

Abstract

Variable ranking can be important for the analysis of high-dimensional data.

Identifying a subset of relevant variables can be useful both for subsequent

model construction and for further investigation of the variables. Many meth-

ods for variable ranking and selection exist, but most do not consider inter-

actions between the explanatory variables. In this thesis, three methods for

variable ranking and two-way interaction detection in high-dimensions are

proposed.

The first method, called Pseudoloadings Ranking (PR), is based on a

kernel Partial Least Squares (PLS) model, while the other two are based on

the regular PLS algorithm. Interaction Ranking (IR) is an extension of well

known filter methods for PLS. Random Interaction Ranking (RIR) ranks the

variables by repeatedly selecting and evaluating subsets of variables. The

ability of the methods to identify relevant variables was determined by sim-

ulation studies, and compared to an existing method. The PR method was

unsuccessful in finding important interactions, while he IR and RIR methods

had good performances and outperformed the existing method. The use of

IR is however limited by memory requirements.

The use of IR and RIR was illustrated by applying them to a gene ex-

pression dataset from Populus tremula. Some methods for evaluating the

findings were proposed.

Sammendrag

Variabelrangering kan være en viktige del av analyse av høydimensjonale

data. Identifisering av en liten mengde relevante variable kan være nyt-

tig b̊ade for modellbygging og videre utforskning av variablene. Det finnes

mange metoder for variabelrangering og -seleksjon, men de fleste tar ikke hen-

syn til samspill mellom variablene. I denne oppgaven presenteres tre metoder

for variabelrangering i situasjoner der det er samspill mellom variablene .

Den første metoden, kalt Pseudoloadings Ranking (PR), er basert p̊a

en kernel Partial Least Squares (PLS) modell, mens de to andre er basert

p̊a den vanlige PLS algoritmen. Interaction Ranking (IR) er en utvidelse

av kjente filtreringsmetoder for PLS. Random Interaction Ranking (RIR)

rangerer variablene ved å velge ut og evaluere tilfeldige variabeldelmengder

mange ganger. Metodenes evne til å identifisere de relevante variablene ble

studert ved simulerings studier. PR metoden lykkes ikke i å finne viktige

samspill, mens IR og RIR hadde gode resultater, ogs̊a sammenlignet med

en eksisterende metode. Bruk av IR metoden kan likevel være begrenset av

minnebruk.

IR og RIR ble ogs̊a anvendt p̊a genekspresjonsdata fra Populus tremula.

Noen metoder for evaluering av resultatene ble foresl̊att.

Acknowledgements

This thesis is written for the Biostatistics group at the Norwegian University

of Life Sciences (NMBU). First, I would like to express my deep gratitude

to my supervisor Professor Solve Sæbø for his advice and encouragement.

I would also like to thank my co-supervisor Professor Torgeir Hvidsten for

his help and for the gene expression data used in this thesis. In addition

I wish to thank Associate Professor Trygve Almøy for his contribution to

the dataset generation part and for his teaching in my first statistics course,

which greatly influenced my later educational choices. I am also grateful for

all the teaching I have received at NMBU, and especially to all the staff in

the Biostatistics group.

Finally, I wish to thank my parents, my siblings, and my partner, Jonas,

for all their support.

Céline Marie Løken Cunen

Oslo, May 2014

i

Contents

1 Notation 1

2 Introduction 2

2.1 Problem . 2

2.2 Projection Methods . 5

2.2.1 Partial Least Squares 6

2.2.2 Kernel Partial Least Squares 9

2.3 Variable Selection with PLS 13

2.3.1 Filter methods . 15

2.3.2 Wrapper methods . 17

2.4 Model Evaluation . 18

2.4.1 Validation set . 20

2.4.2 Leave-one-out cross-validation 20

2.5 Logistic regression . 21

2.6 Sliced Inverse Regression for Interaction Detection (SIRI) . . . 22

3 Materials and Methods 25

3.1 New methods . 25

3.1.1 Pseudoloadings Ranking (PR) 25

3.1.2 Interaction Ranking (IR) 27

ii

3.1.3 Random Interaction Ranking (RIR) 28

3.2 Data . 32

3.2.1 Gene expression data 32

3.2.2 Dataset generation . 37

3.3 Simulation studies . 45

3.3.1 Goal . 45

3.3.2 Procedures . 45

3.3.3 Dataset generation . 45

3.3.4 Scenarios . 46

3.3.5 Methods to be evaluated 47

3.3.6 Performance criteria and analysis 50

4 Results 52

4.1 PR . 52

4.2 IR . 55

4.2.1 IR with β-scoring . 55

4.2.2 IR with T-scoring . 56

4.2.3 Comparing the scoring methods 60

4.3 RIR . 62

4.3.1 RIR with β-scoring . 62

4.3.2 RIR with T-scoring . 65

4.3.3 Comparing the scoring methods 68

4.4 Comparing IR and RIR . 69

4.5 SIRI . 70

4.5.1 Time and Performance 70

4.5.2 Comparing with IR and RIR 71

4.6 Gene expression data . 73

4.6.1 IR . 73

iii

4.6.2 RIR . 75

4.6.3 Comparing IR and RIR 78

5 Discussion 82

5.1 Related research . 83

5.2 Simulation studies . 85

5.3 Gene expression data . 90

5.4 Conclusion . 94

iv

Chapter 1

Notation

In this thesis matrices and vectors are denoted with boldface letters; matrices

as upper case letters, like X, and vectors as lower case letters, like y.

The thesis concerns a regression problem with a response variable y (of

dimension n× 1) and a set of explanatory variables X (of dimension n× p).

The relationship between X and y is assumed to be linear

y = Xβ + ε

where β is the vector of regression coefficients and ε is the vector of standard

normally distributed error terms.

1

Chapter 2

Introduction

2.1 Problem

Modern biology generates high-dimensional data, often with many more vari-

ables than samples (the p � n problem). A typical example is analysis of

gene expression with microarrays or RNAseq. These methods measure the

expression of thousands of genes, but only in perhaps a hundred different

samples. Gene expression is controlled by transcription factors (TFs) and

a common problem is identifying which TFs control which genes. In this

case, the expression of a gene is the response, while the expression of a large

number of putative TFs are the explanatory variables.

High-dimensional data presents challenges for analysis. Traditional meth-

ods, like ordinary least squares regression, cannot be applied. When the

number of variables is greater than the number of samples, the ordinary least

square solution is not unique and the variance of the coefficient estimate is

infinite (James et al., 2013). A higher number of variables also increases the

risk of overfitting the model, that is choosing a model with poor prediction

2

ability for future observations. The problem of overfitting is related to the

so-called ”curse of dimensionality”, the principle that adding variables to a

model will increase the test error, unless the additional variables are relevant

to the response variable (James et al., 2013). Models with many variables

are also difficult to interpret.

A common solution to the problems associated with high-dimensional

data is variable selection. Variable selection methods reduce the dimen-

sionality of the problem by removing variables that are unrelated to the

response. Variable selection counters the problems stated above: it facil-

itates understanding of the biological system and improves predictive per-

formances (Guyon and Elisseeff, 2003). In this thesis I distinguish between

variable selection and variable ranking. Variable selection methods attempt

to construct and fit the best possible model according to some goal, often

prediction. This involves both the selection of the most relevant explanatory

variables and the exclusion of relevant, but redundant, variables (Guyon and

Elisseeff, 2003). Variable ranking methods rank all potential variables ac-

cording to their relevance for prediction of the response, but do not propose

a model.

The purpose of ranking the variables can be twofold. Ranking can be a

way to reduce the number of variables in order to apply some variable se-

lection methods for construction of a good model. Many variable selection

methods perform better on smaller sets of variables (Li et al., 2012). Addi-

tionally, ranking the variables can be a way to select a subset of variables

for further study. In many applications, obtaining a smaller set of candidate

variables, which can be investigated by for example experiments, can be very

3

useful.

The complexity of the variable selection (and ranking) increases when

interactions between the variables are assumed. Interactions means that

variables influence the response in combination with other variables. A vari-

able can then be deemed irrelevant for predicting the response when consid-

ered separately, but may become very relevant when it is coupled with other

variables. In this thesis, I limit myself to two-way interactions, using the

following model

yi = β0 +

p∑
j=1

βjxij +
∑
j 6=k

βjkxijxik + εi i = 1, ..., n

with p explanatory variables and p(p−1)
2

two-way interaction terms and where

ε ∼ N(0, σ).

Another approach to high-dimensional data is to reduce the dimension-

ality by multivariate projection methods. Projection methods are methods

where the p variables are projected onto an a-dimensional subspace of lower

dimension (a < p) (James et al., 2013). This is accomplished by constructing

a derived variables, which are linear combinations of the original variables.

Partial Least Squares and kernel Partial Least Squares are projection meth-

ods that will be presented in the following section.

The methods presented in this thesis attempt to identify a small number

of relevant variables among many noise variables. In addition it is assumed

that interactions between the explanatory variables are important for the

prediction of the response. The methods are based on PLS and kernel PLS

and perform a ranking of all the explanatory variables. The methods will be

4

compared with each other and with an existing method by simulation study

and by applying them to a gene expression dataset from Populus tremula.

The rest of this chapter provides some useful theory, which will be needed

in rest of the thesis. Chapter 3 presents the three variable ranking methods

developed for this thesis and gives some information about the Populus data

and the simulation studies. The results of both simulations and real data

analysis, are given in Chapter 4, and are discussed in Chapter 5.

2.2 Projection Methods

Multivariate projection methods are a class of methods suitable for situations

where there are more variables than observations or when the explanatory

variables are correlated. The key idea is to reduce the dimensionality of the

problem by computing a derived variables (where a < p, and p is the original

number of variables) which are linear combinations, or projections, of the

original variables (James et al., 2013).

Original variables: X = [x1,x2, . . . ,xp], where xj is n× 1.

Derived variables: Z = [z1, z2, . . . , za], where zj is n× 1

and zj = α1x1 + α2x2 + . . .+ αpxp, for some constants α1, α2, . . . , αp.

In a regression problem, the derived variables can be used as predictor

variables instead of the original variables.

Before presenting Partial Least Squares (PLS), I will briefly introduce

the most common projection methods, Principal Component Analysis (PCA)

5

and Principal Component Regression (PCR). The goal of PCA is to find a

smaller set of a uncorrelated variables maintaining a maximum of the varia-

tion in the X matrix. These derived variables are called latent variables or

components. The components represent the directions of maximum variation

in the X data: the first principal component finds the direction in the space

spanned by the columns of X along which the observations vary the most,

the second principal component finds the direction of maximal variation that

is orthogonal to the direction of the first component, and so on.

In PCR the components from PCA are used as explanatory variables in a

linear regression model. This approach depends on the assumption that the

directions of maximal variation in X are also good predictors of y (James

et al., 2013). This is not always the case and then PLS might be a better

solution.

2.2.1 Partial Least Squares

Partial Least Squares (PLS), or projection to latent structures, is a class

of methods introduced by Herman Wold (1975). As with PCR, the goal

is to find a smaller set of derived variables which can explain the observed

response. PLS regression constructs components which retain a maximum

of the covariance between the explanatory variables (X) and the response

variables (y), instead of just considering the X matrix as in PCR. In both

methods the components are linear combinations of the original variables. In

PLS the weights in the linear combinations are proportional to the covariance

between X and y (Helland, 1988). Least square regression is then applied

to y and the new set of explanatory variables T (of dimension n × a, with

a < p). Unlike PCR, PLS regression requires an iterative computation of the

6

components.

There are several algorithms for PLS regression, see Rosipal and Krämer

(2006). The algorithm described below requires a single vector of response

observations (y is n × 1), and is sometimes referred to as PLS1. Assume

mean centered matrices X0 and y0. For each component h = 1, 2, ..., a:

1. Compute loading weights wh

wh = XT
h-1yh-1

wh ← wh/‖wh‖

The weights are normalized to length 1. Entry j in the wh vector is

proportional to the covariance between yh-1 and column j in Xh-1.

2. Compute the scores th

th = Xh-1wh

The score vector th has equal dimensions as the columns of X and is

a linear combination of the columns of Xh-1 according to the weights

given by wh. The th vectors are the extracted components, i.e. the

new explanatory variables.

3. Compute the loading vectors ph and qh

ph = XT
h-1

th
tTh th

qh = yT
h-1

th
tTh th

ph is a p × 1 vector, which is computed by regressing the variables in

Xh-1 on the score vector th.

7

4. Deflate Xh-1 and yh-1

Xh = Xh-1 − thp
T
h

yh = yh-1 − thqh

Before computing the next component, the contribution of the current

component must be removed from the X matrix, so that the next com-

ponent will explain parts of X that were not explained by the current

component. Deflation of y is not actually necessary when y is n× 1.

5. If more components are needed, return to 1.

In each iteration of the algorithm, the loading weights, score vectors and

loading vectors are saved in the matrices Wa, Ta, Pa, Qa.

Wa = [w1,w2, ...,wa]

Ta = [t1, t2, ..., ta]

Pa = [p1,p2, ...,pa]

Qa = [q1,q2, ...,qa]

These matrices are then used to compute the vector of estimated regression

coefficients β̂ and the fitted values ŷ

β̂ =


β̂1

β̂2
...

β̂p

 = Wa(P
T
a Wa)

−1QT
a

ŷ = ȳ + X0β̂

8

where ȳ is the mean of the response vector y, and where X0 is the mean

centered matrix of explanatory variables that was used in the algorithm.

The predicted response for an independent set of explanatory variables is

given by

ŷ = ȳ + Xtestβ̂

where Xtest is the matrix of independent observations of the explanatory

variables, with columns centered by the column means of X.

2.2.2 Kernel Partial Least Squares

Kernel PLS is a variant of PLS which was first designed to speed up compu-

tations when applying PLS to large matrices (Rännar et al., 1994; Lindgren

et al., 1993). This is achieved by combining two steps in the algorithm

Step 1 : w = XTy

Step 2 : t = Xw

 → t = XXTy = Ky (2.1)

and allowing the deflation of K rather than X. The resulting K matrix has

dimensions n× n, and is thus a small matrix if there are few observations.

Rosipal and Trejo (2001) introduced kernel-based PLS methods for non-

linear models. Their idea is to use a non-linear function Φ() to map the

data into a suitable high-dimensional space where ordinary linear PLS can

be applied (Rosipal and Krämer, 2006).

Φ() maps X -space data into space F :

Φ : X → F

PLS is then applied to Φ, the matrix of F -space data. According to (2.1),

we now need to calculate the Gram matrix K = ΦΦT . In order to retain

9

fast computations the Kernel trick is applied. The trick allows us to avoid

the matrix multiplication ΦΦT , by computing the elements i, j of K directly,

with a kernel function k(). Several kernel functions can be used, depending

on which feature space F we want to map the data onto. For example

Gaussian kernels: K(x′i,x
′
j) = e−(

‖x′i−x′j‖
2

d
) (2.2)

Polynomial kernels: K(x′i,x
′
j) = (x′ix

′T
j + 1)a (2.3)

where x′i,x
′
j are rows i and j of mean centered X and d and a are positive

constants.

Example 1. Assume a 2 × 1 response vector y and a matrix X with two

explanatory variables

X = [x1,x2] =

x1,1 x2,1

x1,2 x2,2


The response is assumed to be related to the two-way interactions between

the variables in X. In order to include two-way interaction terms in the re-

gression model, the X matrix can be mapped to a suitable higher-dimensional

space F by a function Φ(). Then one gets the matrix of mapped data

Φ = [1,
√

2x1,
√

2x2,
√

2x1x2,x1
2,x2

2]

with six variables instead of two. If the normal PLS-algorithm is applied to

this matrix, the score vectors will be linear combinations of both the two orig-

inal variables and the interaction term (and the squared terms).

If X is large, Φ will be extremely large.. The Kernel trick allows us to

10

avoid computing ΦΦT by directly calculating K instead

K = ΦΦT =

 (1 + x21,1 + x21,2)
2 (1 + x1,1x1,2 + x2,1x2,2)

2

(1 + x1,1x1,2 + x2,1x2,2)
2 (1 + x21,2 + x22,2)

2


Here the polynomial kernel function of second order is used ((x′1x

′T
2 + 1)2

where x′1 and x′2 are the row vectors of X). It can be confirmed that using

this kernel function yields the same K matrix as ΦΦT would.

In this thesis I use polynomial kernels (mostly of second order: a = 2)

because I am interested in interactions between variables (see example 1).

The following algorithm, requiring a single vector of response observations

(y is n × 1), was used. Assume mean centered matrices X0 and y0, and a

matrix K0 computed according to (2.3). For each component h = 1, 2, ..., a:

1. Compute X-scores th

th = Kh-1yh-1

th ← th/‖th‖

The scores are normalized to length 1. The score vector th has equal

dimensions as the columns of X and is a linear combination of the

columns of Φh-1 according to the weights given by ΦT
h-1y. The th-vectors

are the extracted components, i.e. the new explanatory variables.

2. Compute weight vectors ch

ch = yT
h-1th

When y is n × 1, ch is a scalar. It is proportional to the covariance

between y and t.

11

3. Compute y-scores uh

uh = yh-1ch

uh ← uh/‖uh‖

4. Deflate Kh-1 and yh-1

Kh = (I − tht
T
h)Kh-1(I − tht

T
h)

yh = yh-1 − tht
T
hyh-1

where I is the n-dimensional identity matrix.

5. If more components are needed, return to 1.

In each iteration of the algorithm, the score vectors and weight vectors

are saved in the matrices T, U, C.

Ta = [t1, t2, ..., ta]

Ua = [u1,u2, ...,ua]

Ca = [c1, c2, ..., ca]

These matrices are then used to compute the fitted values ŷ (the β̂-vector

is not computed, since it belongs in the F -space)

ŷ = ȳ + K0Ua(T
T
a K0Ua)

−1TT
a y

where ȳ is the mean of the response vector y and K0 is computed with

the mean centered matrix of explanatory variables that was used in the

algorithm. The predicted response for an independent set of explanatory

variables is given by

ŷ = ȳ + KtestUa(T
T
a K0Ua)

−1TT
a y

12

where Ktest is computed with a mean centered matrix of independent obser-

vations of the explanatory variables.

Kernel PLS allows us to construct non-linear models, but outputs less

information than ordinary PLS. We only get the scores t, but not the loading

weights w or the loading vectors p. In other words, we obtain the new

explanatory variables t, but there is no simple way of finding out how these

variables were constructed, i.e. with what non-linear combinations of the

explanatory variables.

2.3 Variable Selection with PLS

As stated in Section 2.1, variable selection methods reduce dimensionality by

selecting only the variables that are the most relevant to the response. With

that in mind, variable selection in combination with PLS regression might

seem unnecessary, as the loading weights from PLS regression already reflect

the importance of the variables in explaining the response. In principle, the

PLS regression should find the directions in the variable space spanned by

the relevant variables, and avoid the directions spanned by noise variables.

However, PLS methods are not variable selection methods, the components

from the PLS regression are linear combinations of all the original variables.

The resulting models always include all the original variables, and not a small

subset of relevant variables. This is a problem if one wishes to obtain a model

obeying the sparsity principle, the assumption that only a small subset of

all the variables measured are generating the observed response (Chun and

Keleş, 2010). Thus, one might want to combine variable selection methods

with PLS, to obtain sparse, biologically interpretable models.

13

Another motivation for variable selection with PLS, is that results from

PLS can be poor in situations with very large p and small n (Mehmood et al.,

2012). PLS estimators are not asymptotically consistent in situations where

p is larger than n and p grows faster than n (Chun and Keleş, 2010). A con-

sistent estimator gives estimates converging to the true parameter when the

number of observations n increases indefinitely (Miller et al., 2004). When

there are large numbers of irrelevant variables, the directions in the PLS

model are affected by the noise variables (Chun and Keleş, 2010). Variable

selection can then improve the performance of the PLS model.

Methods for variable selection are often separated into three main cate-

gories: filter-, wrapper- and embedded methods (Mehmood et al., 2012). In

a PLS setting, filter methods rank the variables based on the output from

the PLS regression algorithm. Wrapper methods assess subsets of variables

according to their predictive performances (Guyon and Elisseeff, 2003) and

often alternate between model fitting and variable selection (Mehmood et al.,

2012). Embedded methods modify the PLS regression algorithm such that

variable selection is performed automatically. In this thesis, the methods

discussed fall into the filter- and wrapper categories, and embedded methods

will not be discussed any further.

14

2.3.1 Filter methods

Filter methods are fast and easy to compute. The variables are ranked ac-

cording to some measure from the output of the PLS algorithm, often the

loading weight vectors w or the regression coefficients β̂. For a given num-

ber of components, the variables with loading weight or β̂ larger than some

threshold in absolute value are selected (Mehmood et al., 2012).

Keep variable xj from X (n× p) if:

|β̂j| > threshold

A common variant of this very simple filter method, is to compute T-

statistics for the β̂s based on jackknife variance estimates.

Jackknifing

Jackknifing is a resampling method which can be used for variable selection

with PLS (Karaman et al., 2013). Let the vector of regression coefficients

computed with all the n observations be called β̂. The variance of the esti-

mated regression coefficient is estimated by computing the β̂i vector for each

of n different jackknife samples (i = 1, 2, ..., n). The ith jackknife sample

contains all the observations except the ith observation, which is removed

(see Section 2.4.2 on cross-validation).

15

Let: β̂ =



β̂1

β̂2

...

β̂j

...

β̂p


, from each of the n jackknife samples we get: β̂i =



β̂i,1

β̂i,2

...

β̂i,j

...

β̂i,p


The jackknife estimate of the variance of β̂j (Tukey, 1958):

̂var(β̂j) = s(β̂j)
2 =

n− 1

n

n∑
i=1

(β̂i,j − β̄.j)2

Where β̄.j is the mean of the n β̂i,j. A T-statistic for each β̂j can then be

computed as:

Tj =
β̄.j

s(β̂j)

The T-statistics are used for selecting the most relevant variables.

Keep variable xj from X (n× p) if:

|Tj| > threshold

The advantage of jackknifing compared to simply selecting the variable

with the largest regression coefficients, is that it takes into account the un-

certainty of the regression coefficient estimates (Karaman et al., 2013).

The performance of filter methods is in general dependent on the thresh-

old, and choosing a good threshold can be difficult, see Mehmood et al. (2012)

for some suggestions.

16

2.3.2 Wrapper methods

The main difference between filter- and wrapper methods is that in wrapper

methods the PLS model is fitted several times, for different subset of vari-

ables. Wrapper methods can rank the variables based on simple measures as

in the filter methods or based on predictive performance (see Section 2.4 for

how to evaluate predictive performance). The ideal wrapper method (with

PLS) would be to fit a PLS model for all possible subsets of the p variables.

This means 2p different models and this number grows exponentially with

the number of variables. This approach guarantees to find the best possible

subset of the variables,but it is not practicable for large numbers of variables.

Since evaluating all possible subsets is generally infeasible, wrapper meth-

ods use different search algorithms that only explore a subspace of the total

search space. The search algorithms can either be deterministic or random-

ized, and this defines two categories of wrapper methods (Mehmood et al.,

2012). Randomized search algorithms use some level of randomness in se-

lecting the variables in the subsets (Mehmood et al., 2012) and therefore

generally produce different solutions for each run. Deterministic methods

produce the same solution for every run. A typical deterministic wrapper

methods is Backward variable elimination PLS. The Genetic algorithm is an

example of a randomized wrapper method.

Methods presented here and in Mehmood et al. (2012) generally do not

consider interactions between the variables. This motivates the development

of methods for variable selection with PLS that can detect variables which

influence the response through interactions.

17

2.4 Model Evaluation

Many variable selection methods depend on comparing models constructed

with different subsets of variables. Therefore it is necessary to have ways to

evaluate the performance of the models. A simple measure of the training

error is often used to evaluate models in introductory courses in statistics.

Training mean squared error (training MSE):

MSEtrain =
1

n

n∑
i=1

(yi − ŷi)2

Where ŷi are the fitted values. Training MSE is a measure of how well the

training data fits the model, but can be a bad measure of model performance.

A complicated model can fit the training data perfectly, but it is more in-

teresting how well the model predicts new observations (James et al., 2013).

Instead of measuring the training error, we need to estimate the test error,

the error of prediction when the model is tested on independent validation

data.

Test mean squared error (test MSE):

MSEtest =
1

n

n∑
i=1

(yval,i − ŷval,i)2

Where yval,i are the true response values in the validation dataset, and ŷval,i

are the response values estimated by the model. Test MSE can be used di-

rectly to compare the performance of different models: a small test MSE

means that the model accurately predicts the observations in the validation

dataset.

Two other performance measures, related to test MSE, will be used in

this thesis. The R2
prediction statistic is a proportion and hence should take

18

values between 0 and 1. It compares the test MSE of the actual model with

the test MSE of the null model. The null model is a model containing no

explanatory variables, which means that all response values in the validation

data are predicted by the mean of the response values in the training data.

If the actual model has lower test MSE than the null model, R2
prediction will

be close to 1. If otherwise R2
prediction will be close to zero or even negative.

Negative values occur when the actual model has larger test MSE than the

null model, in practise negative values are usually set equal to zero.

R2
prediction = 1−

∑n−m
i=1 (yval,i − ŷval,i)2∑n−m
i=1 (yval,i − ȳtrain)2

The second performance measure is the Root mean square error of pre-

diction (RMSEP).

RMSEP =

√∑n−m
i=1 (yval,i − ŷval,i)2

n

19

2.4.1 Validation set

The most intuitive way to estimate the test error is to randomly divide the

available data into a training set and a validation set. The model is fitted

with the training set and the responses of the observations in the validation

set are predicted using the fitted model. The performance measures are

evaluated with these predicted values and the responses in the validation

set. The model with largest R2
prediction or smallest RMSEP can be selected.

A problem with this approach is that the estimated test error can vary a lot

depending on which observations were included in the training or validation

sets (James et al., 2013). Another problem is that only a subset of the

observations are used for fitting the model, and then information might be

lost. An alternative method is cross-validation, it can be used for estimating

test MSE with training data only (Stone, 1974).

2.4.2 Leave-one-out cross-validation

To get a good estimate of the test MSE without applying the model on a val-

idation set, one can use leave-one-out cross-validation (LOOCV). The model

is fitted n times, in each iteration one of the observations is removed from the

data used in the model fitting. The model is thus fitted with the remaining

n − 1 observations. The response value of the removed observation is then

predicted by the fitted model and an estimate of the prediction error for

that observation is obtained. This is repeated for every observation, and the

LOOCV estimate of the test MSE is the mean of these squared prediction

errors (James et al., 2013).

20

LOOCV estimate of test MSE:

MSEtest =
1

n

n∑
i=1

(yi − ŷ(i))2

Where ŷ(i) is the predicted value of yi by a model fitted with all observations

except observation i.

2.5 Logistic regression

The variable ranking methods presented in this thesis were studied by simula-

tions studies (see Section 3.3). In order to determine which factors influence

the performance of the methods, the simulation results were analysed with

a logistic regression model.

Logistic regression is used when the response is binary, for example a vari-

able Z, with two possible outcomes: Z = 0 (”failure”) or Z = 1 (”success”)

(Agresti, 2007). Let π be the probability of success:

π = P (Z = 1)

In logistic regression one models the log-odds of success. A model with

explanatory variables as factors (categorical variables) might look like

log(
π

1− π
) = α + βX

i + βW
j + βXW

ij

The parameter βX
i represents the effect of category i of factor X on the log-

odds. The parameter βXW
ij represents the interaction between the factors X

and W. When the parameters in the model are estimated, it is common to

choose one category as a reference level and only estimate the parameters

belonging to the other categories of the factor. For example if factor X has

21

two categories, i = 1, 2, the βX
1 can be set to 0 and βX

2 then represents the

difference in log-odds between category 2 and 1. If βX
2 is positive, it means

that the probability π of success is larger with category 2 of factor X than

with category 1.

The importance of the terms in the model can be evaluated by likelihood-

ratio tests. For example the likelihood-ratio test statistic for the factor X

equals

LR = −2 log(
l0
l1

)

where l0 is the maximized value of the likelihood function under the null

hypothesis (βX
2 = 0) and l1 is the maximized value of the likelihood function

when the parameter does not need to be equal to 0 (Agresti, 2007). This test

statistic has a large sample chi-squared distribution under the null hypothe-

sis. If it is large enough, the null hypothesis is rejected and the factor X is

considered important for the response.

2.6 Sliced Inverse Regression for Interaction

Detection (SIRI)

Sliced Inverse Regression for Interaction Detection (SIRI) is an existing pro-

cedure for variable ranking and selection when interactions between the ex-

planatory variables are assumed. It was introduced by Jiang and Liu (2013)

and in that paper the authors investigate the properties of SIRI both as a

variable ranking method and as a variable selection method. In the context

of my thesis, the variable ranking part of SIRI is the most relevant. The

authors compare SIRI to other variable ranking methods (ISIS and DC-SIS)

by simulation studies. SIRI outperforms the other methods in the scenario

22

where the response is controlled by an interaction term (Jiang and Liu, 2013).

The performance of SIRI was compared to the performance of the methods

introduced in this thesis (see Section 4.5).

SIRI is an iterative procedure alternating between a variant of Sure inde-

pendence Screening (SIS) and stepwise selection steps based on likelihood-

ratio tests (Jiang and Liu, 2013). These tests are based on inverse models, i.e.

where one models the conditional distribution of the explanatory variables

given the response (instead of the modelling the conditional distribution of

the response given X).

SIS is a method proposed by Fan and Lv (2008). The goal is to rank

the explanatory variables and reduce the number of variables (p) from very

large to below sample size (n) in a fast and efficient way (Fan and Lv, 2008).

After this filtering step, well-studied variable selection methods can be used

to construct a good model. The SIS method ranks the variables according to

their correlation with the response, and keeps the varibles with a correlation

higher than some threshold. In the paper the authors prove that the SIS

methods has the sure screening property, i.e. the probability that all im-

portant variables are selected tends to 1 as n increases (Fan and Lv, 2008).

However this property does not hold for variables that are individually un-

correlated with the response, but take part in important interactions. An

iterative extension of SIS called ISIS is, according to the authors, able to

handle such cases.

Instead of using the correlation, the SIS procedure in SIRI uses a differ-

ent test statistic for ranking the explanatory variables. The test statistic is

23

based on the conditional distribution of the explanatory variables given the

response within different slices. Slices are disjoint groups of sorted response

observations. The slices are supposed to contain approximately the same

number of observations. The variables are scored by evaluating the con-

ditional variance of each variable within the different slices, variables with

either different means or different variance across slices are supposed to get

high scores (Jiang and Liu, 2013). This scoring method is able to identify

variables which are part of important interaction, even though they may

appear irrelevant to the response when considered separately. The authors

propose to use the variable screening to reduce the number of variables from

p to n/log(n).

24

Chapter 3

Materials and Methods

This chapter first presents the three methods that were developed for this

thesis. Then the datasets which were used to study the performance of

the methods are described, both a real dataset and the method for dataset

generation. The last section describes the protocol for the simulation studies.

3.1 New methods

The objective of the three methods described in this section is to identify

the (few) important variables in a large set of noise variables. The important

variables are assumed to be relevant predictors of the response in combina-

tions with other variables. Thus we want to find two-way interactions among

variables that are important for the prediction of the response. All three

methods produce a ranking of all the explanatory variables in the dataset.

3.1.1 Pseudoloadings Ranking (PR)

The PR method is mainly intended to be a method for an initial reduction

of the number of explanatory variables. The method may be considered as

25

a filter method, as described in 2.3. A fast and efficient method capable

of an initial reduction of the number of variables would be very useful in

combination with other (slower) methods, like IR and RIR.

1. Fit a polynomial kernel PLS model (of 2. order) with X and y.

2. Compute the pseudoloadings. Kernel PLS do not provide loading vec-

tors like ordinary PLS, but we define pseudoloading vector as

p∗h = XT
0 th

where h = 1, 2, . . . , a and a is the number of components chosen by the

user. X0 is the mean centered X matrix and th is the h-th score vector

from the kernel PLS model.

3. Compute distances. Let P be a p × a matrix with the p∗h vectors as

columns. The pseudoloadings can be used to compute an euclidean

distance measure d for each variable.

Distance for variable j, j = 1, 2, ...p: dj =
√
p∗1 + p∗2 + ...+ p∗a

where p∗h, h = 1, 2..., a are the a pseudoloading values corresponding to

variable j.

4. Filter. Filtration can be performed by discarding the variables with

the smallest distance, and we end up with a m×r matrix Xreduced with

r smaller than p.

The idea behind this method is that variables with second order interac-

tions which are important for the prediction of y will presumably get large

pseudoloadings and therefore large distance values. Figure 3.1 displays the

pseudoloadings and the corresponding distance measures when a = 2.

26

−2 0 2 4 6

−
3

−
2

−
1

0
1

2
3

Pseudoloading 1

P
se

ud
ol

oa
di

ng
 2

Figure 3.1: Pseudoloading values for 1000 variables, computed with the first two

components. Distances are calculated with these two pseudoloadings and the vari-

ables corresponding to the 20% largest distances are marked in red. The relevant

variables for this example are the two furthest points along the x-axis.

There is only one argument that can be varied in the PR method: the

number of components in the kernel PLS model. This argument will be a

factor in the simulation studies (Section 3.3).

3.1.2 Interaction Ranking (IR)

The IR method is a somewhat slower filter method than PR. It can be con-

sidered an extension of the common filtering methods for PLS described in

Section 2.3.1.

1. Compute the matrix Q of all two-way interactions between the p ex-

27

planatory variables in X. This matrix has p(p−1)
2

columns.

If: X = [x1,x2,x3, ...xp]

Then: Q = [x1 ∗ x2,x1 ∗ x3, . . . ,x1 ∗ xp,x2 ∗ x3, . . . ,xp ∗ xp]

Where ∗ is the element-wise multiplication of the vectors.

2. Combine X and Q. This large matrix, Qextended, has p+ p(p−1)
2

columns.

Qextended = [X,Q]

3. Fit a (leave-one-out cross-validated) PLS model with Qextended and y

and compute a score for all the variables and the interactions. This

score is either based on the β̂-vector or on the T-statistics from jack-

knifing (see Section 2.3.1).

4. The variables or interaction terms with the largest scores (in absolute

value) are assumed to be the most relevant predictors of y.

There are two arguments that potentially can affect the performance of

IR: the number of components in the PLS model and the scoring method

(based on the β̂-vector or on the T-statistics from jackknifing). These will

be investigated with the simulation studies.

3.1.3 Random Interaction Ranking (RIR)

The RIR method is related to randomized wrapper methods (see 2.3.2). The

general idea is to repeatedly evaluate random subsets of the explanatory vari-

ables. The variables are scored according to both the predictive performance

of the subset and the importance of each variable (with interactions).

28

Unlike the PR and IR methods, the RIR method requires the evalua-

tion of predictive performances, R2
prediction, for the ranking of the variables.

In order to calculate R2
prediction the available data has to be divided into a

training set and a validation set. This division can be done in several ways,

for example by sampling new sets in every iteration. An alternative is to

have the same training and validation sets for all iterations, and that alter-

native is presented here. One then gets the matrices Xtrain (m× p) and Xval

((n−m)×p), and the vectors ytrain (m×1) and yval ((n−m)×1), wherem < n.

In each iteration choose a random set of k explanatory variables, with

k << p:

1. We get the matrices Xk,train (m × k) and Xk,val ((n − m) × k). For

example:

Xk,train = [x3,x5,x11, ...xk]

2. Compute the matrix Qt of all two-way interactions between the k vari-

ables, this matrix has m rows and k(k−1)
2

columns.

Qt = [x3 ∗ x5,x3 ∗ x11, . . . ,x3 ∗ xk,x5 ∗ x11, . . . ,xk ∗ xk]

Where ∗ is the element-wise multiplication of the vectors. Also compute

a similar matrix Qv ((n−m)× k(k−1)
2

) with the validation set.

3. Combine Xk,train and Qt. This matrix, Qtrain, has k + k(k−1)
2

columns.

Qtrain = [Xtrain,Qt]

Combine Xk,val and Qv in a similar fashion to obtain Qval.

4. Fit a PLS model with Qtrain and ytrain, evaluate the model on Qval and

yval and compute R2
prediction for each number of components up to a

chosen number a.

29

5. Choose the number of components with maximum R2
prediction, let the

maximal R2 be called R2
max.

6. Either perform a leave-one-out (LOO) cross-validation and compute the

jackknife T-statistics or use the β̂ from the PLS model as an importance

score S. One gets k + k(k−1)
2

importance scores, one for each of the

variables and interaction terms in Qtrain.

7. Score each of the k variables in the set with a score which is combination

of the general performance of the PLS model in step 4 and a score for

each variable: the largest S among all the interactions (or the main

effect) a variable is involved in. The score for variable j (j = 1, 2, . . . , k)

is equal to

Scorej = S2
max ×R2

max

Smax = max(|S1|, . . . , |Sk|)

where |S1|, . . . , |Sk| are the absolute values of the scores computed in

step 6 corresponding to the variable j and to all the interactions which

variable j is involved in.

In each iteration the scores for the variable subset are added to the scores

from previous iterations. The procedure is repeated a large number of times,

until all the variable have been scored several times. The variables with the

highest scores are assumed to be the most relevant for predicting the response

(or involved in relevant interactions).

There are several arguments that potentially can affect the performance

of RIR: the number of variables in each iteration (v), the number of iterations

(g), the scoring method (using β̂s or T-statistics from jackknifing) and the

30

filter threshold (see below). These will be investigated with the simulation

studies.

Filtering step in RIR

If the number of relevant explanatory variables is small compared to the

total number of variables, most of the iterations in RIR will concern subsets

of variables which do not contain any relevant variables. A filtering step can

be added to the method in order to avoid using time to score subset with

low (or even negative) R2
prediction:

1. Before starting to run the iterations, the R2
prediction belonging to all the

variables is computed. R2
prediction, all is calculated by fitting a polynomial

kernel PLS model of 2. order with Xtrain and ytrain, and testing it on

Xval and yval.

2. Prior to the scoring step in each iteration (before step 6 above), the

maximal R2
prediction belonging to the subset is compared to R2

prediction, all.

If: R2
max < (R2

prediction, all − threshold) (3.1)

Then the belonging subset of variables is not scored, and the algorithm

jumps directly to the next iteration.

The threshold can be chosen by the user. For the simulation the threshold

is constant and equal to 0.1.

31

3.2 Data

3.2.1 Gene expression data

The methods described above were applied to a gene expression dataset from

Swedish aspen (Populus tremula). The data were collected by scientists from

Ume̊a Plant Science Centre (UPSC) (Torgeir Hvidsten, personal communi-

cation).

The data consist of 130 samples from 5 tree clones. The trees were about

15 meters tall and 47 years when they were cut in July 2010 in Sweden. The

26 samples from each tree were taken at different stages of wood develop-

ment, from the vascular cambium to cell death. In addition a few samples

were taken from the phloem.

Figure 3.2 above displays a cross-section of a tree stem. The phloem is the

food-conducting tissue of plants, it conducts sugars and other nutrients and

constitutes the outer part of the tree stem (Raven et al., 2005). The xylem

is the water-conducting tissue, and in trees this tissue is generally known as

wood (more precisely secondary xylem is wood) (Raven et al., 2005). The

vascular cambium is a region of embryonic tissue where new cells are formed.

During each growing season cell layers are added to the (secondary) phloem

and xylem from the vascular cambium. After their formation in the vascular

cambium, the xylem cells undergo expansion, maturation and finally pro-

grammed cell death (Hertzberg et al., 2001). This dataset thus allows us to

study the expression of genes across different developmental stages.

32

Figure 3.2: Tissues in cross-section of tree stem, from Bhalerao et al. (2003)

RNA-seq was used to determine the level of expression in the different

stages. The reads were mapped to the Populus trichocarpa transcriptome and

the expression level of each gene was quantified as Fragments Per Kilobase of

transcript per Million mapped reads (FPKM). Figure 3.3 gives the expression

levels in log(FPKM) across the developmental stages for two different genes.

The gene expression dataset contains 14 117 genes and 856 putative tran-

scription factors. Transcription factors are proteins that regulate the tran-

scription of genes by binding to DNA sequences neighbouring the regulated

genes. The expression levels of the transcription factors are thus the explana-

tory variables in the statistical analysis, whereas the expression levels of the

14 117 genes are the response variables. If a transcription factor B regulates

a specific gene A, one assumes that the expression levels of A and B will

be correlated. If two transcription factors B and C regulate A together, one

assumes that the product of the expression levels of B and C will be corre-

lated to the expression level of A. The analysis was done on one gene (i.e.

response variable) at the time. The results for ten of the genes is presented

in Section 4.6.

33

0
2

4
6

E
xp

re
ss

io
n

le
ve

l

Phloem Cambium Expanding Xylem Maturating Xylem

Figure 3.3: Expression levels in log(FPKM) of the genes POPTR 0013s11170 and

POPTR 0012s14430 (in red) across developmental stages, from phloem to mature

xylem.

Evaluation of gene expression results

As stated above, the methods in this thesis produce a ranked list of all the

explanatory variables in the analysis. In the gene expression dataset, the

explanatory variables are the expression levels of the transcription factors

(TFs). The methods allow the user to find a small set of top ranked TFs for

further investigation. When the variable ranking methods are applied to a

real dataset, the true relevant variables are not known. In this section two

methods for evaluation of the results from real datasets are presented. Both

methods use Monte Carlo tests.

34

Method 1 - Predictive performance If the variable ranking methods

perform well, a subset of top ranked variables should have a better predictive

performance than random subsets of explanatory variables of equal size M .

The following hypotheses are tested:

H0: the top ranked TFs are a random set of TFs

H1: the top ranked TFs have higher predictive performance than a random

set of TFs

Let R2
top,prediction be the predictive performance of the M top ranked vari-

ables (calculated with a polynomial kernel PLS model of 2. order, to allow

for interactions), and let R2
random,prediction be the predictive performance of a

random subset of M explanatory variables. Thousand random subsets of M

TFs are drawn and their predictive performance is evaluated. A p-value for

the test can be calculated as

p− value1 ≈
N

1000

where N is the number of subsets where R2
top,prediction ≤ R2

random,prediction.

Method 2 - Number of important interactions The variable selection

methods should find pairs of explanatory variables which have interactions

that are important for the prediction of the response, and the methods should

find more such pairs than there would be in a random subset of variables of

equal size. The following hypotheses are tested:

H0: the top ranked TFs are a random set of TFs

H1: the top ranked TFs have more pairs with important interactions than a

random set of TFs

Let numtop be the number of ”important interactions” (see definition

below) among all the pairs of the M top ranked variables , and let numrandom

35

be the number of ”important interactions” among all the pairs of a random

subset of M explanatory variables. Thousand random subsets of M TFs are

drawn and their number of important two-way interactions is calculated. A

p-value for the test can be

p− value2 ≈
N

1000

where N is the number of subsets where numtop ≤ numrandom.

One definition of ”important interactions” can be: pairs of variables where

the model with the interaction term is significantly better than the model

without.

y = β0 + β1x1 + β2x2 + β3x1x2 compared to

y = β0 + β1x1 + β2x2

This can be determined by a Williams’ t-test for the difference between two

non-independent Pearson correlations (Williams, 1959). Let

r12 = cor(yval, ŷval,inter)

r13 = cor(yval, ŷval,main)

r23 = cor(ŷval,inter, ŷval,main)

where cor() is the correlation, yval is a vector of independent response ob-

servations, ŷval,inter are the predicted values of the response vector from a

model with two main effects and an interaction term and ŷval,main are the

predicted values of the response vector from a model with only main effects.

Then a test statistic is defined as

T = (r12 − r13)
√

(m− 1)(1 + r23)

2
(
m−1
m−3

)
|R|+ (r12+r13)2

4
(1− r23)3

36

where |R| = (1 − r212 − r213 − r223) + 2r12r13r23 and m is the number of in-

dependent observations in yval. The test statistic T is t-distributed with

m− 3 degrees of freedom, the distribution can be used to assess which pairs

of variables have important interactions (with p-value for this T-test below

0.05).

3.2.2 Dataset generation

In order to assess the performance of the methods in 3.1, the methods were

applied to simulated data. When constructing artificial data, it is desirable to

be able to quantify the amount of information and noise in the data, in order

to investigate the performance of the methods in different scenarios: data

with low and high information content. For data with linear relationships

without interactions, this is relatively straightforward. The response variable

y and the relevant explanatory variables (henceforth called x1 and x2) can

be drawn together from a multivariate normal distribution.


y

x1

x2

 ∼ N



µy

µ1

µ2

 ,

σ2
y σy,1 σy,2

σy,1 σ2
1 σ1,2

σy,2 σ1,2 σ2
2




Where σ2
y, σ2

1 and σ2
2 are the variances of y, x1 and x2 respectively. The re-

lationship between the response variable and the relevant variables is decided

by the covariances σy,1 and σy,2. The covariance between the two explanatory

variables must be given so that the variance matrix above is positive-definite.

The true regression coefficients (β) of the linear model can be calculated:

37

y = β0 + β1x1 + β2x2 + ε ε ∼ N(0, σ)

β =

β1
β2

 = Σ−1
XXσXY β0 = µy − βTµx

Where ΣXX =

 σ2
1 σ1,2

σ1,2 σ2
2

 , σXY =

σy,1
σy,2

 and µx =

µ1

µ2


(3.2)

When the variables are drawn from a multivariate normal distribution

(as here), the true amount of noise and the true R2 can be calculated by the

rules of conditional normal distributions (Bickel and Doksum, 2001).

σ2 = var

y
∣∣∣∣∣∣∣
x1
x2


 = σ2

y − σT
XY Σ−1

XXσXY (3.3)

R2 =
σT

XY Σ−1
XXσXY

σ2
y

(3.4)

Data with a significant interaction term is more complicated to construct.

y = β0 + β1x1 + β2x2 + β3x1x2 + ε

Where ε ∼ N(0, σ)

Although

[
y
x1
x2

x1x2

]
is not generally multivariate normally distributed, the def-

initions in (3.3) and (3.4) may still be considered approximatively true. The

matrices ΣXX and σXY are now equal to

ΣXX =


σ2
1 σ1,2 σ1,3

σ1,2 σ2
2 σ2,3

σ1,3 σ2,3 σ2
3

 and σXY =


σy,1

σy,2

σy,3


38

The variance of the interaction is represented by σ2
3, σ1,3 and σ2,3 are the

covariances between the interaction x1x2 and x1 and x2 respectively. The

covariance between the interaction and the response is σy,3. These quanti-

ties can not be chosen indiscriminately because they are dependent on the

parameters of x1 and x2. To determine the parameters of the interaction as

a function of the parameters of x1 and x2, we use the three theorems below.

Mean, variance and covariance of quadratic forms. (Rencher and

Schaalje, 2008). Let z ∼ Np(µ, σ) and A(p× p) be non stochastic, then:

E(zTAz) = trace(AΣ) + µTAµ

var(zTAz) = 2trace((AΣ)2) + 4µTATΣAµ

cov(z, zTAz) = 2ΣAµ

To apply the theorems to this problem one can choose

z =


y

x1

x2

 and A =


0 0 0

0 0 1
2

0 1
2

0


and then one can calculate (with µ3 the expectation of the interaction)

µ3 = E(x1x2) = σ1,2 + µ1µ2 (3.5)

σ2
3 = var(x1x2) = σ2

1,2 + σ2
1σ

2
2 + µ2

2σ
2
1 + 2µ1µ2σ1,2 + µ2

1σ
2
2 (3.6)

σ1,3 = cov(x1, x1x2) = µ1σ1,2 + µ2σ
2
1 (3.7)

σ2,3 = cov(x2, x1x2) = µ1σ
2
2 + µ2σ1,2 (3.8)

σy,3 = cov(y, x1x2) = µ1σy,2 + µ2σy,1 (3.9)

The formulas (3.5) to (3.9) can be applied to calculate the parameters

for the interaction given the parameter values for x1 and x2. However, (3.9)

39

is problematic for our application. In fact this formula implies that the

interaction term does not provide any additional information apart from the

information in x1 and x2. This was discovered when calculating the true

regression coefficients for x1, x2 and x1x2.

β =


β1

β2

β3

 = Σ−1
XXσXY =

1

d


(σy,1σ

2
2 − σy,2σ1,2)(σ2

1σ
2
2 + σ2

1,2)

(σy,2σ
2
1 − σy,1σ1,2)(σ2

1σ
2
2 + σ2

1,2)

0


Where d is the determinant of the matrix ΣXX.

The calculations above demonstrated that the true regression coefficient

of the interaction, β3, is always equal to zero for this set-up. Moreover the

covariance between y and the interaction, given [x1
x2], can be shown to be

equal to zero.

cov

(y, x1x2)

∣∣∣∣∣∣∣
x1
x2


 = 0

This indicates that, for this set-up, x1 and x2 contain all the information,

and the interaction term provides nothing in addition. A solution to this

problem is to add a parameter, γ, to the covariance between y and the

interaction. The parameter γ represents the additional information in the

interaction term.

Let the new covariance be: σy,3 = cov(y, x1x2) = µ1σy,2 + µ2σy,1 + γ

40

Then: β =
1

d


(σy,1σ

2
2 − σy,2σ1,2)(σ2

1σ
2
2 + σ2

1,2) + γµ2(σ
2
1σ

2
2 − σ2

1,2)

(σy,2σ
2
1 − σy,1σ1,2)(σ2

1σ
2
2 + σ2

1,2) + γµ1(σ
2
1σ

2
2 − σ2

1,2)

γ(σ2
1σ

2
2 − σ2

1,2)

 (3.10)

with β =


β1

β2

β3

 and cov

(y, x1x2)

∣∣∣∣∣∣∣
x1
x2


 = γ

The calculations and formulas in this section contain all the necessary in-

formation for constructing data with a desired level of noise and information.

In the following section a ”recipe” and an example will be presented.

Simulation recipe

This section presents a method for constructing a response depending on two

explanatory variables and an important interaction term.

1. Decide upon an expectation vector and a covariance matrix for x1 and

x2 and draw a number of observations from the multivariate normal

distribution with that covariance matrix (and with a given expectation

vector). x1
x2

 ∼ N

µ1,2 =

µ1

µ2

 ,Σ1,2 =

 σ2
1 σ1,2

σ1,2 σ2
2




2. Choose values of β0 and β, and construct the response y with those

parameters.

y = β0 + β1x1 + β2x2 + β3x1x2 (3.11)

41

3. Compute the 3×3 covariance matrix by using the formulas (3.6), (3.7),

(3.8):

ΣXX =


σ2
1 σ1,2 σ1,3

σ1,2 σ2
2 σ2,3

σ1,3 σ2,3 σ2
3



σ2
3 = σ2

1,2 + σ2
1σ

2
2 + µ2

2σ
2
1 + 2µ1µ2σ1,2 + µ2

1σ
2
2

σ1,3 = µ1σ1,2 + µ2σ
2
1

σ2,3 = µ1σ
2
2 + µ2σ1,2

4. Compute the covariance between y and x1, and y and x2 using the rule

for covariance between linear combinations of variables (Miller et al.,

2004).

σy,1 = cov(y, x1) = cov(β0 + β1x1 + β2x2 + β3x1x2, x1) = β1σ
2
1 + β2σ1,2 + β3σ1,3

σy,2 = cov(y, x1) = β1σ1,2 + β2σ
2
2 + β3σ2,3

5. Compute the γ parameter using the formula (3.10), and then find the

covariance between y and the interaction,

γ =
β3d

σ2
1σ

2
2 − σ2

1,2

σy,3 = cov(y, x1x2) = µ1σy,2 + µ2σy,1 + γ

where d is the determinant of the covariance matrix ΣXX.

6. Now we have the vector σXY and the matrix ΣXX, and we can verify

the vector of true beta-values by the formula (3.2). We can check that

42

the values in the vector are equal to the beta-values we specified in

(3.11).

7. Decide upon a desired information level, R2, and calculate the corre-

sponding total amount of noise (σy,new).

y = β0 + β1x1 + β2x2 + β3x1x2 + ε ε ∼ N(0, σ)

σ2
y,new =

σT
XY Σ−1

XXσXY

R2

8. In order to find the noise parameter σ2 we need the to know the variance

of the response σ2
y (without added noise). To compute this we use the

rule for the variance of linear combinations of variables (Miller et al.,

2004).

σ2
y = var(y) = β2

1σ
2
1 + β2

2σ
2
2 + β3

3σ
2
3

+ 2β1β2σ1,2 + 2β1β3σ1,3 + 2β2β3σ2,3

σ2 = σ2
y,new − σ2

y

Example 2. Following the recipe above with ΣXX = [4 2.5
2.5 9], µ1 = 1, µ2 = 2,

β0 = 0, β1 = β2 = 1, β3 = 10 and R2 = 0.9. The table below gives the

theoretical results according to the calculations above, and the results from a

linear model with 1 000 000 observations.

43

Theoretical Simulated

σ2
3 77.25 77.23

σ1,3 10.5 10.47

σ2,3 14 14

σy,1 111.5 111.24

σy,2 151.5 151.50

σy,3 797 796.74

β1 1 1.10

β2 1 0.91

β3 10 9.99

R2 0.9 0.90

σ2 915 914.46

The simulated results with 1 000 000 observations are very close to the

theoretical results. The recipe presented above seems to provide an accurate

method for specifying the amount of noise in a dataset with an interaction

term.

44

3.3 Simulation studies

3.3.1 Goal

The goal of the simulation studies is to study the performance of the three

methods in Section 3.1 in a systematic way. Their performance is defined

as their ability to find few relevant explanatory variables among a large

number of noise variables. The methods are initially studied separately, and

are applied to different kinds of datasets and with different choices of method

arguments. In the following section the protocol for the simulation studies

will be presented: the dataset parameters, the method arguments and the

performance measure.

3.3.2 Procedures

The simulations are run in R. All experiments are run on fully independent

datasets, i.e. new data is randomly generated for every experiment, for every

new scenario and method. In order to reduce the variability from the data,

10 replicates for every combination of scenario and method were used.

3.3.3 Dataset generation

The datasets consist of a n × 1 response vector y, and a matrix X with n

observations of p variables. Only two among these p variables are generated

with a relationship to the response, these two variables are considered the

relevant variables and the methods are evaluated according to their ability

to find these two variables (henceforth called x1 and x2).

The response and the two relevant explanatory variables are generated ac-

45

cording to the recipe in 3.2.2. The parameters are chosen as ΣXX = [1 0.5
0.5 1],

µ1 = 0, µ2 = 0, β0 = 0 and β1 = β2 = 1. The two last dataset param-

eters that need to be specified, the interaction coefficient β3 and the true

information content R2, are allowed to vary and are further discussed in the

subsection below.

The noise variables are drawn independently from a normal distribution

with µ = 0 and σ = 1.

3.3.4 Scenarios

The performance of the methods is evaluated on 16 different scenarios, or

kinds of datasets. The scenarios are defined by four factors with two levels

each (Figure 3.1).

Levels

n 50 100

p 100 1000

β3 1 10

R2 0.2 0.9

Table 3.1: Factors defining 16 different scenarios.

The methods are studied on datasets with few observations (n = 50)

and with more observations (n = 100), and on datasets with relatively few

variables (p = 100) and with many variables (p = 1000). In addition, the sce-

narios are defined by two parameters controlling the relationship between the

response and the relevant explanatory variables: the size of the interaction

term and the relative amount of information (and noise) in the relationship

46

between the response and the relevant explanatory variables (Figure 3.2).

Information level

Low High

Interaction size
Small β3 = 1, R2 = 0.2 β3 = 1, R2 = 0.9

Large β3 = 10, R2 = 0.2 β3 = 10, R2 = 0.9

Table 3.2: The four scenarios defined by the relationship between the response and

the relevant variables. These scenarios will henceforth be called ”small interaction,

low information”, ”small interaction, high information”, ”large interaction, low

information” and ”large interaction, high information”.

3.3.5 Methods to be evaluated

Each of the three methods introduced in 3.1 have some arguments that can be

adjusted. These arguments will be factors in the analysis of the performances.

PR

As noted in Section 3.1.1, the number of components in the kernel PLS model

could influence the performance of the PR method. The components num-

ber 1, 4 and 8 are tested. The experiments are used to assess whether the

number of components used to calculate the distance, have any effect on the

ranking of the relevant explanatory variables in different situations.

Factor associated with the PR method:

• Number of components (3 levels)

47

IR

In this method, a PLS model is fitted on the extended Q matrix. The number

of components is a factor in the analysis, three levels are chosen: 1 compo-

nent, 4 components and 8 components.

In addition two different scoring methods can be used in the IR method.

One which scores the variables with the β̂ vector from the PLS model, the

other scores with the T-statistic after jackknifing.

The IR method can be used in combination with the PR method (useful

when there are many variables), and then the level of filtering from the PR

method can influence the outcome. This will be discussed in Chapter 4.

Factors associated with the IR method:

• Number of components (3 levels)

• Scoring method (2 levels)

RIR

The method arguments in RIR are the number of variables per iteration, the

number of iterations, the scoring methods (β̂s or T-statistics from jackknif-

ing) and potentially the filter threshold. However the filter threshold is not

a factor in the simulations, and is kept constant and equal to 0.1.

In order to simplify the analysis, on can let the number of iterations be a

function of the probability of drawing the relevant variables together (prob),

the number of variables (p) and the number of variables per iteration (v). It

48

can be shown that the number of iterations g is equal to:

g =
log10(1− prob)

log10(1−
v(v−1)
p(p−1))

(3.12)

Where prob is the probability of drawing the two relevant variables together

(ones, twice or more times) from a total of p variables with v variables in

each iteration.

This allows us to run the experiments with a fixed probability of drawing

the right variables together. For example if you have 100 variables and want

to be 99.9 % certain that the relevant variables are drawn together at least

once, you need to run 40, 176 or 756 iterations depending on the number of

variables per iteration (40, 20 or 10). With 1000 variables the corresponding

number are 4 420, 18 157 and 76 673.

Factors associated with the RIR method:

• Number of variables per iteration (2 levels*)

• Probability of drawing the relevant variables together (3 levels*)

• Scoring method (2 levels)

RIR with T-scoring is slower than with β-scoring, and the running time

of RIR with T-scoring is also more sensitive to the number of variables per

iterations. So while RIR with β-scoring is tested with the probabilities 0.9,

0.995 and 0.999 and with 10 and 40 variables per iteration, RIR with T-

scoring is only tested with the probabilities 0.9 and 0.995 and with 10 and

20 variables per iteration.

49

3.3.6 Performance criteria and analysis

All three methods produce a ranking of the explanatory variables where

the variables considered most important are given a high rank. The chosen

performance criteria for all the methods is the probability of ranking both

relevant variables amongst the ten most important variables. The probability

π = P (Z = 1) is defined by:

Z = 0 ⇐⇒ one or both relevant variables are not ranked among

the 10 highest ranked variables

Z = 1 ⇐⇒ both relevant variables are ranked among the 10

highest ranked variables

Other performance measures could have been chosen, the justification for

choosing this measure is that it clearly captures whether the relevant vari-

ables are given high scores, and therefore will be analysed further, or not.

Each of the simulation studies produce a vector with zeros and ones,

which is analysed by logistic regression (see Section 2.5). All explanatory

variables in this meta-model are considered categorical, as factors. I first

fitted the most complex logistic regression model possible: the model with

interactions between all the factors present (5th or 6th order interactions). I

then applied a backward elimination procedure to simplify the model as much

as possible. That is, I sequentially eliminated the least significant terms in

the model, starting with the interactions of highest order. I used the LR tests

(see Section 2.5) for this purpose. Interactions of lower order could only be

eliminated if they were not part of any significant interactions of higher order

(same with main effects).

50

Another important measure is the running time for the methods. The

running times for the three methods are compared to the running time of

an exhaustive search. An exhaustive search considers all possible pairs of

explanatory variables, fits a linear model with the two-way interaction and

main effects for all pairs, and scores them according to their predictive per-

formance on an independent validation test. The running time for exhaustive

search are shown in Table 3.3.

p = 100 7.4

p = 1000 920

Table 3.3: Running times (in seconds) for exhaustive search with few and many

variables.

The methods introduced in this thesis are supposed to have shorter run-

ning times than the exhaustive search. Running times are collected with the

R function system.time().

51

Chapter 4

Results

In this chapter the results from the simulation studies and the analysis on

real data are presented. The sections concerning the simulation studies (4.1

to 4.5) describe the results from the analysis by logistic regression. Only

significant effects are commented upon, i.e. likelihood-ratio tests with p-

value below 0.05.

4.1 PR

Time

The Pseudoloadings Ranking is a very fast method. The Table 4.1 gives the

running times (in seconds) for four different combinations of p and n. As

expected, larger X matrices require longer time. More components in the

distance calculations also requires longer time.

52

p = 100, n = 50 0.003

p = 100, n = 100 0.004

p = 1000, n = 50 0.006

p = 1000, n = 100 0.011

Table 4.1: Running times for PR (in seconds) for four combinations of p and n

(averaged over 40 experiments each)

Performance

As expected the ranking of the relevant variables is significantly improved

by an increased information content in the data (Figure 4.1). Increasing

the number of observations also has a positive effect. Another expected

effect is that increasing the number of noise variables has an adverse effect

(Figure 4.1).

53

1 4 8

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

1 4 8

0.
0

0.
4

0.
8

1 4 8

0.
0

0.
4

0.
8

1 4 8

0.
0

0.
4

0.
8

1 4 8

0.
0

0.
4

0.
8

Number of components

P
ro

po
rt

io
n

1 4 8

0.
0

0.
4

0.
8

1 4 8

0.
0

0.
4

0.
8

Number of components

1 4 8

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.1: Proportion of experiments where the PR method ranked the relevant

variables among the 10 most important variables (1920 experiments). Effect of

number of explanatory variables and number of components.

The method performs quite well in situations with a small interaction

compared to the main effects, but the performance is significantly reduced

when the interaction is large (Figure 4.1). Increasing the number of com-

ponents has a overall negative effect, however when the interaction term is

large the negative effect is less pronounced or even reversed (Figure 4.1).

54

4.2 IR

4.2.1 IR with β-scoring

Time

The IR method with β-scoring is slower than PR, but still quite fast (Ta-

ble 4.2). However the use of the IR method can be restricted by memory

limitations (this is discussed in Chapter 5).

p = 100 0.34

p = 1000 42.06

Table 4.2: Running times (in seconds) for IR with β-scoring for few and many

variables (average of 240 experiments each)

Performance

The performance of IR with β-scoring is not significantly related to the num-

ber of components in the analysis. An increased number of observations has

a positive effect and more noise variables has a negative effect, just as for PR

(and as expected) (Figure 4.2). While the PR method performed worse for

scenarios with large interaction, the opposite is the case for the IR method:

the performance is significantly better when the interaction term is large.

55

50 100

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

Number of observations

P
ro

po
rt

io
n

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

Number of observations

50 100

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.2: Proportion of experiments where the IR method with β-scoring ranked

the relevant variables among the 10 most important variables (480 experiments).

Effect of number of explanatory variables and number of observations.

4.2.2 IR with T-scoring

Time

Because of the cross-validation, IR with T-scoring is a much more time con-

suming method than IR with β-scoring (Table 4.3).

Due to the increased running times, IR with T-scoring could not be used

on the entire X matrix when p = 1000 (this would take up to 4000 seconds per

experiment). For those scenarios, IR was run only on the 250 highest scored

variables from PR. In some experiments the relevant explanatory variables

were not among the top 250 after PR-filtration, and the experiment was then

stopped. The results in Table 4.4 seem consistent with the analysis of PR

56

p = 100, n = 50 7.38

p = 100, n = 100 23.78

p = 250, n = 50 46.91

p = 250, n = 100 165.4

Table 4.3: Running times (in seconds) for IR with T-scoring for few and many

variables (the two first are based on 120 experiments each, the third is based on 79

and the last on 83)

(Section 4.1). In the subsequent analysis, the experiments without scoring

with IR are disregarded (as this is in fact an effect from PR).

Small interaction, low information 0.08

Small interaction, high information 0

Large interaction, low information 0.75

Large interaction, high information 0.47

Table 4.4: Proportion of experiments where the relevant variables were not scored

with the IR method (because they were discarded by PR).

Performance

Just as for the other methods, the performance of IR with T-scoring is posi-

tively affected by increasing the number of observation and the information

content, whereas increasing the number of noise variables is negative for the

performance. Just like IR with β-scoring, IR with T-scoring performs better

when the interaction term is large. The effect of increasing the number of

components in the analysis is in general negative, but is not so clear (Fig-

ure 4.3).

57

1 4 8

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

1 4 8

0.
0

0.
4

0.
8

1 4 8

0.
0

0.
4

0.
8

1 4 8

0.
0

0.
4

0.
8

1 4 8

0.
0

0.
4

0.
8

Number of components

P
ro

po
rt

io
n

1 4 8

0.
0

0.
4

0.
8

1 4 8

0.
0

0.
4

0.
8

Number of components

1 4 8

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.3: Proportion of experiments where the IR method with T-scoring ranked

the relevant variables among the 10 most important variables (480 experiments).

Effect of number of explanatory variables and number of components.

In Figure 4.4, one can observe that the negative effect of increasing the

number of noise variables can almost be eliminated by increasing the number

of observations.

58

50 100

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

Number of observations

P
ro

po
rt

io
n

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

Number of observations

50 100

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.4: Proportion of experiments where the IR method with T-scoring ranked

the relevant variables among the 10 most important variables (480 experiments).

Effect of number of explanatory variables and number of observations.

59

4.2.3 Comparing the scoring methods

Comparing scoring methods when there are few variables

There is no significant difference between the methods when comparing their

performance for a small number of noise variables (p = 100) (Figure 4.5).

1 2

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

Scoring method

P
ro

po
rt

io
n

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

Scoring method

1 2

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

50 observations 100 observations

Figure 4.5: Proportion of experiments where the relevant variables were ranked

among the 10 most important variables (480 experiments). Scoring method 1 is

IR with β-scoring, method 2 is IR with T-scoring.

Comparing scoring methods in general

In order to do a fair comparison between the scoring methods, IR with β-

scoring is run again with PR-filtration first (the number of not-scored exper-

iments are similar to with T-scoring, as expected). The analysis that follows

is based on 960 experiments (where 799 are actually scored with IR).

60

1 2

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

Scoring method

P
ro

po
rt

io
n

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

Scoring method

1 2

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.6: Proportion of experiments where the relevant variables were ranked

among the 10 most important variables (799 experiments). Scoring method 1 is

IR with β-scoring, method 2 is IR with T-scoring.

However this analysis reveals no general significant difference between

the two scoring methods. Scoring with T-scores seems to perform worse

than scoring with βs when there is a high information content, especially

when there are many noise variables (Figure 4.6).

61

4.3 RIR

4.3.1 RIR with β-scoring

Time

RIR is a much slower method than PR and IR. The time increases notably

with the number of variables, and also increases with the number of obser-

vations and the probability of drawing the relevant variables together (Ta-

ble 4.5). However, the time decreases when the number of variables per

iteration increases (v).

prob = 0.9 prob = 0.995 prob = 0.999

p = 100, n = 50, l = 10 1.7 3.7 4.7

p = 100, n = 50, l = 40 1.2 2.5 3.4

p = 100, n = 100, l = 10 2.3 5.1 6.1

p = 100, n = 100, l = 40 2.1 4.0 5.3

p = 1000, n = 50, l = 10 155.3 366.7 482.7

p = 1000, n = 50, l = 40 112.4 249.9 328.4

p = 1000, n = 100, l = 10 193.6 460.8 608.1

p = 1000, n = 100, l = 40 157.8 344.7 452.2

Table 4.5: Running times (in seconds) for RIR with β-scoring for different sce-

narios (based on 10 experiments each for prob=0.9, on 40 or a little less for

prob=0.995)

On average, 84% of the iterations are skipped because of the filter thresh-

old in RIR (see 3.1.3). In some experiments when there are few explanatory

variables, all iterations are skipped because none of the random variables set

had more predictive power than the entire dataset. Those experiments were

62

removed from this analysis.

Performance

Figure 4.7 illustrates how the performance of RIR with β- scoring is positively

affected by increased information content. Increasing the number of noise

variables has no effect (even slightly positive) when the interaction term is

small, but when the interaction is large the performance is greatly reduced

when the number of noise variables increases. This is especially evident when

there is low information.

0.9 0.995 0.999

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

0.9 0.995 0.999

0.
0

0.
4

0.
8

0.9 0.995 0.999

0.
0

0.
4

0.
8

0.9 0.995 0.999

0.
0

0.
4

0.
8

0.9 0.995 0.999

0.
0

0.
4

0.
8

Probability

P
ro

po
rt

io
n

0.9 0.995 0.999

0.
0

0.
4

0.
8

0.9 0.995 0.999

0.
0

0.
4

0.
8

Probability

0.9 0.995 0.999

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.7: Proportion of experiments where the RIR method with β-scoring ranked

the relevant variables among the 10 most important variables (950 experiments).

Effect of number of explanatory variables and probability of drawing the relevant

variables together.

63

The performance is positively affect by an increased probability of draw-

ing the relevant variables together (significant difference between 0.9 and

0.995/0.999). This is not surprising as the increased probability means a

larger number of iterations. The difference is not very large however, and

the figure suggests that increasing the probability may be most useful in the

most difficult scenario (low information, large interaction).

A large number of observations is as expected positive for the perfor-

mance. A smaller number of variables per iteration is beneficial for the

result, and this is especially apparent when the number of observations is

large (Figure 4.8).

50 100

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

Number of observations

P
ro

po
rt

io
n

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

Number of observations

50 100

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

10 variables per it. 40 variables per it.

Figure 4.8: Proportion of experiments where the RIR method with β-scoring ranked

the relevant variables among the 10 most important variables (950 experiments).

Effect of number of variables per iteration and number of observations.

64

4.3.2 RIR with T-scoring

Time

Because of cross-validation RIR with T-scoring is in general somewhat slower

than RIR with β-scoring. As with the related method, the time increases

with p, n and prob and decreases when v, the number of variables per itera-

tion, increases from 10 to 20 (Table 4.6).

prob = 0.9 prob = 0.995

p = 100, n = 50, l = 10 1.0 7.4

p = 100, n = 50, l = 20 0.9 5.4

p = 100, n = 100, l = 10 1.5 9.5

p = 100, n = 100, l = 20 1.3 8.1

p = 1000, n = 50, l = 10 224.7 696.5

p = 1000, n = 50, l = 20 243.6 530.8

p = 1000, n = 100, l = 10 378.7 733.3

p = 1000, n = 100, l = 20 285.9 651.2

Table 4.6: Running times (in seconds) for RIR with T-scoring for different sce-

narios (based on 40 experiments each or a little less).

The filtration step in the RIR algorithm assures that a large proportion

of the variable sets are not scored (because they have less predictive power

than the entire dataset). On average 88% of the variables sets are skipped.

As for RIR with β-scoring, a few of the experiments skipped all the iterations

and no variables were scored. These were removed from this analysis.

65

Performance

High information is (as always) beneficial for the performance of the method

(Figure 4.9). Increasing the number of noise variables is only detrimental

in the scenarios with large interaction terms. Contrary to expectations, an

increase in the probability of drawing the relevant variables together does

not lead to an large increase in the performance, except when p is large

and especially in the high information, large interaction scenario. Drawing

10 variables per iteration is significantly better than drawing 20 variables,

but this effect is attenuated when the number of observations is large (Fig-

ure 4.10). A large number of observation is generally positive.

0.9 0.995

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

0.9 0.995

0.
0

0.
4

0.
8

0.9 0.995

0.
0

0.
4

0.
8

0.9 0.995

0.
0

0.
4

0.
8

0.9 0.995

0.
0

0.
4

0.
8

Probability

P
ro

po
rt

io
n

0.9 0.995

0.
0

0.
4

0.
8

0.9 0.995

0.
0

0.
4

0.
8

Probability

0.9 0.995

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.9: Proportion of experiments where the RIR method with T-scoring ranked

the relevant variables among the 10 most important variables (636 experiments).

Effect of number of explanatory variables and probability of drawing the relevant

variables together.

66

50 100

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

Number of observations

P
ro

po
rt

io
n

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

Number of observations

50 100

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

10 variables per it. 20 variables per it.

Figure 4.10: Proportion of experiments where the RIR method with T-scoring

ranked the relevant variables among the 10 most important variables (636 experi-

ments). Effect of number of variables per iteration and number of observations.

67

4.3.3 Comparing the scoring methods

Is the slower scoring method (T-scoring) better than the faster? When the

methods are compared with equal settings (both with prob = 0.995 and

v = 10) there is no significant difference between them (Figure 4.11).

1 2

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

Scoring method

P
ro

po
rt

io
n

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

Scoring method

1 2

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.11: Proportion of experiments where the relevant variables were ranked

among the 10 most important variables (320 experiments). Scoring method 1 is

RIR with β-scoring, method 2 is RIR with T-scoring.

68

4.4 Comparing IR and RIR

The methods IR and RIR are also compared, each with their best settings.

For RIR: β-scoring, v = 10, prob = 0.999; and for IR: β-scoring, without

PR-filtrering, 1 component. Each method has 160 experiments. The RIR

method performs significantly better than the IR method in general. But

as Figure 4.12 demonstrates the difference between the methods, originates

mainly from the small interaction scenarios (and especially when p is large).

1 2

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

Method

P
ro

po
rt

io
n

1 2

0.
0

0.
4

0.
8

1 2

0.
0

0.
4

0.
8

Method

1 2

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.12: Proportion of experiments where the relevant variables were ranked

among the 10 most important variables (based on 320 experiments), Method 1 is

IR with β-scoring, method 2 is RIR with β-scoring.

69

4.5 SIRI

4.5.1 Time and Performance

SIRI was run with 2 slices, and with 2 iterations. The SIRI procedure from

Jiang and Liu (2013) is very fast (Table 4.7). The running time clearly

increases more slowly with p than it does for the IR or RIR methods.

p = 100 0.38

p = 1000 2.72

Table 4.7: Running times (in seconds) for SIRI for few and many variables (av-

erage of 240 experiments each)

The performance of the SIRI procedure is greatly reduced when the in-

formation content is small compared with when it is large. The performance

also decreases when the number of noise variables is large (Figure 4.13).

70

50 100

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

Number of observations

P
ro

po
rt

io
n

50 100

0.
0

0.
4

0.
8

50 100

0.
0

0.
4

0.
8

Number of observations

50 100

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.13: Proportion of experiments where the SIRI procedure ranked the rel-

evant variables among the 10 most important variables (480 experiments). Effect

of number of variables per iteration and number of observations.

4.5.2 Comparing with IR and RIR

The performance of SIRI is significantly worse than the performance of both

IR with β-scoring and RIR with β-scoring (same settings as in 4.4) (Fig-

ure 4.14).

71

1 2 3

0.
0

0.
4

0.
8

P
ro

po
rt

io
n

1 2 3

0.
0

0.
4

0.
8

1 2 3

0.
0

0.
4

0.
8

1 2 3

0.
0

0.
4

0.
8

1 2 3

0.
0

0.
4

0.
8

Method

P
ro

po
rt

io
n

1 2 3

0.
0

0.
4

0.
8

1 2 3

0.
0

0.
4

0.
8

Method

1 2 3

0.
0

0.
4

0.
8

Low information High information

Small
interaction

Large
interaction

100 variables 1000 variables

Figure 4.14: Proportion of experiments where the relevant variables were ranked

among the 10 most important variables (based on 800 experiments), Method 1 is

IR with β-scoring, method 2 is RIR with β-scoring and method 3 is SIRI.

72

4.6 Gene expression data

The methods IR and RIR were used to identify the relevant explanatory

variables of ten genes (the responses variables). The explanatory variables

are the expression levels of the 856 putative transcription factors (TFs).

4.6.1 IR

The data are analysed with IR with β-scoring and 1 component. The average

running time of IR is 30 seconds for each gene. IR outputs a ranked list of all

TFs and pairs of TFs. However, the 45 highest ranked explanatory variables

are almost exclusively pairs. Many TFs appeared several times among the

top 45, and the top pairs consist of 33 to 46 unique TFs.

Genes R2
prediction all R2

prediction top 10 p-value

POPTR 0001s10400 0.94 0.93 0.045

POPTR 0012s14430 0.99 0.99 0.010

POPTR 0017s12100 0.96 0.91 0.074

POPTR 0007s00290 0.94 0.91 0.021

POPTR 0008s02680 0.93 0.90 0.293

POPTR 0006s28140 0.92 0.92 0.007

POPTR 0009s15840 0.96 0.97 0.008

POPTR 0013s11170 0.97 0.96 0.025

POPTR 0001s15590 0.95 0.95 0.126

POPTR 0018s11390 0.85 0.78 0.556

Table 4.8: R2
prediction for the entire dataset and for the ten best TFs from IR, with

corresponding p-values.

73

The results are first evaluated with method 1 from 3.2.1. The predictive

performance of the ten unique TFs belonging to the highest ranked pairs was

compared with the predictive performance of random sets of ten TFs. For six

among the ten genes, the top ranked set has a significantly higher predictive

performance than random sets (Table 4.8). However, the predictive perfor-

mance with the ten best TFs is generally identical or slightly lower than the

performance of the entire dataset.

Another evaluation method is described in Section 3.2.1, concerning the

ability of the method to discover ”important interactions”, i.e. interactions

that significantly improve the prediction. The 45 highest ranked pairs of

TFs are evaluated according to that method (for a few of the genes only 44

pairs, because a single TF was ranked in the top 45) . The results are shown

in Table 4.9. For several of the genes a significant number of important

interactions is identified.

74

Genes Important interactions p-value

POPTR 0001s10400 4 0.930

POPTR 0012s14430 35 0.000

POPTR 0017s12100 9 0.035

POPTR 0007s00290 7 0.159

POPTR 0008s02680 23 0.000

POPTR 0006s28140 3 0.759

POPTR 0009s15840 42 0.000

POPTR 0013s11170 24 0.000

POPTR 0001s15590 19 0.000

POPTR 0018s11390 2 0.967

Table 4.9: Number of important interactions and corresponding p-values for the

45 highest ranked pairs of TFs from IR.

4.6.2 RIR

The data are analysed with RIR with β-scoring, 10 000 iterations and 20

variables per iterations. The average running time of RIR is 302 seconds per

gene. The skipping threshold is set to 0 (see 3.1.3). The proportion of sets

that are skipped varies from 19 % to 97 %, with an average value of 58 %.

As expected, the time increases when the proportion of skipped set decreases.

RIR outputs a ranked list of all TFs. The ten highest ranked TFs are

evaluated with method 1 from 3.2.1. The predictive performance of this set

is compared with the predictive performance of random sets of ten TFs. Four

genes have top ranked TFs with a significantly larger predictive performance

(Table 4.10).

75

Genes R2
prediction all R2

prediction top 10 p-value

POPTR 0001s10400 0.94 0.91 0.152

POPTR 0012s14430 0.99 0.99 0.038

POPTR 0017s12100 0.96 0.93 0.014

POPTR 0007s00290 0.94 0.91 0.024

POPTR 0008s02680 0.93 0.91 0.179

POPTR 0006s28140 0.92 0.86 0.290

POPTR 0009s15840 0.96 0.97 0.005

POPTR 0013s11170 0.97 0.93 0.297

POPTR 0001s15590 0.95 0.96 0.074

POPTR 0018s11390 0.85 0.86 0.128

Table 4.10: R2
prediction for the entire dataset and for the 10 best TFs from IR, with

corresponding p-values for the 10 highest ranked TFs for each gene.

The ten top ranked TFs can form 45 different interaction pairs. The num-

ber of ”important interactions” among these 45 pairs is used as an evaluation

criteria according to method 2 in 3.2.1. Five genes have top ranked TFs with

a larger number of important interactions than would have been expected by

chance (Table 4.11).

76

Genes Important interactions p-value

POPTR 0001s10400 11 0.271

POPTR 0012s14430 18 0.002

POPTR 0017s12100 5 0.404

POPTR 0007s00290 17 0.003

POPTR 0008s02680 17 0.012

POPTR 0006s28140 8 0.111

POPTR 0009s15840 14 0.012

POPTR 0013s11170 14 0.017

POPTR 0001s15590 8 0.255

POPTR 0018s11390 4 0.710

Table 4.11: Number of important interactions and corresponding p-values for the

45 pairs from the 10 highest ranked TFs from RIR for each gene

Unlike IR, RIR is a randomized method which produces different results

for every run. The consistency of the method is therefore studied. The

method is run twice (with the same parameters) on the same genes and the

results are compared in Table 4.12. The two runs find somewhat similar

TFs, and have similar conclusions on the tests from method 2 for most of

the genes.

77

Genes Top 42 Similar p-value

POPTR 0001s10400 26 yes

POPTR 0012s14430 13 yes

POPTR 0017s12100 24 no

POPTR 0007s00290 26 yes

POPTR 0008s02680 20 yes

POPTR 0006s28140 27 yes

POPTR 0009s15840 24 yes

POPTR 0013s11170 12 almost

POPTR 0001s15590 25 almost

POPTR 0018s11390 21 yes

Table 4.12: Number of similar TFs among the top 5% (42) TFs for two runs of

RIR, also noted if the two runs had similar p-values (below or over 0.05) for the

number of important interactions.

4.6.3 Comparing IR and RIR

The RIR and IR methods have similar goals and should therefore identify

similar TFs when run for the same genes. The 42 highest ranked TFs from

(the first run of) RIR and the 42 TFs constituting the highest ranked pairs

from IR are compared (Table 4.13). The results overlap to a certain degree

but not completely. The p-values from the test on the number of important

interactions (method 2) are also compared, for eight out of the ten genes the

two methods conclude in similar manner, i.e. both methods either find a sig-

nificant number of important interactions or do not. For genes number 2,5,7

and 8 both methods report a significant number of important interactions.

78

Genes Top 42 Similar p-value

POPTR 0001s10400 18 yes

POPTR 0012s14430 12 yes

POPTR 0017s12100 18 yes

POPTR 0007s00290 7 no

POPTR 0008s02680 7 yes

POPTR 0006s28140 8 yes

POPTR 0009s15840 8 yes

POPTR 0013s11170 5 yes

POPTR 0001s15590 6 no

POPTR 0018s11390 10 yes

Table 4.13: Number of similar TFs among the top 5% (42) TFs for RIR and IR,

also noted if the two runs had similar p-values (below or over 0.05) for the number

of important interactions.

For gene number 2 (POPTR 0012s14430) the pair of TFs found by RIR

with the most significant difference between the performance of models with

and without interaction term was ”POPTR 0014s03590 POPTR 0012s03650”.

The model with interaction term has an R2
prediction of 0.98, while the model

without has an R2
prediction of 0.91. Figure 4.15 plots the gene expression of

POPTR 0012s14430 for two trees with the expression of this TF pair.

79

0
2

4
6

8

E
xp

re
ss

io
n

le
ve

l

Phloem

Cambium

Exp
anding Xyle

m

Maturatin
g Xyle

m

Phloem

Cambium

Exp
anding Xyle

m

Maturatin
g Xyle

m

Figure 4.15: Expression level of the gene POPTR 0012s14430 (in black) and two

”best” TFs found by RIR (in blue and green).

For gene number 5 (POPTR 0008s02680) the pair of TFs found by IR

with the most significant difference between the performance of models with

and without interaction term was ”POPTR 0014s02530 POPTR 0002s04440”.

The model with interaction term has an R2
prediction of 0.88, while the model

without has an R2
prediction of 0.75. Figure 4.16 plots the gene expression of

POPTR 0008s02680 for two trees with the expression of this TF pair.

80

0
2

4
6

8

E
xp

re
ss

io
n

le
ve

l

Phloem

Cambium

Exp
anding Xyle

m

Maturatin
g Xyle

m

Phloem

Cambium

Exp
anding Xyle

m

Maturatin
g Xyle

m

Figure 4.16: Expression level of the gene POPTR 0008s02680 (in black) and two

”best” TFs found by IR (in blue and green).

81

Chapter 5

Discussion

Identifying the most relevant variables in a high-dimensional problem can

be useful both for subsequent model construction and for further biologi-

cal investigation. The methods proposed in this thesis seek to address this

problem in situations where one assumes two-way interactions between the

explanatory variables. The need to include interactions in statistical models

can arise in many different fields, notably in biology, for example when con-

sidering gene expression. The expression of genes in living cells is controlled

by transcription factors (TFs), which usually function in groups rather than

individually (Chen et al., 2012).

Three methods for interaction detection are proposed. The methods pro-

duce a ranked list of all explanatory variables, or pairs of explanatory vari-

ables in the case of IR. The first method, PR, uses the score vectors from

a polynomial kernel PLS model of second order to compute pseudoloadings.

The explanatory variables are then scored with a distance measure based on

these pseudoloadings. The IR method is an extension of common filtering

methods for PLS (see Section 2.3.1), but applies them to an extended X ma-

82

trix with all the candidate two-way interaction terms in addition to the main

effects. Unlike the two first methods, the third method, RIR, is randomized

and scores the variables by repeatedly selecting subsets of variables and fit-

ting a PLS model on the extended matrix of all main effects and two-way

interaction terms for the subset.

The first section of this chapter describes some other methods related to

the goals of this thesis. The next section discusses the findings from the sim-

ulation studies and some problems concerning the PR, IR and RIR methods.

In the following section, the findings for the gene expression data are briefly

discussed. In addition the methods used for evaluation are examined and

some alternatives are proposed. The last section is a conclusion.

5.1 Related research

There exists a large literature on variable selection, but there are relatively

few papers on variable selection involving interactions (Radchenko and James,

2010). As mentioned in the introduction (2.1), I distinguish between meth-

ods for variable ranking and variable selection. The methods treated in this

thesis are variable ranking methods, and some alternative methods with sim-

ilar goals will be described first. Then a few variable selection methods that

could be used in combination with my methods will be mentioned.

Section 2.6 already describes SIS and SIRI. Variants of SIS are used to

rank explanatory variables according to relevance and thus have the same

goal as my methods. All SIS-based methods score the variables individu-

ally without explicitly considering the interaction terms, but if the ranking

83

statistic is well chosen, interaction are supposed to be included (for example

in SIRI). In addition to ISIS (iterative SIS) and SIRI, DC-SIS is a SIS-based

method that is able to select variables that are important through interac-

tions. DC-SIS uses distance correlation to rank the explanatory variables (Li

et al., 2012). Both SIRI and SIS are applicable to a broader set of non-linear

situations than my methods. According to Jiang and Liu (2013), SIRI does

not require any assumptions on the relationship between the response and

the explanatory variables, and this relationship can for example be a rational

model.

After using an effective variable ranking method to reduce the number of

variables, a variable selection method can be applied to construct a model.

An important group of variable selection methods are based on penalized

regression, like LASSO (Tibshirani, 1996) or SCAD (Fan and Li, 2001). A

few of these methods allow for interactions, for example hierNet (Bien et al.,

2013) and VANISH (Radchenko and James, 2010). Both hierNet and VAN-

ISH are regularized regression methods with penalty functions that include

interaction terms. Both methods also assume that the interactions belong to

non-zero main effects (Radchenko and James, 2010). Other types of variable

selection methods are forward-addition/backward-deletion methods like the

aforementioned variable selection part of SIRI. There are also several vari-

able selection methods for PLS (some are mentioned in Section 2.3 and in

Mehmood et al. (2012)).

84

5.2 Simulation studies

All three methods (and SIRI) are investigated with simulations on the same

scenarios. As expected all methods perform better in situations with fewer

noise variables, more observations and higher information content (true R2).

The methods differ in their general performance and in their ability to find

the relevant variables when the interaction term is large compared with the

main effects.

The simulations demonstrate that the PR method is not suitable for

identifying the relevant explanatory variables when the interaction between

them is large and the main effects are small (see Figure 4.1). Contrary to

expectations variables with important interaction terms did not get large

pseudoloadings. The reason is that when the interaction term is dominant

compared to the two main effects, the score vector t is nearly proportional to

the interaction term. In that case it can be shown that the pseudoloadings

of the relevant variables are approximately proportional to the covariances

between the relevant variables and their interaction term

p∗ = XT
0 t =

xT
1 t

xT
2 t

 ∝
∼

cov(x1, x1x2)

cov(x2, x1x2)


According to the formulas (3.7) and (3.8) the covariances between the rele-

vant variables and the interaction term are equal to 0 when the expectations

of the explanatory variables is 0. This explains the low performance of PR

in the simulation scenarios with large interaction, because the variables were

constructed with expectations equal to 0. When the simulations are repeated

with variables generated with non-zero expectations, the performance in the

large-interaction scenarios is improved and the results are similar for the sce-

narios with small and large interactions. However this does not solve the

85

problem with the PR method, its ability to find large interactions is depen-

dent on the relationship between the relevant variables and their interaction.

Unlike PR, the IR method performs better in scenarios with large inter-

action terms than in scenarios with small interactions (see Figure 4.12). In

general the IR method has a good performance in the simulations, but the

use of IR is limited by memory requirements: when n = 100 and p = 1000 the

method requires handling of a 100× 500500 matrix and the number columns

increase rapidly with p. This fact and the running times in Table 4.2 reveal

that although the IR method is much faster than the exhaustive search, the

running time of the IR method still increases in a quadratic way according

to p. This means that if the number of variables is multiplied by 10, the

running time is multiplied by 102 = 100. Because of the increasing time and

memory requirements, the use of the IR method is dependent on effective

filter methods for use in very high-dimensions.

The RIR method performs well for situations with both small and large

interactions (Figure 4.12). The simulations indicate that the performance is

dependent on three elements (see below). Examining these three elements,

may clarify how the choice of arguments in the RIR method affect the per-

formance. The performance depends on:

• The number of times the relevant variables are drawn together

• The number of times the variables are drawn together in an informative

subset (of variables), i.e. that has a predictive performance greater

than the performance of all the variables (see Formula (3.1))

• The number of times the relevant variables are given the highest score

86

among the variables in the subset, when they are drawn together in an

informative subset.

The first element is a function of the total number of variables (p), the

number of iterations (g) and the number of variables per iteration (v), as I

demonstrated for the two-relevant-variables case in (3.12).

The second element is dependent on the information content (the relation

between the response and the relevant variables), the number of variables

per iteration and the filter threshold (see Section 3.1.3). If the predictive

performance of all the variables is considerably larger than zero, the filter

threshold will greatly affect the proportion of subsets that are scored (i.e.

not discarded). A higher threshold will allow more subsets to be scored.

With the constructed datasets the predictive performance of all the variables

is often close to zero, so a subset of variables just has to have a predictive

performance greater than zero in order to be scored (i.e. to avoid being

filtered out). In these situations the filter threshold will not have much

effect. Surprisingly, subsets containing both relevant variables can have a

relatively low probability of getting an R2
prediction larger than zero. This

probability decreases with lower information content, as expected, and with

higher number of variables per iterations (Figure 5.1). Only the two scenarios

with low information are represented in the figure, because this is not an issue

when the information content is high.

Thus, a larger number of variables per iterations increases the risk of

discarding subsets containing the relevant variables. This indicates that one

should avoid choosing to many variables per iteration, but this may be de-

pendent on the type of dataset.

87

5 10 15 20 25 30 35 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of variables per iteration

P
ro

po
rt

io
n

Small interaction, low information
Large interaction, low information

Figure 5.1: Proportion of experiments where subsets containing the relevant vari-

ables have a predictive performance larger than 0, evaluated for different subset

sizes (number of variables per iteration). Only for scenarios with low information

(1000 experiments for each scenario).

The last element also depends on the relationship between the the re-

sponse and the relevant variables and the number of variables per iteration,

and in addition the scoring method. The probability of the relevant variables

being given the highest scores increases with increasing information content,

larger interaction and smaller number of variables per iterations.

To sum up, more variables per iteration allows us to explore the variable-

space faster, but increases the risk of hiding the relevant variables in noise

when they are drawn together. The optimal choice of number of variables

per iteration probably depends on the type of data, but a number close to

88

10 seems reasonable for many situations. The choice of filter threshold is

not very important if the predictive performance of all the variables is close

to zero. However, if a model with all the explanatory variables has a high

predictive performance, as is the case with the gene expression dataset used

in this thesis, the threshold should be chosen with care. A larger threshold

leads to scoring of more variable subsets and increased running time, whereas

a small threshold in combination with a large number of variables per itera-

tion may result in the discarding of all variable subsets.

Like IR, RIR is faster than an exhaustive search, but the running time

can be considered to increase in a quadratic way. The running time for RIR

is dependent on the number of iterations, but when keeping a constant prob-

ability of drawing the relevant variables together, the number of iterations

has to increase with p according to (3.12). This function is limited by a

quadratic function, and the RIR method can therefore be considered to run

in quadratic time.

Both the IR and RIR methods performs better than SIRI in these simula-

tion studies. SIRI seems to perform worse than expected compared with the

simulations in Jiang and Liu (2013). This can be explained by the relative

low number of observations used in my simulation studies. SIRI scores the

variables by evaluating their conditional variance within different slices of the

response (see Section 2.6). The performance increases with a larger number

of slices, but only if there are 40 or more observations in each slice (Jiang

and Liu, 2013). With only 50 and 100 observations, a large number of slices

with many observations in each slice can not be obtained, and this probably

reduces the performance. Unlike IR and RIR, the running time of SIRI in-

89

creases linearly with the number of variables (Jiang and Liu, 2013). This is

a very attractive feature for a variable ranking method for high-dimensions.

5.3 Gene expression data

The two most successful methods from the simulation studies, IR and RIR,

were applied to 10 genes from the gene expression dataset of Populus trem-

ula (see Section 4.6). Both methods were used with simple β-scoring, as

T-scoring is slower and did not significantly improve the results in the sim-

ulations.

Both methods identified transcription factors (TFs) with important in-

teractions, for example in the Figures 4.15 and 4.16. Figure 4.15 show how

the gene expression follows the expression of the first TF, but is repressed

when the other TF is expressed. In Figure 4.16 the gene is only expressed

when both TFs also are. Two runs of RIR produced quite similar results,

indicating that the ranking is quite consistent from run to run. Although

there was some overlap between the top ranked TF from IR and RIR, the

methods did not identify the same ”important” interactions (as defined in

Section 3.2.1). Since the truth is not known for real data applications, two

evaluation methods were proposed in Section 3.2.1.

The first evaluation method compares the predictive performance of the

ten highest ranked TFs with the predictive performance of random subsets

of TFs. IR obtained a significant p-value for six genes and RIR for only

four. However this evaluation method might not be suitable considering the

goal of the methods. As stated several times, the methods only rank all the

90

variables according to relevance, and do not claim to identify the subset of

variables that predicts the response in the best possible way.

The second evaluation method assesses whether the methods find more

”important” two-way interaction than than would be expected by chance. IR

had six genes with a significant number of important interactions, while RIR

had five. Both the usefulness of this evaluation method and the definition

of ”important” interactions can be discussed. In Section 3.2.1 important in-

teractions were defined as interactions that made the predictive performance

of the model significantly better compared to the model with only the two

main effects:

y = β0 + β1x1 + β2x2 + β3x1x2 compared to

y = β0 + β1x1 + β2x2

Alternatively I could have defined it as interactions were the model with two

main effects and interactions is significantly better than the best model with

only one main effect:

y = β0 + β1x1 + β2x2 + β3x1x2 compared to

The best of: y = β0 + β1x1 or y = β0 + β2x2

Yet another possibility would have been to define ”important” interactions

as significant interaction (in the linear model). These alternatives would

probably have yielded slightly different results.

More importantly, the usefulness of this evaluation method may also be

questioned. Is the identification of a large number of ”important interac-

tions” really an advantage for the method? Some of the genes may only have

a few really relevant TFs. A better solution might be to compare the TFs

91

found with the IR and RIR methods, with the TFs identified with an exhaus-

tive search. At least the notion of important interactions should be combined

with a sufficiently large predictive performance: pairs of TF with important

interaction, but low predictive performance are probably not very interesting.

Independent biological evidence can be used to examine whether the top

ranked TFs really are involved in the regulation of the specific gene. Several

different relevant experiments exists, but there is not much such data for

Populus. Two examples, knockout experiments and protein-protein interac-

tions, will be described here. In knockout experiments one observes whether

the expression of a specific gene is significantly changed when TFs or pairs

of TFs are knocked out (Awad and Chen, 2014). If there really exists an in-

teraction between the TFs, the expression of the gene should be significantly

different when only one of the TFs is knocked out compared to when both are.

In some cases interacting TFs bind on different parts of the genes pro-

motor region and do not physically interact. While in other cases TF inter-

actions are direct, physical protein-protein interactions where the two TFs

for example form a complex which binds to the TF binding site of the gene

(Chen et al., 2012). The last kind of TFs, can be validated by experiments

that detect protein-protein interactions.

There exists several specialized methods for analysing gene expression

data and uncover TF interactions. Several methods use a network approach,

one recent example is the mTRIM algorithm which uses the concept of ac-

tivation time-points and logical roles in order to model interactions between

TFs (Chen et al., 2012). Rather than assuming that the expression of impor-

92

tant TFs correlates with the gene expression over the entire time course (or

developmental gradient) as I do, the authors assert that one should match

TFs with genes only at specific activation time-points. Unlike the methods

of this thesis, mTRIM also infers the logical roles of the TFs, whether they

are activators or repressors and whether the TF is necessary, sufficient or

necessary and sufficient for the gene (Chen et al., 2012).

93

5.4 Conclusion

Three methods for variable ranking and interaction detection are investigated

in this thesis. The PR method is based on a kernel PLS model and was un-

successful in finding important interactions. It remains an open question

whether the information from kernel PLS can be used for variable rank-

ing in such situations. The two other methods are based on the regular PLS

algorithm, and they both outperform a competing method (SIRI) in the sim-

ulation studies. However use of the IR method in high-dimensions is limited

because of memory requirements, and would require an efficient pre-filtering

method. SIRI is a possible choice, but is as mentioned unreliable in situa-

tions with relatively few observations.

The RIR method seems the most promising method, despite its rather

long and quadratically increasing running time. The method can be extended

to higher order interactions, but this would probably increase the running

time a lot. The method could also be combined with other methods. Both

with pre-filtering methods (like SIRI) or with variable selection methods if the

goal is model construction. In future work, the methods should be applied to

datasets where there are possibilities for biological validation of the findings,

see Section 5.3 for some suggestions.

94

Bibliography

A. Agresti. An introduction to categorical data analysis, volume 423. John

Wiley & Sons, 2007.

S. Awad and J. Chen. Inferring transcription factor collaborations in gene

regulatory networks. BMC Systems Biology, 8(Suppl 1):S1, 2014.

R. Bhalerao, O. Nilsson, and G. Sandberg. Out of the woods: forest biotech-

nology enters the genomic era. Current Opinion in Biotechnology, 14(2):

206–213, 2003.

P. J. Bickel and K. A. Doksum. Mathematical statistics, Volume 1: Basic

and selected topics (Second (updated printing 2007) of the Holden-Day 1976

ed.). Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River,

NJ, 2001.

J. Bien, J. Taylor, R. Tibshirani, et al. A lasso for hierarchical interactions.

The Annals of Statistics, 41(3):1111–1141, 2013.

M.-J. M. Chen, L.-C. Chou, T.-T. Hsieh, D.-D. Lee, K.-W. Liu, C.-Y. Yu,

Y.-J. Oyang, H.-K. Tsai, and C.-Y. Chen. De novo motif discovery facili-

tates identification of interactions between transcription factors in saccha-

romyces cerevisiae. Bioinformatics, 28(5):701–708, 2012.

95

H. Chun and S. Keleş. Sparse partial least squares regression for simultaneous

dimension reduction and variable selection. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 72(1):3–25, 2010.

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and

its oracle properties. Journal of the American Statistical Association, 96

(456):1348–1360, 2001.

J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional

feature space. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 70(5):849–911, 2008.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection.

The Journal of Machine Learning Research, 3:1157–1182, 2003.

I. S. Helland. On the structure of partial least squares regression. Com-

munications in Statistics - Simulation and Computation, 17(2):581–607,

1988.

M. Hertzberg, H. Aspeborg, J. Schrader, A. Andersson, R. Erlandsson,

K. Blomqvist, R. Bhalerao, M. Uhlén, T. T. Teeri, J. Lundeberg, et al.

A transcriptional roadmap to wood formation. Proceedings of the National

Academy of Sciences, 98(25):14732–14737, 2001.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to

statistical learning. Springer, 2013.

B. Jiang and J. S. Liu. Sliced inverse regression with variable selection and

interaction detection. arXiv preprint arXiv:1304.4056, 2013.

İ. Karaman, E. M. Qannari, H. Martens, M. S. Hedemann, K. E. B. Knudsen,

and A. Kohler. Comparison of sparse and jack-knife partial least squares

96

regression methods for variable selection. Chemometrics and Intelligent

Laboratory Systems, 122:65–77, 2013.

R. Li, W. Zhong, and L. Zhu. Feature screening via distance correlation

learning. Journal of the American Statistical Association, 107(499):1129–

1139, 2012.

F. Lindgren, P. Geladi, and S. Wold. The kernel algorithm for pls. Journal

of Chemometrics, 7(1):45–59, 1993.

T. Mehmood, K. H. Liland, L. Snipen, and S. Sæbø. A review of variable

selection methods in partial least squares regression. Chemometrics and

Intelligent Laboratory Systems, 2012.

I. Miller, M. Miller, and E. John. Freund’s mathematical statistics with

applications. Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle

River, NJ, 2004.

P. Radchenko and G. M. James. Variable selection using adaptive nonlin-

ear interaction structures in high dimensions. Journal of the American

Statistical Association, 105(492):1541–1553, 2010.

S. Rännar, F. Lindgren, P. Geladi, and S. Wold. A pls kernel algorithm

for data sets with many variables and fewer objects. part 1: Theory and

algorithm. Journal of Chemometrics, 8(2):111–125, 1994.

P. H. Raven, R. F. Evert, and S. E. Eichhorn. Biology of plants. Macmillan,

2005.

A. C. Rencher and G. B. Schaalje. Linear models in statistics. John Wiley

& Sons, 2008.

97

R. Rosipal and N. Krämer. Overview and recent advances in partial least

squares. In C. Saunders, M. Grobelnik, S. Gunn, and J. Shawe-Taylor,

editors, Subspace, Latent Structure and Feature Selection, volume 3940 of

Lecture Notes in Computer Science, pages 34–51. Springer Berlin Heidel-

berg, 2006.

R. Rosipal and L. J. Trejo. Kernel partial least squares regression in repro-

ducing kernel hilbert space. The Journal of Machine Learning Research,

2:97–123, 2001.

M. Stone. Cross-validatory choice and assessment of statistical predictions.

Journal of the Royal Statistical Society. Series B (Methodological), pages

111–147, 1974.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

J. W. Tukey. Bias and confidence in not-quite large samples. In Annals of

Mathematical Statistics, volume 29, pages 614–614, 1958.

E. J. Williams. The comparison of regression variables. Journal of the Royal

Statistical Society. Series B (Methodological), pages 396–399, 1959.

H. Wold. Soft modeling by latent variables; the nonlinear iterative partial

least squares approach. In J. Gani, editor, Perspectives in Probability and

Statistics: papers in honour of M. S. Bartlett on the occasion of his sixty-

fifth birthday, pages 520–540. Academic Press, 1975.

98

Postboks 5003
NO-1432 Ås, Norway
+47 67 23 00 00
www.nmbu.no

