4, labels=c(0.01, 0.05, 0.1, 0.25)) 
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