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Abstract

Infrared (IR) spectroscopy has during recent years become a very attrac-
tive method for biochemical analysis of cells and tissue, since it can be ap-
plied in biological material without destroying its native structure. Since
the wavelength of infrared light is comparable to the radius of cells and cell
compounds, absorbance spectra are hampered with strong scattering ef-
fects, making biochemical interpretation and subsequent data analysis dif-
ficult. Since scattering at cells and cell compounds can be approximated
by formulas for the scattering of spherical particles, the scatter effects can
be approximated by Mie scattering. The exact Mie formula demand ex-
tensive computation and make physical interpretations of the scattering
effects difficult. In the literature several Mie scattering approximation for-
mulas have been discussed. These approximation formulas have different
validity ranges for parameters such as wavelength region and scattering
angles. The aim of this thesis was to evaluate different approximation
formulas for scattering of infrared light at cells and to interpret the basis
for these approximation formulas for situations where not only forward
scattering is considered. This is highly relevant for FTIR microscopes
which have a high numerical aperture.

It is shown that scattering with θ < θNA can be well estimated us-
ing the Penndorf, Shifrin and Punina approximation for scattered light
at angles θ ∈ [1o, 10o] and the Gordon approximation for scattered light
at angles θ ∈ [11o, θNA]. An approach which interpolate both approxima-
tions is therefore suggested.

Different types of oscillations in the scatter extinction have been inves-
tigated and explained in terms of ray dynamics. The exact Mie solution
contain resonances as ripples which the approximation formulas do not
exhibit. The resonances giving the ripples are explained by ray dynamics
where the respective rays enter and leave the sphere in the same direc-
tion. Signatures of rays obtained by refraction, can be visualized in the
Fourier transform of the extinction curve. For example a triangular ray is
expected to appear for refractive indices above m = 2.0 and is determined
in the Fourier transform of the extinction. A semiclassical approach, fol-
lowing the rules of quantum mechanics, is used to explain rays that cor-
respond to bound states in the corresponding quantum mechanical case.



iv



Sammendrag

Infrarød spektroskopi har gjennom de siste årene blitt en populær metode
for biokjemisk analyse av celler og vev, siden det kan bli brukt på biologisk
materiale uten å ødelegge dets opprinnelige struktur. Siden bølgelengden
på infrarødt lys er i størrelsesorden radius på en celle og dens organeller,
vil absorbansspektra bli ødelagt av et sterkt bidrag fra lysspredning, noe
som gjør biokjemisk analyse vanskelig. Siden lysspredning i celler og dens
organeller kan bli estimert av formler for lysspredning av sfæriske par-
tikler, kan lysspredningsbidraget bli estimert som Mie spredning. De ek-
sakte Mie løsningene krever stor beregningskapasitet, og gjør tolkning av
lysspredningsbidraget vankelig. Mange approksimasjonsformler for Mie
spredning har blitt foreslått. Disse har forskjellig gyldighetsområde for
parametre som bølgelengdeområde og spredningsvinkel. Formålet med
denne oppgaven er å studere forskjellige approksimasjonsformler for spred-
ning av infrarødt lys i celler og evaluere grunnlaget for å bruke disse ved
forskjellige spredningsvinkler. Dette har betydning for FTIR mikroskopi
med objektiver som dekker en stor romvinkel.

Oppgaven viser at spredning ved θ < θNA kan estimeres ved å bruke
Penndorf, Shifrin of Puninas approksimasjonsformel for spredt lys med
vinkel θ ∈ [1o, 10o] og Gordons approximasjonsformel for spredt lys med
vinkel θ ∈ [11o, θNA]. En metode som interpolerer disse metodene er
derfor foreslått.

Forskjellige typer oscillasjoner i ekstinksjonskurven har blitt under-
søkt od forklart ved hjelp av stråledynamikk. Den eksakte Mie løsningen
inneholder resonanser i form av skarpe tagger, som approksimasjonsform-
lene ikke viser. Resonansene som gir taggene blir forklart ved hjelp av
stråledynamikk, der strålene går inn i og ut av den sfæriske partikkelen
i samme retning. Ved å Fourier transformere ekstinksjonskurven, kan
signaturene fra resonansene som kan oppnås ved hjelp av brytning, visu-
aliseres. For eksempel kan en triangulær stråle sees ved brytningsindeks
m = 2.0. Denne er funnet i Fourier transformen av ekstinksjonskurven.
En semiklassisk fremgangsmåte, som følger lovene til kvantemekanikken,
brukes til å forklare stråler som bundene tilstander i det kvantemekaniske
tilstanden.
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1 Introduction

1.1 Motivation

Infrared spectroscopy is an established method for chemical and biochemical analysis
of samples with a wide range of applications, e.g. in organic and inorganic chem-
istry, forensic science, biology, biomedicine and material science [1–5]. By probing
the sample with infrared light, an absorption spectrum is achieved, which contains
information about the functional groups in the sample. By interpretation of spectral
bands of functional groups, compounds or single functional groups can be identi-
fied [6]. In biology and biomedical sciences pattern recognition methods are used to
separate e.g. diseased cells from healthy cells on the basis of structural changes in
biomolecules or differences in composition of compounds in cells. [2, 5, 7].

Chemical absorption bands in infrared spectroscopy of cells are often interfered by
light scattering. Cells, cell compounds such as cell nuclei and organelles, which have
similar size as the wavelength of the infrared light (∼ 10µm), are highly scattering
particles [5]. The size of the cell also causes problems with regard to probing the
cell with a high enough flux of light to achieve an acceptable signal-to-noise ratio
(statistical fluctuations in the spectrum reaching the sensor). This problem is solved
by using a synchrotron light source (sec. 2.5.2) and a microscope (sec. 2.5.1) to
focus the light near the diffraction limit (about 2λ/3−λ/2) [7]. The commonly used
term for this type of spectroscopy is infrared microspectroscopy, which is described
is section 2.5.

The light scattering in infrared spectra of single cells has been interpreted as Mie
scattering, since the distortions in the spectra resemble the scattering curve predicted
by the Mie scattering theory, which describes scattering of electromagnetic light at
spheres [5]. Using the Mie scattering theory to estimate the scattering by biological
particles proposes practical problems. The Mie scattering formulas depend on the
refractive index and size of the particles, which in most cases are unknown. Also, the
Mie formulas are complicated, and require extensive computation, which makes an it-
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erative comparisons of the Mie scattering with the distortion in the spectra unfeasible.
Approximations to the Mie scattering formulas are therefore valuable. Approxima-
tion formulas may speed up numerical algorithms for correcting Mie-type scattering
contributions. In addition they may provide insight in the physical interpretation of
scattering, which is often difficult to obtain from the exact Mie theory.

Several approaches for using approximation formulas to estimate the Mie scattering
contribution to the absorption spectra has been made [1, 2, 8–10]. An example is an
approach for estimating the Mie scattering contribution, called Extended Multiplica-
tive Signal correction (EMSC), was proposed by Kohler et al. [10]. This approach uses
multivariate methods to find the most suitable of many approximated Mie scattering
curves, without knowing the radius and refractive index. Later this approach was ex-
tended to also take into consideration the strong relationship between the absorption
and the refractive index, which is basically two of the same [1] (sec. 2.2). A more thor-
ough introduction to the EMSC approach is found in the references [1,2,8–10].

Most of the EMSC approaches uses an approximation formula stated by van de
Hulst [11] (eq. 3.10) to estimate the Mie scattering contribution to the transmitted
spectrum. This formula is an estimation of the extinction in the forward direction.
In the case where no scattering occur, the extinction equals the absorbed light. In
the case where some of the light is scattered away from the incident direction, the
extinction equals the scattered light plus the absorbed light (sec. 2.3.1).

The approximation formula also works under the assumption that all the transmitted
light reaching the sensor is propagating in the same direction as the incident light
(sec. 3.2.1). For infrared microspectroscopy, this is not the case. The focusing
optics of the microscope collects a significant amount of the scattered light, meaning
that the approximation formula used in the EMSC approach will overestimate the
scattering contribution to the absorption spectra, made by the spherical particles.
Approximation methods for estimating the scattering in a non-forward direction will
therefore also be of interest.

The goal of this thesis is to evaluate the scattering from spheres in the forward and
non-forward direction, and attempt to estimate the scattering which falls in the area
of the focusing optics during microspectrocopic analysis of cells. This is done using
approximations and comparing them to the exact Mie solution. An important issue
in this evaluation is to discuss the validity of the approximation and the physical
assumptions they are based on. Secondly this thesis will discuss the sharp resonance
structures, referred to as ripples, which can be seen in the exact Mie solution, but
which are not explained by the approximations presented.

2
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1.2 Outline

This thesis is divided into 5 chapters making representing the main topics of the
thesis. Chapter 2 will thoroughly present the general theory of light scattering, ab-
sorption of infrared light in dielectric material and the general working principle of
microspectroscopy with a synchrotron light source. Also the Mie solution to light
scattering by spheres of arbitrary size is presented. Chapter 2 will give the physi-
cal principles and technology on which this thesis is based. In addition it provides
a presentation of the relationship between light scattering and absorption, which is
given by a refractive index containing a real and an imaginary part, describing the
refractive and absorptive properties of the material.

Chapter 3 presents an algorithm for numerical computation of the exact Mie solutions.
Further it presents a variety of approximations to the real solution:

1. The anomalous diffraction approximation (sec. 3.2.1) which is the approxima-
tion proposed by van de Hulst [11], valid for values of the refractive index of
the scatterer near the refractive index of the ambient medium.

2. An approximation by Wiscombe [12] (sec. 3.2.2), applied in the forward di-
rection, valid for low values of the size parameter (x = ka → 0), where the
size parameter is defined as the product of the radius a of the sphere and the
wavenumber k of the incident light.

3. An approximation by Blümel [13], also applied in the forward direction, and
with the same region of validity as Wiscombe’s approximation. Blümel’s and
Wiscombe’s approximations are compared in sec. 3.2.2.

4. The Penndorf-Shifrin-Punina (PSP) approximation [14] (sec. 3.3.1) which ap-
proximates Mie scattering in a non-forward direction, but preferably at low
scattering angles.

5. The Fymat-Mease (FM) approximation [14] (sec. 3.3.1) , which is an extension
of the PSP approximation. This also in a non-forward direction, but at low
scattering angles.

6. An approximation by Gordon [15] (sec. 3.3.2), which approximates Mie scat-
tering in the non-forward direction, at larger angles than the PSP and FM
approximation.

In section 3.4 approximations 4, 5 and 6 are integrated over a range of solid an-
gles and compared to the exact solution. In section 3.12 the anomalous diffraction
approximation is applied within the frames of the PSP and Gordon approximation,
as an attempt to apply the forward version of the anomalous diffraction in the non

3
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forward direction. In section 3.13 an example of application is given.

Chapter 4 presents the theoretical origin of the sharp ripples on the underlying curve
seen in the exact solution. The ripples are discussed in light of the ray image of the
classical theory, also including a semiclassical approach corresponding to the quantum
mechanical scattering problem. Where the ripples are present in the approximations
from chapter 3, they are compared to the exact solution.

4



2 Theoretical background

2.1 Introductory remarks

• In infrared spectroscopy, the convention for wavenumber notation is ν̃, which
is related to the wavelength λ by the equation [6]:

ν̃[cm−1] =
104

λ[µm]
(2.1)

The wavenumber ν̃ denotes the number of wavelengths per centimeter.

• In general scattering theory the notation k is used for wavenumber, which is
defined by van de Hulst [11] as:

k[cm−1] = 2π
104

λ[µm]
(2.2)

The wavenumber k denotes the number of radians per centimeter. This last
notation is the most used in this report, but the first one occurs when it is
convenient.

• If not otherwise stated, the incident light can be assumed to be a plane unpolar-
ized electromagnetic wave throughout this thesis. The mathematical description
of the electric component of the wave is:

E(r, t) = E0 cos(k · r− ωt) = Re{E0e
i(k·r−ωt)} (2.3)

Where ω is the angular frequency, t is time, k is the vector wavenumber and
E0 is the amplitude of the electric field.

• If one views this wave from a fixed point r in space, e.g. a point charge in
space, it is reasonable to define this fixed point as 0. The expression for the
electromagnetic wave then is:

E(0, t) = Re{E0e
−iωt} (2.4)
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• If one on the other hand views the wave as an entire stationary wave, like in
many scattering problems, we set t = 0, yielding the following expression for
the electromagnetic wave:

E(k, 0) = Re{E0e
ik·r} (2.5)

• The infrared (IR) region of the electromagnetic spectrum ranges from ν̃ =
13 000 cm−1 at the limit of visible light, to ν̃ = 10 cm−1 at the limit of
the microwave region of the electromagnetic spectrum. The infrared region is
divided into three subregions: Near-IR (ν̃ = 13 000 cm−1 to 4 000 cm−1),
mid-IR (ν̃ = 4 000 cm−1 to 200 cm−1) and far-IR (ν̃ = 200 cm−1 to 10 cm−1).
The different regions can be applied in infrared spectroscopy, dependent on
purpose [6]. This thesis emphasizes the mid-IR region, which is associated with
the stretching and bending of functional groups.

• In the Mie scattering section (sec. 2.4) a dimensionless size parameter x = ka
is introduced. The variable x is the product of the wavenumber k (eq. 2.2) and
the diameter a of the sphere. Other than the refractive index, the scattering is
merely dependent on the variable x, and never the wavenumber or the radius
alone. By this we can understand that the scattering of light by a sphere is
scale invariant, meaning that the scattering of low frequency light by a large
sphere is equivalent with the scattering high frequency light by a proportionally
small sphere.

2.2 Absorption and dispersion

2.2.1 Absorption of infrared radiation1

A functional group in a molecule consisting of atoms engaging in valence bonds can be
treated as a classical harmonic oscillator, where the valence bond represents a spring
force holding the atom attached to its mother molecule. If there is a difference in net
charge in the atoms in the functional group, this gives rise to a dipole moment, making
it susceptible to the influence of an applied electrical field. An electromagnetic plane
wave can be presented as an oscillating electrical field written as E(t) = Re{E0e

iωt}k̂
and magnetic field B(t) = Re{B0e

iωt}ĵ, with k̂ and ĵ as the unit vectors in the z-
and y-direction, and the wave propagating in the x-direction. The dipole (functional
group) will experience a passing electromagnetic wave as a time-dependent force

1This classical representation of absorption of infrared light in a dielectric sample is mainly the
same as the one presented in an article [16] and is based on the representation in the book on
electrodynamics by David J. Griffiths [17]

6
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given as F = q [E + (v ×B)], where v is the velocity vector of the particle relative
to the magnetic field. Although since the magnetic flux amplitude B0 = E0/c in
an electromagnetic wave, where c is the speed of light, magnetic contribution to the
Lorentz force is very small. Thus we can assume that the force acting upon the dipoles
is purely electrical, and drop the vector notation: F (t) = Re{qEo e−iωt}.

The resonance frequency of the spring system is classically given in terms of the
effective mass of the molecules in the spring system and the stiffness of the spring
force holding the molecules together. The spring system can now be modeled as a
driven oscillator including a damping forcemγ. The damping is caused by transferring
energy to other parts of the molecule and through dipole radiation. The model of the
system is given by (Newtons 2. law):

q E0 cos(ωt) = mγ
dz(t)

dt
+mω2

0z(t) +m
d2z(t)

dt2
(2.6)

Where z(t) is the position of the molecule on the z-axis as a function of time, m is
the mass, q is the charge of the molecule, E0 is the amplitude of the electric field, γ
is the damping constant, ω0 is the resonance frequency and ω is the frequency of the
electromagnetic wave. The inhomogeneous differential equation 2.6 has a particular
solution which describes how the system responds to the force with time. If the
damping is critical, the oscillation will go towards a steady state solution, which is
the oscillation described by the time dependent offset from the equilibrium position
z0, and can be expressed as:

z(t) = z0 cos(ω0t) = Re{z0eiω0t} (2.7)

Where ω0 is the resonance frequency of the system and t the time.

The polarization p of the dipole is given as the offset from equilibrium times the
difference in charge q, p = qz(t). When the frequency of the electromagnetic wave ω
is in the vicinity of the resonance frequency ω0, the energy of the wave is absorbed as
mechanical oscillations of the functional group. When light consisting of a continuous
spectrum of frequencies is sent through a sample containing a specific functional
group, the absorption of light will concentrate around the resonance frequency of the
functional group, giving rise to an absorption band in the continuous spectrum.

The function z̃ is the offset from equilibrium z(t) including both real and imaginary
parts from equation 2.7 and Ẽ is the electrical field E(t) including both real and
imaginary parts from equation 2.4. These complex functions are put into equation
2.6, and we obtain the complex dipole moment p̃ = qz̃ as:

p̃ =
q2/m

ω2
0 − ω2 − iγω

Ẽ (2.8)

7
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Where the m is the mass of the dipole particle, q is the charge, ω is the frequency
of the incident light, γ is the damping constant and ω0 is the resonance frequency of
the spring system.

The polarization of a volume element with N dipoles and volume V is related to the
complex electric susceptibility χ̃e by:

P̃ =
N

V
p̃ = ε0χ̃eẼ (2.9)

Where ε0 is the dielectric constant of vacuum. The polarization of each molecule
consisting of several dipoles is given by:

p̃ =
∑
j

q2j fj/mj

ω2
j − ω2 − iγω

Ẽ (2.10)

Where j indicates type of dipole, fj the number of this particular dipole in each
molecule, mj its mass, ωj the resonance frequency of this type of dipole. The sum is
over all types of dipoles in the molecule. The expression for the complex susceptibility
can now be obtained by rearranging equation 2.9:

χ̃e =
Np̃

ε0Ẽ
=
N

ε0

∑
j

q2j fj/mj

ω2
j − ω2 − iγω

(2.11)

The relative dielectric constant εr is related to the susceptibility by εr = 1 +χe. The
relative dielectric constant for an absorbing medium is then given by:

ε̃r = ε̄r +
N

ε0

∑
jεIR

q2j fj/mj

ω2
j − ω2 − iγω

(2.12)

Where ε̄r is the real, non-dissipative part of the dielectric constant, while the sum
in the second term stretches over the frequencies in the spectral region of infrared
light. The absorption resonances above and below the infrared spectrum will not
absorb light when the sample is illuminated by infrared light, but are included in the
non-dissipative term expressed as:

ε̄r = 1 + α(ω) + β(ω) (2.13)

Where α(ω) is the contribution to the dielectric constant by frequencies larger than
the frequencies in the infrared area, and β(ω) is the contribution from those frequen-
cies lower that those in the infrared area. This shows that absorption bands with
resonance frequencies outside the spectral range of the light contribute to the real
part of the refractive index m. The refractive index is given as:

m =
√
ε̃r (2.14)

8
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A medium without absorption resonances at any freuency would have a refractive
index m = 1, which would have made it an optical vacuum [18]. The presence of the
absorption resonances is what makes the real part of the refractive index unequal to
1 and frequency dependent (dispersion).

A complex refractive index (m = n+ in′) indicates absorption of radiative energy in
the sample within the range of frequencies of the light the sample is exposed to. The
real part of the complex refractive index n describes the refraction of light without
energy loss, while the imaginary part describes dissipation of energy due to absorption
of light.

2.2.2 Relationship between n and n′

In formula 2.13 we see that the part of the complex dielectric function ε̃r which
contains the absorption bands outside the spectral range of the light in question,
denoted ε̄r, also contributes to the dielectric function. This part of ε̃r is with no
doubt real, and will only contribute to the real part of ε̃r. The absorption resonances
inside the spectral range has a real and an imaginary part, and will therefore also
contributes to the real part of ε̃r.

The real part ε, and imaginary part ε′ of the complex dielectric constant ε̃r is related
by the Kramers-Krönig relation. Since the complex refractive index m = n + in′ is
related to the dielectric function by formula 2.14, this means that by knowing the
absorption resonances in the medium one can obtain the non-linear refractive index.
The Kramers-Krönig relation is given as [18]:

ε(ω) = 1 +
2

π
P.V.

∫ ∞
0

Ωε′(Ω)

Ω2 − ω2
dΩ (2.15)

Where P.V. denotes Chauchy’s principal value, which is the integral on the real axis
from 0 to ∞ disregarding the singularity at Ω2 = ω2. The absorption resonance
frequency is denoted by ω. The real part of the dielectric function for any solid or
liquid is related to the imaginary part by 2.15. In figure 2.1 the dependence between
n and n′ is shown. The real part of the refractive index varies a lot in the vicinity of
an absorption band, which can be seen in fig. 2.1 as an anti-symmetric curvature in
the real part of m around the resonance frequency point, while the imaginary part
shows a symmetric hump around the same point.

9



2. Theoretical background

Figure 2.1: The curves shows the value of the real and imaginary part
of the refractive index as a function of wavenumber k. The resonance
frequencies is located at 1650 cm−1 and 2500cm−1

2.3 Light scattering by spherical particles

2.3.1 Scattering and extinction formulas

If we assume an absorbing sphere illuminated exclusively by light from a distant
source (no angular distribution in the incident light), then we can use the principle
of conservation of energy to account for scattered and absorbed light. By scattered
light we mean the light propagating at an angle relative to the incident light. The
scattering angle θ, is the difference in angle between the line parallel to the incident
light and the propagation of the scattered light. The angle ϕ describes the azimuth
angle of the scattered light, shown in figure 2.2. In the case of an arbitrary shape
of a particle, the scattering in any direction is described by four amplitude functions
dependent on θ and ϕ, S1, S2, S3 and S4, that together form a scattering matrix
S(θ, ϕ). The electrical field components in the scattered electromagnetic wave parallel
and perpendicular to the plane of scattering, are [11]:(

E‖
E⊥

)
=

(
S2 S3
S4 S1

)
· e
−ikr+ikz

ikr

(
E0‖
E0⊥

)
(2.16)

10



2. Theoretical background

Figure 2.2: An arbitrarily shaped scatterer is hit by light propagating
in the positive y-direction. The light has electric field components Ei⊥
perpendicular to the scattering plane and component Ei,‖ parallel to the
scattering plane. The scattering plane is the plane defined by the y-
axis and the azimuth angle ϕ. The scattered light has the electric field
components Es⊥ perpendicular to the scattering plane and Es‖ parallel
to the scattering plane. The angle θ is the scattering angle. Based on a
figure in the book by Bohren and Huffman [18]

.

The elements E‖ and E⊥ corresponds to the parallel and perpendicular components
of the electric field relative to the the plane of scattering.

The equation 2.16 is obtained by combining the expression for the incoming plane
wave

Ei(z, t) = E0e
−ikz+iωt, (2.17)

with the outgoing spherical wave

ES(r, t) = E0 S(ϕ, θ)
e−ikr+iωt

ikr
(2.18)

11



2. Theoretical background

for each direction of polarization. By replacing E0 in eq. 2.18 with the expression for
E0 obtained from eq. 2.17, the time dependent terms vanishes, leaving the exponential
term e−ikr+ikz/ikr. The scattered field is now dependent on the incident field at z,
but may be replaced by E0 since Ei(0) = E0. The incident and scattered wave is
shown in figure 2.3.

The scattering cross section Csca describes the area that needs to be covered up in the
cross sectional area of the incident beam, to account for the light scattered away from
the propagating direction of the incident beam. To obtain the scattering cross section,
a dimensionless function F (θ, ϕ) has to be integrated over all directions [11]:

Csca =
1

k2

∫ ∫
F (θ, ϕ) sin θ dθ dϕ (2.19)

Where k is the wavenumber. The function F (θ, ϕ) is later replaced by a function
describing the intensity distribution, which is dependent on the amplitude functions
S(θ, ϕ) describing the scattering components (phase and amplitude) of the scattered
wave, relative to the scattering plane. The function F (θ, ϕ) is dependent on the
shape of the particle, and the case of a spherical particle is described below in this
section.

The extinction cross section gives all the light removed from the incident beam,
scattered and absorbed. To get the formula for the extinction one has to apply
the optical theorem [11]. The basic concept of this is to take into consideration
that the incident plane wave (u0) and the outgoing spherical wave (u) ( similar to
the equations 2.17 and 2.18) is superposed coherently in the forward direction. To
capture the forward intensity one can imagine a sensor with a finite size in the x-,
y-plane at a very large distance z from the scatterer. All values of x and y within
the plane of the sensor is � z. The radius at the sensor in the limit z → ∞ is
r = z + (x2 + y2)/2z and the scattering amplitude S(ϕ, θ)→ S(0). In this limit the
superposition of the incident and scattered wave is [11]:

u0 + u = u0{1 +
S(0)

ikz
e−ik(x

2+y2)/2z} (2.20)

By squaring the magnitude of this expression 2.20, one gets the intensity, and by
integrating this intensity over the area of the sensor (The sensor needs to be large
enough to collect all the forward directed light). The integral gives the result O−C,
where O is the area of the sensor and C is the area that has effectively been covered
up by the particle. The term C is the general extinction cross section, which from
now is termed Cext, and is defined by [11]:

Cext =
4π

k2
Re{S(0)} (2.21)
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2. Theoretical background

The principle of conservation of energy now states the formula [11]:

Cext = Csca + Cabs (2.22)

Where Cabs is the absorption cross section, describing the effective area covered up
in the incident beam to account for the absorbed light. From the C´s in 2.22 we can
define the efficiency factors independent of the size of the sphere, by dividing on the
geometrical cross section of the sphere, G [11]:

Cext
G

=
Cabs
G

+
Csca
G
⇒ Qext = Qabs +Qsca (2.23)

Where the Q´s are the corresponding efficiency factors and G = πa2, the cross section
with radius a.

Figure 2.3: The incoming plane wave is shown as the straight lines, rep-
resenting wavefronts, perpendicular to the z-axis. The outgoing spherical
wave representing the scattered wave is shown as the concentric circular
wavefronts. in the figure k is the wavenumber and r is the distance from
the centre of the spherical wave.

For a spherical particle the amplitude functions S3 = S4 = 0, hence the electrical
components may be written [11]:

E⊥ = S1(θ)
e−ikr+ikz

ikr
E0⊥ (2.24)
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E‖ = S2(θ)
e−ikr+ikz

ikr
E0‖ (2.25)

Where k is the wavenumber and z the distance along the z-axis, r the radius from
the centre of the spherical wave, E0⊥ is the electrical component of the incident
wave perpendicular to the scattering plane and E0‖ is the electrical component of the
incident wave parallel to the scattering plane.

The intensity of scattered unpolarized light is given as [11]:

I(θ) =
1/2(i1 + i2)

k2r2
I0, (2.26)

where
i1 = |S1(θ)|2, i2 = |S2(θ)|2, (2.27)

I0 the intensity of the incident light and r is the distance from the centre of the
sphere. The function F (θ, ϕ) from eq. 2.19, will in the case of a spherical scatterer
be F (θ) = 1/2(i1 + i2). For polarized light only one of the i’s are needed. For
perpendicular polarized light i2 = 0, and for parallel polarized light i1 = 0, which
corresponds to the function F (θ) = i1 and F (θ) = i2.

2.4 Mie scattering theory for spheres of arbitrary size

In this section the formulas for the extinction cross section and efficiency for the Mie
theory is presented. The formuls for the amplitude functions are presented in the
next section (sec. 2.4.1).

The Mie scattering theory is a rigorous mathematical theory describing the problem
of light scattering by a sphere of arbitrary size and refractive index. This involves
a formal solution of Maxwell’s equations with proper boundary conditions. From
Maxwell’s equations, the scalar wave equation (given in appendix A.4, eq. A.20) can
be derived. The incoming plane wave and the outgoing spherical wave, shown in fig.
2.3, are examples of solutions that satisfy the wave equation.

The field on the outside of the scattering sphere equals the incoming plane wave plus
the outgoing scattered wave. The solution to the scattering problem needs to take
into consideration that the field outside of the boundary is consistent with the field
inside of the boundary, as stated by the boundary conditions.

Expressions for incoming, outgoing and inside wave in spherical coordinates are given
in appendix A.1.1. These are wave functions constructed to be consistent with the
boundary conditions and are solutions to the wave equation. The wave function
for the scattered wave has the coefficients an and bn and the inside wave has the
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coefficients cn and dn. These coefficients are determined by taking the boundary
conditions into consideration. The coefficients for the scattered wave are important
for the scattering amplitude, and are given in section 2.4.1 (eqs. 2.32 and 2.33).
The coefficients cn and dn for the inside wave are important when calculating the
absorption explicitly from the inside electrical field, and are given in appendix A.1
(eqs. A.3 and A.4)

2.4.1 The amplitude functions

The amplitude functions S1(θ) and S2(θ) are given by the formulas [11]:

S1(θ) =
∞∑
n=1

2n+ 1

n(n+ 1)
{anπn + bnτn} (2.28)

S2(θ) =

∞∑
n=1

2n+ 1

n(n+ 1)
{bnπn + anτn} (2.29)

Where πn and τn are functions of cos θ given by:

πn(cos θ) =
1

sin θ
P 1
n(cos θ) (2.30)

τn(cos θ) =
d

dθ
P 1
n(cos θ) (2.31)

The term P 1
n(cos θ) is an associated Legendre polynomial and is given fully in ap-

pendix A.1.1. The coefficients an and bn in the amplitude functions are given
as [11]:

an =
ψ′n(y)ψn(x)−mψn(y)ψ′n(x)

ψ′n(y)ζn(x)−mψn(y)ζ ′n(x)
(2.32)

bn =
mψ′n(y)ψn(x)− ψn(y)ψ′n(x)

mψ′n(y)ζn(x)− ψn(y)ζ ′n(x)
(2.33)

The function ψ(z) of x or y are spherical Bessel functions multiplied by x or y
respectively (replacing z) and ψ′(z) is the derivative of this function. [11]:

ψn = zjn(z) (2.34)

The function ζn(x) is given by:

ζn(x) = xh(2)n (x) (2.35)

The function h(2)n (x) is the third kind of Bessel function, called the Hänkel function,
and is given in appendix A.3. The variables x and y are given as x = ka and
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y = mka [11], where k is the wavenumber, a is the radius of the sphere, and m is the
complex refractive index (m = n+ in′).

The amplitude functions needs to be calculated numerically, and are done so by
MATLAB functions developed by Mätzler [19]. Calculation of the exact Mie solution
is discussed in section 3.1.

2.4.2 Mie efficiency factors

For forward Mie scattering, the amplitude functions S1(0) = S2(0) = S(0). The
extinction efficiency factor is found by dividing the general extinction cross section
defined in equation 2.21 by the geometrical cross section G = πa2:

Qext =
4

k2a2
Re{S(0)}, (2.36)

where k is the wavenumber and a is the radius of the sphere. The scattering efficiency
factor is given by [11]:

Qsca =
1

k2a2

∫ π

0
{i1(θ) + i2(θ)} sin θdθ, (2.37)

where θ is the scattering angle, i1 and i2 is the perpendicular and parallel component
of the intensity relative to the scattering plane (eq. 2.27). The extinction cross
section is defined in the forward direction and includes the chemical absorption of
electromagnetic radiation in the sphere. It represent all lost radiation in the forward
direction. The scattered part of the extinction can be recovered by integrating the
intensity of the light over a spherical shell enclosing the whole sphere. As implied
from eq. 2.22, the radiation still not accounted for, is absorbed by the sphere. Thus
the absorption efficiency can implicitly be written:

Qabs = Qext −Qsca (2.38)

The next section will show how to calculate the absorption efficiency explicitly by
taking the inside field of the sphere into account.

2.4.3 Absorption efficiency

The absorption efficiency curve can be calculated explicitly by taking the averaged
internal electrical field 〈|E|2〉 into consideration. The formula for Qabs is derived from
the formula for the absorption cross section given by Ishimaru [20], who states the
formula as [20]:

Cabs =

∫
V
kε′′(r′)|E(r′)|2dV ′ (2.39)
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With an homogeneous material ε′′(r′) → ε′′. By replacing the squared magnitude
of the electrical field |E(r′)|2 with the electrical field squared over a spherical shell
(all ϕ and θ, constant r′) 〈|E|2〉, and expressing the volume integral in spherical
coordinates, the integral over the spherical shell may be taken leaving the factor 4π.
The absorption efficiency is now obtained by assuming the incident electrical field
amplitude is unitary (|Ei| = 1) [20], and by doing the change of variable r′k → x′

and dividing by the geometrical cross section G = πa2 [19]:

Qabs =
4ε′′

x2

∫ x

0
〈|E|2〉x′2dx′, (2.40)

were ε′′ is the imaginary part of the complex dielectric constant ε̃r, x is the size
parameter and x′ = r′k, with r′ giving the distance from the centre of the sphere
(0 < r′ < a).

The averaged internal field at at the radius r′ is given by [19]:

〈|E|2〉 =
1

4

∞∑
n=1

(
mn|cn|2 + nn|dn|2

)
(2.41)

The coefficients cn and dn are given in appendix A.1, and are the internal equivalents
of the Mie scattering coefficients an and bn. The coefficients mn and nn (appendix
A.1) are the scalar values of the vector-wave harmonic field M

(1)
oln and N

(1)
eln, which is

discussed later (section 4.1). A MATLAB-function has been developed for calculating
Qabs by C. Mätzler [19].

2.5 Infrared microspectroscopy

In Fourier transform infrared microspectroscopy (FTIRM), the well known technology
of the Fourier transform infrared (FTIR-) spectrometer [6], is combined with the
focusing optics similar to a light microscope. The purpose of FTIRM is being able
to obtain infrared spectra from microscopic sized samples, or to examine details of
a larger inhomogeneous sample with a spatial resolution near the diffraction limit
(sec. 2.5.1). This increases the range of applications of FTIR-spectroscopy to i.a.
biological tissue and cells.

The general principle of FTIR-spectroscopy is to send a beam of light through a sam-
ple and detecting the transmitted light. Before passing through the sample the beam
of light needs to be subjected to a Michelson interferometer which creates wavelength-
dependent interference in the beam. This is done by splitting the beam and reuniting
it with a phase difference determined by a movable mirror. The interference effect
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repress different wavelengths for different phase differences, creating a signal at the
detector which is a superposition of all the wavelengths in the beam. Wavelengths
of absorbed light will contribute less to the signal. When the signal created by the
detector is Fourier transformed, the spectra appear in form of wavenumber dependent
intensity. The raw spectra are scaled against a reference spectrum to remove absorp-
tions from the ambient medium and to make the spectra independent of the source
spectrum. The remaining spectrum is defined as the transmission T [6, 16]:

T =
I

I0
(2.42)

Where I is the intensity of the sample spectra and I0 is the intensity of the reference
spectrum (the incident light). From this we can define the absorbance [16]:

A = −log10(T ) (2.43)

The equation 2.43 is equivalent with Beer-Lambert’s law stating a linear relationship
between the concentration of an infrared active functional group C [mol/L] the ex-
tinction coefficient ε [103L/(mol cm)] and the path length l [cm] of the incident light
in the medium. From this relationship the absorbance is stated as [5]:

A = εCl (2.44)

2.5.1 Focusing optics

In infrared microspectroscopy the focusing optics usually is a Schwartzschild objec-
tive, put on each side of the sample, each of them creating a focal point in the plane
of the sample as shown in figure 2.4. The range of angles focused into the focal plane
is given by the numerical aperture (NA) of the objective, and is defined by:

NA = n sin θNA (2.45)

where n is the refractive index of the ambient medium (' 1.0 in air), and θNA is
the largest angle covered by the objective. A usual value for the NA of an infrared
microscope is ∼ 0.60, which correspond to a range of θ ∈ [−37o, 37o] [21].

The diffraction-limited spatial resolution of the infrared microscope is dependent on
the wavelength of the light and the NA of the focusing optics. Apertures are often
used to limit the area of the beam to the sample’s region of interest, which can be seen
in fig. 2.4. With a single aperture before the sample the diffraction-limited resolution
is about 2λ/3, or between 1.7µm and 13µm in the mid-IR range. To further improve
the spatial resolution, a second aperture is in some cases put after the sample to

18



2. Theoretical background

control the area of the beam reaching the sensor (shown in fig. 2.4). This improves
the spatial resolution to ∼ λ/2. [21]

The definition of transmission in equation 2.42 will in terms of the extinction be
defined as [16]:

T = 1−Qext (2.46)

In the forward direction the equation 2.23 states that the extinction efficiency is
Qext = Qsca +Qabs. With a numerical aperture some of the scattered light collected
by the focusing objective and directed towards the sensor. The term Qsca becomes
smaller, and therefore we need to define a new term QNA which is the efficiency of
the objective collecting the scattered light:

QNA =
1

x2

∫ θNA

0
{i1(θ) + i2(θ)} sin θdθ (2.47)

Where θNA is the largest angle of which scattered light will be collected by the
objective, x is the size parameter, and i1 and i2 is the intensity components of the
scattered light (eq. 2.27).

We can now define a new scattering efficiency Qsca,NA which include light scattered
at larger angles than θNA:

Qsca,NA = Qsca −QNA (2.48)

The extinction efficiency term Qext also needs to be redefined to exclude the light
collected by the focusing objective. The new extinction efficiency Qext,NA can be
defined:

Qext,NA = Qext −QNA (2.49)

The equation 2.49 gives the extinction when using a infrared spectrometer with a
microscope. The transmission measured is given by equation 2.46 where Qext is
replaced by Qext,NA.

2.5.2 Synchrotron radiation source

In infrared microspectroscopy, a synchrotron light source is often used instead of a
more traditional thermal IR-source to produce a more readable absorption spectrum.
A synchrotron is an electron storage ring, which produces a broad spectrum (from
x-ray to far-infrared) of light. Synchrotron radiation is emitted when the electrons is
accelerated by the bending magnets in the ring, creating a narrow angular distribution
dependent on the wavelength of the light, and the radius of the bending motion. A
selected spectral range can be collected from the synchrotron by adjusting the opening
angle [7, 21]
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The advantage of a synchrotron light source compared to a more conventional thermal
source is that the synchrotron source is 100-1000 times brighter. This is because the
light comes from a small effective source and is emitted in a narrow range of angles.
The high flux density is especially an advantage when dealing with small aperture
sizes; since it allows small regions of the IR-sensor to be exposed to more radiation,
the detected signal is less noisy (lower signal to noise ratio). The advantage of the
synchrotron light source vanishes when the aperture size is above 70 µm. [21]

Figure 2.4: Schematic drawing of an IR-microscope showing where the
infrared light from the synchrotron enters, the Schwarzschild objects and
apertures over and under the sample plane. Reprinted by courtesy of
Paul Dumas [21]

.
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3 Exact Mie scattering and approx-
imations to the Mie solution

In the forward and non-forward direction the coefficients πn and τn needs to be
calculated by recurrence relations, which is computationally intensive. By modern
computers, the exact solutions are achievable, but slow when they need to be cal-
culated repeatedly. Approximation formulas thus present an attractive alternative
to the exact solution in many situations [9, 10]. Approximation formulas are also
often easier to interpret for example in terms of optical rays. Exact calculations
by integrating over angles make calculations even more intensive. Further, the ap-
proximation formulas also facilitate solving the "inverse" problem, where the size and
shape of an unknown particle or particle distribution is described using the scattering
patterns.

3.1 Computation of exact efficiency curves

To calculate the efficiency curves using the exact Mie theory, computer codes is re-
quired that can estimate the infinite sums of the amplitude functions S1(θ) and S2(θ)
(eq. 2.28 and 2.29). The amplitude functions contain Legendre polynomials (in equa-
tions 2.30 and 2.31) that contain sums with an increasing number of terms as the
summation index n increases. The Bessel functions also contain infinite sums which
need to be calculated for each term in the the amplitude functions.

C. Mätzler [19] has developed MATLAB code for the computation of the Mie coeffi-
cients and and efficiencies. This code is based on the proposed algorithm to calculate
the exact Mie solution given in Bohren and Huffman [18].

Mätzler also follows the algorithm suggested by Bohren and Huffman to overcome
computational difficulties. For example Bohren and Huffman suggest the maximum
number of terms n = nmax in the sum of eqs. 2.28 and 2.29 and when calculating
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the forward efficiency directly from the Mie coefficients an and bn. The formula for
nmax is [19]:

nmax = x+ 4x1/3 + 2 (3.1)

where x is the size parameter, and nmax is rounded off to the closest integral.

The algorithm used for calculating the Bessel functions are MATLAB’s built in
functions for all but the zeroth and first order. These are given in their expanded
forms. The functions πn(cos θ) and τn(cos θ) are calculated from the recurrence rela-
tions [18]:

πn =
2n− 1

n− 1
µπn−1 −

n

n− 1
πn−2 (3.2)

and
τn = nµπn − (n+ 1)πn−1, (3.3)

where µ = cos θ, and the first terms of πn are π0 = 0 and π1 = 1.

Mätzler includes a MATLAB function for calculating the absorption efficiency by the
equation 2.40. This function requires the averaged electrical field inside the sphere,
which is calculated at nj points between 0 and x = ka. The number of points nj is
given by the formula [19]:

nj = 5 · (2 + x+ 4x1/3) + 160 (3.4)

Where x = ka. The reason for this formula is not given [19].

To generate Mie extinction curves containing absorption bands, a complex refrac-
tive index is simulated by adding a set of absorption resonances to the real electric
permittivity ε̄ (eq. 2.13). The formula for describing the shape, location and magni-
tude of the absorption band is dependent on the complex permittivity, which is given
by [16]:

ε̃ = ε̄+
∑
jεIR

Λj
ν̃2j − ν̃2 − iΓj ν̃

(3.5)

Where Λj is a parameter describing the strength of the j-th absorption band, Γj is a
parameter describing the width of the j-th absorption band, ν̃j is the wave number of
the j-th absorption band and ν̃ is the wavenumber of the infrared light. An example
of where this is done is the program in appendix B.1, which calculates extinction,
scattering and absorption by applying Mätzler’s MATLAB functions. The coefficients
of 3.5 are given as a matrix, which generate the complex refractive index for each
wavenumber k the scattering, extinction and absorption is calculated for. Equation
3.5 is equivalent with equation 2.12, but the factors describes the absorption bands
more qualitatively since information of mass and charge of each type of dipole is hard
to acquire in practice [16].
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The complex permittivity is related to the refractive index by m =
√
ε̃ (eq. 2.14).

In this example, absorption bands were added at the wave numbers 1650cm−1,
2500cm−1 and 2650cm−1.

In figure 3.1 a MATLAB-function for calculation of forward scattering has been used
to create the extinction efficiency curve and a forward scattering efficiency curve. The
absorption curve is calculated by subtracting the scattering curve from the extinction
curve.

Figure 3.2 shows T = 1 − Qext,NA, where Qext,NA is given in equation 2.49, with
an increasing value of NA, meaning that the amount of scattered light which does
not reach the sensor decreases. The figure shows that when θNA goes to 180o, only
the absorption efficiency Qabs is left. The intensity functions i1(θ) and i2(θ), for
perpendicular and parallel intensity, is calculated using Mätzler’s MATLAB functions
[19] for amplitude functions S1(θ) and S2(θ). These functions are integrated, using
equation 3.2, over the range of θ in question with a step size ∆θ = 1o. The extinction
efficiency factor Qext is calculated using Mätzler’s functions [19].

Figure 3.2 b shows the transmissivity T = 1 − Qext where no scattering is present,
giving T = 1−Qabs. The absorption bands is in the same place in both plots and of the
same height as the red line in figure 3.2. The absorption efficiency Qabs in figure 3.2 a
is calculated by Mätzler’s formula based on equation 2.40. This figure shows that the
Mätzler’s functions for calculating the absorption efficiency, the forward extinction
and amplitude functions Si(θ) is consistent with the definition Qext = Qabs + Qsca,
since T = 1−Qext,NA and T → 1−Qabs when θNA → 180o.

23



3. Exact Mie scattering and approximations to the Mie solution

Figure 3.1: a: The extinction efficiency Qext curve for a sphere with
diameter a = 5µm and refractive index Re(m) = 1.3. b: The absorption
efficiency curve Qabs for a sphere with diameter a = 5µm and refractive
index Re(m) = 1.3. c: The scattering efficiency curve Qsca for a sphere
with diameter a = 5µm and refractive index Re(m) = 1.3. The wave
numbers on the x-axis are ν̃ = 1/λ [cm−1].
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Figure 3.2: The sphere used in the calculation has the radius 5µm and
the range of wavenumber ν̃ is from 0 cm−1 to 4000 cm−1. This correspond
to the range of size parameter x = 2πν̃a of 0 to 12.5. The refractive index
for both calculations are m = 1.3. a: The curve of T = 1−Qabs , where
Qabs is calculated by Mätzler’s function based in the internal electrical
field (eq. 2.40). b: The solid black curve shows T = 1 − Qext,NA with
NA corresponding to an angle θNA = 0o. The dotted curves show T with
an increasing value of NA corresponding to θNA = 10o, 20o, ..., 170o. The
solid red curve is T calculated with θNA = 180o, showing T = 1−Qabs.
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3.2 Approximation of efficiency curves in forward direc-
tion

The Mie formulas in the forward direction is much simpler than in the non-forward
direction. When θ = 0, the coefficients π(cos θ) and τ(cos θ) becomes π(1) = τ(1) =
1
2n(n− 1), making the formula for

S(0) =
1

2

∞∑
n=1

(2n+ 1)(an + bn) (3.6)

The exact scattering efficiency Qext can also be calculated by the coefficients an and
bn by applying the optical theorem, similar to what is done for Cext (eq. 2.21) in
section 2.3.1 [11]:

Qsca =
2

x2

∞∑
n=1

(2n+ 1)Re{an + bn} (3.7)

Still the calculations are computationally heavy and non-intuitive which makes ap-
proximations to the scattering problem useful.

3.2.1 Anomalous diffraction approximation (ADA)

The approximation made by van de Hulst [11] for the extinction efficiency factor Qext,
is done under the assumptions that the refractive index m is close but not equal to
1, and x = ka is large. The assumptions describes scattering in the anomalous
diffraction domain, which disregards refraction and reflection (m ' 1), and therefore
views transmitted rays as straight lines. This means that the scattered intensity is
concentrated close to the original direction of propagation. The light traveling trough
the sphere suffers, even though not undergoing significant refraction, a significant
phase lag. This light will constructively and destructively interfere with the light
diffracted as from a circular disk, with the area equal to the geometrical cross section
of the sphere. The field in the shadow of the sphere is e−iρ sin τ given a field of
magnitude 1 outside the shadow, where τ is the angle relative to the tangent of the
sphere at the point the ray hits the sphere, and ρ = 2x(m − 1) describes the phase
lag of the ray going through the centre of the sphere (τ = 90o). The scattered field
adds the factor e−iρ − 1 to the original field in the forward direction. To find the
scattering amplitude S(0), Babinet’s principle is applied, since the scattered and the
remaining field adds to the original field.

Babinet’s principle tells us that the diffraction pattern for a circular hole is the same
as the on of a circular opaque disc with the same radius. The disturbances in the

26



3. Exact Mie scattering and approximations to the Mie solution

plane wave caused by the diffraction pattern from the circular hole and the disk of
the same size, are equal in amount but opposite in sign [11]. Since the diffracted field
that is added to the field inside the shadow of the sphere is (e−iρ sin τ−1), the scattered
wave must be the same, but with opposite sign, assuming that Babinet’s principle
can be applied. Thus yielding the scattered wave (1 − e−iρ sin τ ). The amplitude in
forward direction is:

S(0) = k2a2
∫ π/2

0
(1− e−iρ sin τ ) cos τ sin τ dτ (3.8)

Where the integral is taken over the whole geometrical shadow and τ is the angle
relative to the tangent of the sphere. The Mie extinction efficiency curve is calculated
from the real part of S(0) (eq. 2.36). By performing the integration and setting
ka = x , the amplitude function becomes:

S(0) = x2
[

1

2
+
e−iρ

iρ
+
e−iρ − 1

(iρ)2

]
(3.9)

This gives by equation 2.36 the approximate extinction efficiency curve when we
assume a real refractive index m:

Qext = 2− 4

ρ
sin ρ+

4

ρ2
(1− cos ρ) (3.10)

where ρ = 2x(m−1). This is a widely used function for calculating approximate Mie
contribution to scattering by spherically shaped particles [2,5,10] . Figure 3.3 shows
the function 3.10 plotted against the exact Mie solution.

For the case when the refractive index is a complex number i.e. when absorption
resonances are present in the spectral range of the incident light, the approximation
is:

Qext = 2− 4e−ρ tanβ
cosβ

ρ
sin(ρ− β)

− 4e−ρ tanβ
(

cosβ

ρ

)2

cos(ρ− 2β) + 4

(
cosβ

ρ

)2

cos 2β (3.11)

Where tanβ = n′

n−1 and m = n− in′
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3. Exact Mie scattering and approximations to the Mie solution

Figure 3.3: The curves show Qext calculated by eq. 3.10 plotted against
the size parameter. The striped curve is made by using the anomalous
diffraction approximation, while the solid curve is the exact Mie solution.

3.2.2 Approximation for x→ 0; a comparison of Blümel´s and Wis-
combe´s approximation

In an article by Wiscombe [12] the author presents an algorithm for the approximation
of Mie scattering when the size parameter x → 0. The purpose of this work was to
make fast efficient computer codes for estimating the scattering with a high degree of
accuracy. Considering the much higher capacity of todays computers, this was first
of all a problem at the time Wiscombe´s article was written. The approximations of
the extinction and scattering efficiency are given as:

Qext = 6x Re
(
â1 + b̂1 +

5

2
â2

)
(3.12)

And:
Qsca = 6x4T (3.13)

The formulas for â1, â2, b̂1 and T are given in appendix A.5. The formulas require a
complex refractive index m.

The author claims that the approximation has an accuracy of 2-3 digits up to x = 0.5,
with increasing accuracy for lower values of x. The complex refractive index must
have an absolute value lower or equal to 2. Wiscombe also include formulas for cal-
culating S1(cos θ) and S2(cos θ). These are not tested in this work, but are given in
appendix A.5.

Blümel´s approximation [13] for x → 0 is based on the assumption that for small
values of x only n = 1 contributes significantly to the sum in Qsca by equation 3.7.
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3. Exact Mie scattering and approximations to the Mie solution

Therefore only the n = 1 term is kept from the sum. The sum is then expanded as
a power series of x. The functions an (eq. 2.32) and bn (eq. 2.33) are evaluated for
n = 1 to the leading order in x; only the a1 term contributes to Qext for x→ 0. The
extinction efficiency factor for a complex refractive index becomes:

Qext(x) =
6

x2
Re(ND∗)
|D|2

(3.14)

Where m = n + in′ is a complex number, N = x3(1 −m2) and D = x3(1 −m2) +
3
2 i(2 +m2).

In figure 3.4 the two approximations are compared to the exact Mie solution. Ab-
sorption bands are added to the dielectric constant to make a complex refractive
index. The absorption bands are located the same places as in section 3.1, which in
the case of a ∼ 10µm sphere is out of range in figure 3.4. Both of the approxima-
tions seem to converge towards the exact solution at low values of x, but Blümel’s
formula converges towards zero for a larger value of x than Wiscombe’s formula, thus
giving a slightly larger range of validity. If the approximations are plotted for lower
values of Re(m), one can see that Blümel’s formula will overestimate the scattering
for values of x before converging towards zero. In fig 3.4 the approximations and the
exact solution are plotted on a logarithmic scale. This shows that for x→ 0 Blümel’s
formula coincides with the exact solution, while Wiscombe’s formula differs slightly.

In figure 3.5 the relative error in the approximations is plotted. The relative errors
are calculated by the formula:

εrel(x) =
Qext,Mie(x)−Qext,Approx(x)

Qext,Mie(x)
(3.15)

where Qext,Mie is the efficiency factor calculated by the Mie solution, while Qext,Approx
is either Wiscombe’s or Blümel’s approximation. The plots in fig. 3.5 show that
Blümel’s approximation converges towards the exact solution with εrel → 0 when
x → 0, while the relative error of Wiscombe’s approximation diverges when x goes
lower than about 0.02, and levels of at a relative error of about 2. It can be shown
(derivation in appendix A.5.1) that the relative difference for Wiscombe’s approxi-
mation when x→ 0 becomes:

lim
x→0

εrel = 1 +
A+ 2(nn′)2

A− 2(nn′)2 + 4nn′
(3.16)

where n = Re(m), n′ = Im(m) and A = 4 + 4n2 − 4n′2 + n4 + n′4.

If nn′ < 1, then limx→0 εrel < 2. Because of the constant 4 in A and since A
includes the leading powers of n an n′, the relative difference will be ' 2 for m. The
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3. Exact Mie scattering and approximations to the Mie solution

expression 3.16 is actually the relative difference between Blümel’s and Wiscombe’s
approximation, but this works under the assumption that Blümel’s approximation is
exact in the limit x→ 0, which it proves to be in the log-log-plot in figure 3.4 b and
in the small-x relative error plot in figure 3.5.

Figure 3.4: a: Wiscombe’s and Blumel’s approximation compared to
the exact solution, plotted with complex refractive index (Re(m) ∼ 1.8).
b: Log-log plot of Wiscombe’s and Blümel’s approximation compared to
exact solution. The imaginary part is determined by absorption bands
outside the region investigated in these plots and is assumed to be � 1.

Figure 3.5: a: The relative difference between the approximation and
the exact solution for a wider range of x than plot a. b: The relative
difference between the approximation and the exact solution for x → 0.
In both a and b the real part of the refractive index (Re(m) ' 1.8). The
imaginary part of the refractive index is assumed to be � 1.
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3. Exact Mie scattering and approximations to the Mie solution

3.3 Approximation of efficiency curves in non-forward di-
rection

The approximations presented in this section are all based on modeling the intensity
at an angle θ after the forward solution, meaning that the exact solution is in fact used,
but the intensity at an angle θ is approximated by scaling the forward solution.

3.3.1 Penndorf-Shifrin-Punina/Fymat-Mease (PSP/FM-) Approxi-
mation

The PSP/FM-approximation is a method for calculating the intensity of scattered
light at different angels θ. The method is based on the approximation formula for
forward scattering intensity derived by Penndorf [22]:

IP =
x4

4k2

(
Qext

2

)2

(3.17)

Where the factors x, k and Qext are as defined previously. The approximation of
angular intensities is based on the idea that the Fraunhofer’s diffraction pattern
has about the same shape in the vicinity of the forward direction as the full Mie
solution [14]. By adjusting the Fraunhofer approximation to Mie scattering, the
approximation can be applicable to values of the size parameter x down to x ∼ 1.
The Fraunhofer intensity at θ = 0 is IF (0) = x2/4k2, thus the Penndorf formula can
be written as:

IP (0) = IF (0)

(
Qext

2

)2

(3.18)

Equation 2.36 gives the formula for Qext in terms of the real part of S(0). However,
the intensity in the forward direction also includes the imaginary part (eq. 2.27). An
assumption in this approximation is that Re{S(0)} � Im{S(0)}.

The Fraunhofer formula for arbitrary angle θ is [14]:

IF (θ) =
x2J2

1 (x sin θ)

k2 sin2 θ
(3.19)

Where J1(x sin θ) is the first kind of Bessel function of 1. order, x is the size parameter
and k is the wavenumber. Shifrin and Punina proposed to put the formula IF (θ) (eq.
3.19) in place of the Fraunhofer formula for θ = 0 which gives an estimation for the
intensity for values of θ different from the forward direction. The Penndorf-Shifrin-
Punina (PSP-) approximation formula is thus given as [14]:

IPSP (θ) = IF (θ)

(
Qext

2

)2

(3.20)
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3. Exact Mie scattering and approximations to the Mie solution

Fymat and Mease proposes two functions f1 and f2 which are modeled taking into
account the relative error between the real Mie solutions and the PSP-approximation.
These functions are given as [14]:

f−11 ≡ f−1[(m− 1)x] =

1− J2
0 [(m− 1)x],

for (m− 1)x ≤ a
or b ≤ (m−1)x ≤ c

1, otherwise
(3.21)

f−12 ≡ f−1[2(m− 1)x] =

{
1− J2

0 [2(m− 1)x], for 2(m− 1)x ≤ d
1, otherwise

(3.22)

With a, b, c and d as constants for each value of refractive index. For a refractive
index of m = 1.33 the constants are a = 3.63, b = 5.52, c = 6.6 and d = 2.4. This
gives the Fymat and Mease (FM) approximation [14]:

IFM (θ) = IPSP (θ) f1 f2 (3.23)

The extension made by Fymat and Mease is based on the residual from the PSP-
approximation, to increase the validity for low values of x. In their article [14],
an improvement from the PSP-approximation is shown in the forward direction for
different refractive indices.

3.3.2 Gordon-approximation

The Gordon approximation [15] is a method for estimating scattering of light by
spheres. The approximation is based on an extension of the Rayleigh-Gans (or
Rayleigh-Debye; R-D) approximation 1 made by Shimizu [23], which enters ma as the
radius of the scattering sphere instead of only a. This allows the refractive index m
to be included in the approximation, contrary to the unmodified R-D approximation.
The formula for the intensity relative to the incident light is:

I(θ) = I(0)[3 · J1(xg)/xg + γ(xg)]
2[1 + cos2 θ]/2 (3.24)

Where J1(x) is the Bessel function of first order, given in [15] as J1(xg) = (sinxg −
xg cosxg)/x

2
g and xg = ka(1 + m2 − 2m cos θ)1/2, with a and m as radius and re-

fractive index of the sphere as usual. The subscript in xg separates it from size
1Rayleigh-Gans scattering covers scattering by particles under the assumptions that the relative

refractive index is close to 1, and that the phase shift is small, meaning that either the sphere is
small or the change in refractive index is small compared to wavelength of the light. This means
that the wave may pass through the particle without being refracted. A very small part of the wave
is scattered in each volume element of the particle, and may pass through the other volume elements
without being scattered further more. The scattered waves from the different volume elements in
the same direction may interfere with each other because of different positions. The interference
effects is the basis of Rayleigh-Gans scattering [11].
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3. Exact Mie scattering and approximations to the Mie solution

parameter x = ka defined in van de Hulst [11]. In the unmodified R-D approxima-
tion, xg = 2ka sin(θ/2).

The forward intensity I(0) is the relative intensity in the forward direction, and
may be calculated by the scattering amplitude in the forward direction S(0) from the
exact Mie solution by [14]:

I(0) = k−2{(Re[S(0)])2 + (Im[S(0)])2} (3.25)

The function γ(xg) is included to ensure that the minima of I(θ) > 0 when J1(xg) = 0.
This function is non-analytical by definition [15], and may have different forms for
different sized scatterers. Gordon proposes γ(xg) = x

−3/2
g and attributes it the same

sign as J1(xg), but acknowledges that more complicated forms of γ(xg) might give
better approximations.

3.4 Solid angle integration by PSP, FM and Gordon’s
approximation

The Mie solutions to the scattering problem offers formulas for calculating the scat-
tering efficiency Qsca in the non-forward direction. When these formulas are used to
integrate over a range of angles θ, the Mie solution needs to be calculated for each
of the solid angles at each of the wave numbers in the spectrum. This is a computa-
tionally intensive process. Approximations that speeds up this process are therefore
of interest.

The approximations made by Penndorf, Shifrin and Punina, modified by Fymat and
Mease are presented in chap. 3.3.1. Plots of the intensity at different angles show
that this approximation works best for angles in the vicinity of the forward direction.
The plots of the intensities are shown in fig. 3.7. For small values of x the PSP/FM
approximation works reasonably well even for angles up to (and above, though not
shown in fig. 3.7) θ = 10o. For an increasing angle θ the approximation is less
accurate for higher values of x. For example in the infrared spectroscopy of single
cells of the size of 30 µm, x-values up to about 40 are required to cover the whole
mid-IR region.

To get a better estimate of the scattering at larger angles θ than about 10, other
approximations could be considered. The approximation by Gordon presented in
section. 3.3.2, provides an estimate of the scattering intensity with better accuracy
than the PSP/FM approximation at larger values of θ. This approximation does
not give a good estimate at angles near the forward direction, as can be seen in the
figure 3.6. The presence of the non-analytic modulating function γ(xg) provides the
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3. Exact Mie scattering and approximations to the Mie solution

opportunity to adjust the approximation to a certain range of validity. A combination
of PSP/FM- and the Gordon approximation where used to obtain the scattering
efficiency integrated from θ = 0o to θ = θNA in section 3.4.1.

Figure 3.6: Plots of Gordon’s approximation versus the exact Mie solu-
tion at different scattering angle θ. The y-axis shows the relative intensity
I(θ)/I0 at the given solid angle: a: θ = 5o, b: θ = 10o, c: θ = 15o, d:
θ = 20o, e: θ = 25o. f: θ = 30o
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3. Exact Mie scattering and approximations to the Mie solution

Figure 3.7: Plots of Fymat and Mease’s approximation versus the exact
Mie solution at different scattering angle θ. The y-axis shows the relative
intensity I(θ)/I0 at the given solid angle: a: θ = 1o, b: θ = 3o, c: θ = 7o,
d: θ = 10o.

Figure 3.8: Plots of Penndorf, Shifrin and Punina’s approximation ver-
sus the exact Mie solution at different scattering angle θ. The y-axis
shows the relative intensity I(θ)/I0 at the given solid angle: a: θ = 1o,
b: θ = 3o, c: θ = 7o, d: θ = 10o
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3.4.1 Integrating the scattering efficiency

The scattering efficiency curve is calculated from the the relative intensity formula
acquired from the approximation formulas made by Fymat & Mease and by Gordon.
The relative intensity at a point with the distance r from the sphere has the form
[11]:

I(θ)

I0
=
i1(θ) + i2(θ)

2k2r2
(3.26)

Where I0 is the intensity of the incident light, k is the wavenumber and i1 and i2 is the
intensity component perpendicular and parallel to the scattering plane respectively.
To get the relative intensity independent of the distance from the sphere, i.e. the
radial intensity, the unit of steradians is introduced: 1sr = r2. The relative intensity
in eq. 3.26 is now:

I(θ)

I0
=
i1(θ) + i2(θ)

2k2
(3.27)

with the unit of solid angles [sr−1]. The relative intensity of equation 3.27 is the
intensity of an area r2 divided by the incident intensity.

The scattering efficiency QNA is given in equation 3.2, the integrand (i1 + i2) can be
replaced by 2k2 I(θ)/I0, as can be seen from equation 3.27. Thus the efficiency for
the numerical aperture can be expressed as:

QNA =
2

a2

∫ θNA

0

I(θ)

I0
sin θdθ (3.28)

The factor a−2 in equation 3.28 might seem troublesome, remembering the scale
invariance statement in section 2.1. This problem is resolved in the PSP/FM ap-
proximation by the equation giving the Fraunhofer approximation (eq. 3.19, which
contains the factor x2/k2 = a2 going against a−2 in formula for QNA (eq. 3.28).

The same problem is resolved in the Gordon approximation by the k−2 dependence
of the incident intensity (eq. 3.25), which is multiplied with the a−2 in equation 3.28,
making QNA dependent only on the size parameter x.

Four approaches are used to estimate QNA:

1. Only the PSP approximation is used to estimate QNA. The intensities are
calculated by the PSP approximation (eq. 3.20).

2. Only the FM approximation is used to estimate QNA. The intensities are cal-
culated by the FM approximation (eq. 3.23).

3. The PSP approximation (eq. 3.20) is used to calculate the intensities at low
angles, θ ∈ [0o, 10o]. For θ ∈ [10o, θNA] the Gordon approximation (eq. 3.24) is
used to calculate the intensities.
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4. The FM approximation (eq. 3.23) is used to calculate the intensities at low
angles, θ ∈ [0o, 10o]. For θ ∈ [10o, θNA] the Gordon approximation (eq. 3.24) is
used to calculate the intensities.

The reason for combining the approximations, PSP/FM and Gordon, is that the
PSP/FM approximations is more accurate at small angle intensities, while the Gordon
approximation is more accurate at higher angles. The angle θ = 10o for switching
between approximations is chosen by visual inspection of I(θ)/I0. Figures 3.7 and
3.6 show that the two approximations have about the same accuracy at an angle of
10o, making this angle a reasonable choice.

An integration using only Gordon’s approach is not included since this approxima-
tion, as illustrated in figure 3.6 does not give a good result at small angles. Small
angles have higher scattering intensities than the larger angles, thus the Gordon ap-
proximation alone is bound to be worse than the PSP and FM approximation alone
for integrations including the angles in the near forward direction.

The modulating function γ(xg) is chosen in a different way as in the article by Gordon.
A dependency on θ as well as xg was introduced. This is done to improve the result for
a larger range of angles. The γ used in this thesis is an ad hoc version of the function,
that has been adapted to the best fit for the purpose described in this section. This
γ should not be put too much attention to, since other γ’s could serve this purpose
just as well. The γ used in this integration can be found in the MATLAB function
Gordon.m in appendix B.2.

The MATLAB program used to integrate QNA is found in appendix B.1. This pro-
gram use the MATLAB functions found in appendix B.2. The other functions used
are Mätzlers MATLAB functions, and can be found in the reference [19].
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3. Exact Mie scattering and approximations to the Mie solution

Figure 3.9: a: The black line shows the QNA calculated by the Fymat
& Mease (FM) approximation integrated over interval θ ∈ [1o, 35o] (ap-
proach 2), while the red line is the exact QNA in the same interval. The
refractive index m = 1.3. b: The black line shows the QNA calculated
by the Penndorf, Shifrin & Punina (PSP) approximation integrated over
interval θ ∈ [1o, 35o] (approach 1), while the red line is the exact QNA in
the same interval. The refractive index m = 1.3.
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Figure 3.10: a: The black line shows the QNA calculated by the Fymat
and Mease (FM) approximation combined with Gordon’s approximation
integrated over interval θ ∈ [1o, 35o] (approach 4), while the red line is
the exact QNA in the same interval. b: The black line shows the QNA cal-
culated by the Penndorf, Shifrin and Punina (PSP) approximation com-
bined with Gordon’s approximation integrated over interval θ ∈ [1o, 35o]
(approach 3), while the red line is exact QNA in the same interval.
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In figure 3.9 the approximation is done by integrating the PSP approximation (fig.
3.9 b) or FM approximation (fig. 3.9 a) over the interval of solid angles θ ∈ [1o, 35o],
corresponding to approach 1 and 2 in the list above. In figure 3.10 the integration is
done by integrating the PSP approximation (fig. 3.10 b) or the FM approximation
(fig. 3.10 a) for θ ∈ [1o, 10o], and the Gordon approximation for θ ∈ [11o, 35o],
corresponding to approach 3 and 4 respectively. The approximations have in general
the same shape as the exact solution with different degree of accuracy, but some
essential differences are worth noticing:

1. The high frequent oscillations, called wiggles (smooth and wavelike) and ripples
(sharp and narrow), seem to have the same phase in the approximation and
the exact solution, but the wiggles and ripples in the approximation is more
intense than in the real solution. This is most likely because the PSP and FM
approximation is modeled around the square of the forward extinction curve
(eq. 3.20). The Fraunhofer diffraction formula (eq. 3.19) used to estimate the
the scattered intensity at different angles does not contain information on how
the wiggles vary in size with the angles. In figure 3.7 we see that the wiggles
are overestimated in amplitude, especially at low angles.

2. In approach 2 and 4 (figure 3.9 a and figure 3.10 a) the approximations exhibits
some jumps that are caused by the discontinuous functions in eq. 3.22. In
approach 1 and 3 (figure 3.9 b and figure 3.10 b), the PSP approximation is
used instead of the FM approximation, leaving out the extension done by Fymat
and Mease (eqs. 3.21 and 3.22). As seen in these plots, the discontinuities are
gone, and the approximation are equally or more accurate than the approaches
where the FM approximation is used.

3.4.2 Comparison of errors in the approximations

To compare the approximation approaches 1-4 in one plot, the relative error from
the exact solution is calculated. The area of the plots focuses on the region between
x = 0 and x = 15, which is the region with the most interesting differences. At values
of x higher than 15 the differences between the different approaches are small and
the are hard to make out because of the ripples obstructing the graphs. Figure 3.11
shows the relative error between the approximations and the exact Mie solution, εrel,
per value of x is calculated by the formula:

εrel(x) =
QNA,Mie(x)−QNA,Approx(x)

QNA,Mie(x)
(3.29)

WhereQNA,Mie is the exact efficiency factor for the numerical aperture, andQNA,Approx
is the efficiency factor of the numerical aperture calculated using an approximation.
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Figure 3.11 shows the relative error at different indexes of refraction. The plots show
a relative error εrel which holds relatively steady at different refractive indices. Also
a decrease in error with increasing refractive index is sometimes observed.

The plots in figure 3.11 show that the integrations done combining the PSP approxi-
mation and FM approximation combined with the Gordon approximation (approach
3 and 4) performs best. This can easily be seen in the plots showing εrel for refrac-
tive indices m = 1.3 and m = 1.4, where the relative errors in approach 3 and 4 lies
closer to the zero-line (marked as ’Exact Mie’ in the plots) than the others. The FM
approximation alone (approach 2) preforms rather poorly for m = 1.3; e.g. it drops
below −4 at x ∼ 2, indicating that the approximated QNA is four times higher than
exact QNA. Figure 3.9 shows that the absolute difference is also large for approach
2. In figure 3.11 c and d showing εrel for m = 1.5 and 1.6 approaches 1 and 2 (not
including the Gordon approximation) performs better than for m = 1.3 and m = 1.4,
while approaches 3 and 4 (including the Gordon approximation) performs at about
the same level of validity. Of approaches using the Gordon approximation (approach
3 and 4), the one using the PSP approximation (approach 3) seems to perform best.
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Figure 3.11: The relative difference from the exact solution for all four
approaches for approximating QNA with a θNA = 35. Each plot shows
εrel calculated with different refractive indices: a: m = 1.3, b: m = 1.4,
c: m = 1.5 d: m = 1.6.
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3.5 Approximations modulated from approximate forward
extinction

In the following the best performing approach from section 3.4.1, which is the ap-
proach combining the Penndorf, Shifrin and Punina approximation (θ ∈ [1o, 10o]) and
the Gordon approximation (θ ∈ [11o, θNA]), is modified to give a pure approximation.
This means that the forward amplitude I0 and the forward extinction efficiency Qext
used to construct the approximations in the non-forward direction, is achieved from
an approximation instead of the exact Mie solution. The forward approximation used
is the Anomalous Diffraction Approximation (ADA), described in section 3.2.1.

The extinction efficiency Qext is calculated using equation 3.10 and the intensity I(0)
in the forward direction is calculated by equation 3.25. The amplitude functions
in the forward direction S(0) is given by the equation 3.8. An assumption for the
anomalous diffraction approximation is that m−1� 1, therefore this approximation
method for QNA is expected also to work best in this range.

The efficiency associated with the numerical aperture QNA modeled after ADA is
shown in figure 3.12. The plots are made using different refractive indices. As ex-
pected the approximation works best for low values of m. The ripples shown in the
real solution are not present in the approximation since they are not explained by
the anomalous diffraction theory.
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Figure 3.12: The exact solution and the anomalous diffraction approxi-
mation (ADA) integrated a region of solid angels θ ∈ [0o, 35o] to give QNA
for different values of refractive index m. The exact solution is shown as
a solid line, and the anomalous diffraction is shown as a striped line. a:
m = 1.2, b: m = 1.3, c: m = 1.4, d: m = 1.5.

3.6 Estimating Mie-scattering in infrared microspectroscopy
of pollen

To test the approximation of the Mie solution in biological applications, real spectra
of spherically shaped biological particles are obtained. These were made by syn-
chrotron based FTIR-spectroscopic analysis of a single pollen grain from the species
Juniperus Excelsa. The measurements of the spectra were recorded at the SOLEIL
synchrotron facility. The image in figure 3.13 shows the analyzed pollen grain and the
infrared beam illuminating the particle. The scale is shown at the axes of the image,
making it possible to visually estimate the size of the particle, which in this case
can be estimated to about 22 µm. The only unknown parameter of the sample is the
refractive index, which is reasonable to assume lies within the range 1.3 to 1.5 [24,25].

The microscope used is a Nicolet Continuum XL with 15× objective, giving a nu-
merical aperture (NA) = 0.58. From equation 2.45 you find that this corresponds to
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3. Exact Mie scattering and approximations to the Mie solution

a spherical cap with angle θNA ' 35.5o. This means that the light scattered with
an angle smaller than θNA will not be a part of the scattering. The efficiency of the
numerical aperture (eq. 3.2) can be written as:

QNA =

∫ 35.5o

0
Qsca(θ)dθ (3.30)

The equation stating that Qext = Qsca+Qabs (eq. 2.23) can be used to estimate Qabs
if Qext is replaced with Qext,NA, and Qsca is replaced with Qsca,NA:

Qabs = Qext,NA −Qsca,NA (3.31)

The term Qext,NA in equation 3.31 will be the extinction in the measured data. By
subtracting the term Qsca,NA, which is the scattered light not collected by the focus-
ing optics, the absorption efficiency Qabs will appear. The IR-spectrum in figure 3.14
is the absorbance A = − log10(T ) (eq. 2.43) of the pollen grain. The estimated scat-
tering contribution is not equivalent with the absorbance 2, but is often interpreted
as the scattering contribution to the absorbance spectrum [16]. This is done also in
this thesis, although it is a rough estimation.

In figure 3.14, one of the absorbance spectra from the spectroscopic analysis of the
pollen is shown together with the estimated Qsca,NA. The efficiency of the numerical
aperture QNA is estimated by the 3. approach in section 3.4.1, combining the PSP
and Gordon approximation. The spectrum is obtained from the pollen grain illumi-
nated in the image in fig 3.13. The radius is a = 11 µm and integration is done for
the range of angles θ ∈ [1o, 35o]. The refractive index was chosen to be 1.31 since it
visually yielded the best fit for the spectrum.

The parameters for the estimated Mie scattering are chosen with a high degree of
uncertainty. In addition the pollen grain is no a perfect homogeneous sphere. Thus
the corrected spectrum in fig. 3.14 b is not nessicarily the spectrum showing only the
absorption bands, but merely illustrate that the scattering somewhat coincides with
the part of the uncorrected absorbance spectrum in figure 3.14 a expected to be the
scattering contribution.

2The relation between transmission, absorption and the extinction efficiency is presented in sec-
tion 2.5
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3. Exact Mie scattering and approximations to the Mie solution

Figure 3.13: Microscopic image of the analyzed pollen grain from the
species Juniperus Excelsa. The beam is 20× 20 µm, and the diameter of
the pollen grain is about 22µm estimated by comparison with the axes
on the edge of the image.

Figure 3.14: a: The absorbance spectrum from the analysis of the
pollen grain with contributions from Mie-scattering, and the estimated
Mie-scattering contribution Qsca,NA. b: The absorbance spectrum with
the estimated scattering contribution subtracted. The wavenumber on
both plots are ν̃ = 1/λ [cm−1]
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4 The ripple structure

The exact Mie extinction show a rapidly fluctuating structure that breaks with the
smooth wavelike underlying structure. The sharp narrow structure is called ripples,
while the broader and smoother structure is called wiggles. In figure 4.1 the wiggles
and ripples are shown more explicitly. Bohren and Huffman [18] presents a classical
electromagnetic solution in terms of the normal modes, or resonant modes, of the
electric field. This will be the topic of the next section (4.1). To get more insight in
the origin of the wiggles and ripples in terms of scattering, a semiclassical approach
where the scattering of electromagnetic waves is viewed as a quantum mechanical
problem is discussed. This way we can speak of rays of light as particle paths and
look at their individual contribution to the scattering [26]. In the ray picture, resonant
modes are equivalent to orbits (sec. 4.2) of the individual rays. Many of them have a
simple geometrical interpretation. In section 4.3 the ripples in the extinction efficiency
curve are Fourier transformed and analyzed in light of the ray picture.

Figure 4.1: a: The extinction efficiency curve of the exact solution.
b: The extinction efficiency curve zoomed in on the box in a. c: The
extinction efficiency curve zoomed in on the box in b; the ripples are
shown as sharp, narrow peaks and the wiggles are the smoother and
wider fluctuations.



4. The ripple structure

4.1 Electromagnetic normal modes1

The solution to the vector wave equation for a sphere is the basis for Mie’s theory for
scattering by a sphere. The solutions that satisfy the scalar wave equation in spherical
coordinates A.20 are presented as an odd and an even wave function [18]:

ψemn = cosmφPmn (cos θ)zn(kr) (4.1)
ψomn = sinmφPmn (cos θ)zn(kr) (4.2)

Where Pmn (cos θ) is the associated Legendre function and zn(kr) is the first or second
kind of the spherical Bessel functions. Any function that satisfies the scalar wave
equation can be written as an infinite series of the equations 4.1 and 4.2. The vector
spherical harmonics Memn, Momn, Nemn and Nomn are generated by ψemn and ψomn,
and are given in the appendix (A.4.1).

The incident light described as a plane wave is usually written as Ei = E0e
ikrk̂.

The plane wave can also be written in vector spherical harmonics, with the electrical
field:

Ei = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(M

(1)
oln − iN

(1)
eln) (4.3)

and magnetic field:

Hi =
−k
ωµ

E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
(M

(1)
eln + iN

(1)
oln) (4.4)

where µ is the magnetic permittivity and the superscript (1) indicates the first kind
of the spherical Bessel functions. The condition at the boundary between the sphere
and the surroundings is stated to be [18]:

(Ei + Es −El)× n̂r = (Hi + Hs −Hl)× n̂r = 0 (4.5)

The field inside the sphere El can be expressed the same way as the incident field,
but with scaling coefficient cn applied to the odd versions of M(1) and N(1), and dn
applied to the even ones. The scattered field Es has has the coefficients an for the
even terms of M(3) and N(3), and bn for the odd ones:

Es =

∞∑
n=1

En(ianN
(3)
eln − bnM

(3)
oln) (4.6)

1This section about the incident, scattered and internal electromagnetic fields represented in
spherical harmonics is based on the results of the derivation in Bohren and Huffman [18], this also
applies for the discussion of the normal modes and their relevance to the ripple structure in Mie
solutions to scattered light.
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4. The ripple structure

where En = inEo(2n + 1)/(n(n + 1)). The superscript (3) indicates that the third
kind of the spherical Bessel functions is used (the first kind of the spherical Hänkel
functions).

The vector spherical harmonics Mn and Mn each represent a normal mode of the
spherical particle. The scattered field is a superposition of normal modes, but under
certain conditions a single normal mode will be exited. For each n there are two
types of modes: transverse magnetic modes (E-wave), for which there are no radial
magnetic component and transverse electric modes (H-wave), for which there are no
radial electric component2. The normal mode for a particular n will appear in the
scattered field when the denominator in an (eq. 2.32) or bn (eq. 2.33) is very small.
The appearance of these normal modes depends on x, which is dependent on the
frequency of the incident light. Since Qext (and also the amplitude functions) is a
sum over all an and bn, the resonant normal modes give a contribution to Qext at the
values of x where the normal modes appear. The top of each ripple then appears at
the resonance frequency for a normal mode.

4.2 Semiclassical scattering

4.2.1 Ray picture of scattering

In the problem of scattering by a sphere, the resonances in the Mie coefficients an and
bn is what makes the ripples appear in the extinction curve. Each of the resonances
can be viewed upon as one partial wave in the total sum of the S-functions (eqs. 2.28
and 2.29) contributing a lot more to the scattering than the others. The physical
interpretation of this is not very clear, and a more intuitive way of understanding the
resonances would be of help to analyze the ripple structure.

A way to interpret the resonances is to view the individual partial waves of the
scattering functions as rays which undergo multiple reflections inside the sphere. The
rays hit the walls of the sphere beyond the critical angle indicating total reflection.
At the resonance the ray makes an integral number of reflections inside the sphere
and returns to its starting point in phase. [27]

Orbits reachable by geometrical optics can account for the broader resonances, i.e.
the wiggles, but the resonances that shows the sharp, narrow ripples in the highest
detailed plot in figure 4.1, does not originate from orbits reachable from the outside
by classical means. The ripples are associated with rays undergoing total internal

2The electric field of the oscillating electric dipole corresponds to the normal mode a1, which is
the first E-wave mode
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4. The ripple structure

reflection, and cannot be reached from the outside by simple refraction. Diffraction
must occur to redirect the ray to enter the sphere at angles not allowed by refraction
and reflection. The rays undergoing total internal reflection gives an increase of energy
density near the surface of the sphere, since the ray may undergo a large number of
orbits with a small amount of leakage to the outside. Orbits that reflects a large
number of times inside the sphere beyond the limit of total reflection, are sometimes
called "whispering gallery" modes. [27,28]

The ray picture of scattering of light can be useful since the trajectories of the rays are
analogous with the trajectories of particles described by quantum mechanics.

The next section 4.2.2 will give an example of a quantum mechanical approach to a
classical problem; the scattering of electromagnetic waves in one dimension, and how
this gives a picture of rays instead of a continuous wave. This gives a simple connec-
tion between the orbits and the ripple structure. The section 4.2.3 will in more detail
go through the orbits and ray dynamics in terms of semiclassical scattering.

4.2.2 Scattering in one dimension - equivalency between classical
and quantum mechanics

In classical electrodynamics the problem of a traveling electromagnetic wave incident
to the surface of a slab represents a one-dimensional scattering problem. A part of
the wave is reflected at the boundary between the ambient medium and the slab, and
the rest is transmitted across the boundary. A second part of the wave is reflected
at the second boundary between the slab and the ambient medium, while the rest is
transmitted into the ambient medium again. The electric field of the wave impinging
the slab described by Ẽ(x, t) = Ẽ(x)eiωt satisfies the Helmholtz equation [16]:[

d2

dx2
+ εrk

2
0

]
Ẽ(x) = 0 (4.7)

where εr is the relative dielectric constant and k0 is the wavenumber . The elec-
tric field amplitude in regions I, II and III in figure 4.2 can be found by Imposing
the boundary conditions that the electric field is continuous and smooth across the
boundaries, giving the amplitudes of the reflected and the amplitude of the trans-
mitted field. The transmission amplitude obtained by the solution to this problem
is [16]:

t =
2ime−ika

(1 +m2) sin(mka) + (2im cos(mka)
(4.8)

where k is the wavenumber, m is the refractive index and a is the thickness of the
slab.
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4. The ripple structure

Figure 4.2: The setup of quantum mechanical case of a particle that
hits potential barrier. The wave functions in region I and III describes a
free particle (V (x) = 0) with the constraint of a continuous and smooth
function at the boundaries of region II, where the potential is V (x) = V0.

The setup of the Helmholtz equation (eq. 4.7) is an equivalent setup to the quantum
mechanical case of particles impinging a square potential (figure 4.2). In the following
the quantum mechanical case is solved. The stationary Schrödinger equation with a
constant potential V0 in the region 0 > x > a is given as:[

−~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), V (x) =

{
V0, for 0 ≤ x ≤ a
0, otherwise

(4.9)

Where V (x) is the potential function, ~ is Planck’s constant and m is the mass of
the particle. The solution to the Schrödinger equation for each of the areas I, II and
III in figure 4.2 is [29]:

ψI(x) = eik1x + re−ik1x, for x ≤ 0 (4.10)

ψII(x) = Aeik2x +Be−ik2x, for 0 ≤ x ≤ a (4.11)

ψIII(x) = teik1x, for a ≤ x (4.12)

Where r is the reflection amplitude and t is the transmission amplitude. The ampli-
tudes are found by imposing the same boundary conditions as is the classical case:
the wave function needs to be continuous and smooth (continuous derivative) at the
boundaries. The constants k1 =

√
2mE/~2 and k2 =

√
2m(E − Vo)/~2 for respec-

tively outside and inside the potential barrier. The boundary conditions states that
ψI(0) = ψII(0), ψII(a) = ψIII(a), ψ′I(0) = ψ′II(0) and ψ′II(a) = ψ′III(a). This gives the
transmission amplitude:

t =
2k1k2e

−ika

2k1k2 cos(k2a)− i(k21 + k22) sin(k2a)
(4.13)

If the constants k1 and k2 translates to the wave numbers, then this expression is the
same as in the classical solution in 4.8 with a little rearranging, and by setting k1 = k,
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4. The ripple structure

which is the wavenumber in the ambient medium and k2 = mk the wavenumber
inside the slab, where m is the refractive index of the medium in the slab and k is
the wavenumber of the electromagnetic wave outside the slab.

In the further discussion, a formula for the transmissivity, or transmission probability
can be given. The transmissivity is T = |t|2, assuming no absorption [29]. The
expression for T is:

T = |t|2 =
1

1 + 1
4

(
1
m −m

)2
sin2(mka)

(4.14)

From eq. 4.14 we can see that when sinmka is zero, the transmissivity is 1. This
happens when mka = nπ, where n = 1, 2, 3, .... These states are the bound quantum
mechanical states. They also correspond to the states when the electric field oscil-
lates one or one half wavelength between the boundaries of the slab. These can be
translated into the normal modes of the electric field in the slab. A physical interpre-
tation can be that the electromagnetic wave reflected at the inner boundary (between
regions II and III in fig. 4.2) will interfere destructively with the wave reflected at
the outer boundary (between regions I and II in fig. 4.2), annihilating the reflected
wave completely. Thus by the conservation of energy principle, the transmitted wave
must be as energetic as the incident wave. The number n can be interpreted as the
number of bounces the electromagnetic wave makes at the internal boundary. When
the electromagnetic wave bounces more than once off the boundary between regions
I and II, n will be larger than one. By the same argumentation, the reflectivity is
the largest when mka = nπ

2 . In between these extremal points there will be more or
less interference between the reflected waves, making up the wiggles seen in infrared
spectroscopy of a slab (often referred to as fringes).

The correspondence between the classical and the quantum mechanical case of one
dimensional scattering of a finite potential barrier illustrates a case of semiclassical
scattering; the scattering of particles as an analogy to the scattering of electromag-
netic waves.

4.2.3 Scattering by a sphere - ray dynamics

In this section an attempt will be made to discuss scattering by a sphere in terms
of ray dynamics and introduce semiclassical scattering by a sphere. We start by
introducing the localization principle, from which van de Hulst connected number
of terms n in the Mie scattering amplitudes (eqs. 2.28 and 2.29) to the quantum
mechanical angular momentum number, l.

The localization principle [11] states that a term in the Mie solution of the order n
corresponds to a ray passing through the sphere at a distance d = (n+ 1

2)λ/2π from
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the origin, where λ is the wavelength of the light. The distance n + 1/2 = x, where
x is the size parameter, is exactly the radius of the sphere, meaning that terms with
n + 1/2 < x correspond to rays hitting the sphere, while terms with n + 1/2 > x
correspond to rays passing the sphere. The contribution to the Mie solution from the
rays passing the sphere goes to zero with increasing n.

The connection with quantum mechanics is by van de Hulst introduced by the analogy
of an electron colliding with a central potential. The solution has the form of a series
with integer values of angular momentum l, and the average distance of the electron
from the centre is d = (l + 1

2)λ/2π, where λ is the de Broglie wavelength of the
electron. [11]

The orbits obtainable by refraction, called the open channels, correspond to the rays
with a distance from the origin of the sphere d < x, which in semiclassical scattering
is obtained by having an angular momentum l < lmax, where lmax is the angular
momentum giving l + 1

2 = x. The rays having l > lmax is called the closed channels,
and have by the localization principle, a distance from the origin larger than the radius
of the sphere. In the ray picture these rays pass the origin outside the sphere, but
may in semiclassical scattering enter and the sphere through tunneling, and turn into
the high energy orbits mentioned in the introduction to this section 4.2. [11,13]

By looking at each partial waves of the amplitude functions in the forward direction
(eq. 2.28 and 2.29) as rays, each ray Sl is the l-th term in the sum. The subscript
l denotes angular momentum of the semiclassical ray. By the localization principle,
each orbit will originate from one partial wave. The ray represented by the term S0
will have zero angular momentum, and therefore go through the centre of the sphere.
This will be similar to scattering by a slab in section 4.2.2. By analyzing only the S0
component of the amplitude function, only the diameter orbit is obtainable, and the
ripples should be like the "fringes" of the 1-D scattering problem. [13]

4.3 Analysis of the ripples in Qext

To analyze the ripples caused by the open channels (obtainable by refraction) orbits
in Qext, one can use Snell’s law of refraction to determine the change of angel of the
incident light. The light will, at a certain displacement from axis going through the
origin of the sphere, refract in such a way that the ray will bounce two times inside
the sphere and exit in the direction of the incident light. This is called a triangular
orbit and is shown in figure 4.3 b and d. Rays which go through the centre of the
sphere will have no change of angle. These orbits correspond to the one dimensional
case described in section 4.2.2, and are shown in figure 4.3 a and c. For the triangular
orbit (fig. 4.3 b), the angle of refraction α related to the incident angle β is expressed
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as [28]:
sinβ = m sinα (4.15)

where β = 3α. This means that the angle of the incident light to the the normal of
the tangential plane has to be three times larger than the refracted angle. Thus gives
the limit of the refracted angle of α ≤ 30o, since the maximum angle of the incident
light is 90o. This also means that the lowest refractive index of which a triangular
orbit may appear is m = 2. This limiting case of the triangular orbit is shown in
figure 4.3 d. The path length of the ray inside the sphere can be expressed in terms
of only the refractive index m and the sphere radius a [28]:

l = 6a cosα = 3a
√

1 +m (4.16)

This triangular orbit is expected to have a peak in the Fourier transform at L = ml,
fully expressed as [28]:

L = m3a
√

1 +m (4.17)

Orbits with 4, 6, 8, ... bounces inside the sphere may also exist. The refractive index
these orbits need enter the sphere by refraction is defined by [28]:

sin((b+ 1)α) = m sinα (4.18)

Where b = 2, 4 , 6 , ... is the number of bounces and α is the refracted angle relative
to the normal of the tangential plane. When the number of bounces increase, the
orbits converge to "whispering gallery" modes, which are modes of totally internally
reflected rays that runs along the inside boundary of the sphere [28].

As seen in the various plots of the Qext-curve, the ripples seem to have a periodic
nature with different shape and frequency. A reasonable analytic step is to take the
Fourier transform (FT) of Qext. This will order the ripples in terms of frequency, thus
separating ripples originating from different orbits. The Fourier transform is done by
MATLAB’s built in function for the Fast Fourier Transform (FFT)-algorithm.

4.3.1 The Fourier transform

The Fourier transform contains the amplitudes of the frequencies of sine and co-
sine functions which need to be superposed to recreate the original function. The
continuous Fourier transform is defined as [30]:

F (ω) =
1√
2π

∫ ∞
−∞

Q(k)e−iωkdk (4.19)

where F (ω) is a function of the harmonic frequencies ω which reconstruct the original
function. Q(k) is the original function (in this case Qext).
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Figure 4.3: a: The diameter orbit, where the ray bounces two times
off the inside boundary of the sphere, exiting the sphere in the incident
direction (one dimensional scattering). b: The triangular orbit with re-
fractive index m > 2.0, where β = 3α, and is the incident angle relative
to the normal of the tangent plane and α is the angle of the refracted ray
relative to the normal of the tangent plane. c: Transmitted ray through
the centre of the sphere, with 1/3 of the path length of the ray in a. d:
Triangular orbit where the entrance and exit point is the same; at the
limit of total internal reflection (m = 2.0). [28]
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The FFT is an efficient way of doing a Discrete Fourier Transform (DFT), which is
the way to do a Fourier transform numerically. The DFT is given in the following
way [30]:

F (j) =
1

N

N−1∑
j=0

Q(k)e−i2πjk/N (4.20)

where j = 0, 1, , ..., N − 1 and k = 0, 1, ..., N − 1. The function Q(k) is, as in the
continuous version (eq. 4.19), projected onto a subspace of sine and cosine functions
with an integer number of wavelengths between j = 0 and j = N . Since the sine
(and cosine) functions with different integer number of wavelengths are mutually
orthogonal, the subspace is an orthogonal basis for the function Q(k). This means
that any function Q(k) can be projected onto this subspace if N is large enough, and
the amplitude of the sine and cosine functions will determine the contribution to each
frequency component of the subspace. The index j determines the frequency of the
sine and cosine functions. The contribution Q(k) makes to each of the frequencies
j, is stored in the function F (j). When analyzing the ripples in the Qext-curve this
comes in handy to determine the periodicity, which is believed to be related to the
path length of the rays inside the sphere.

The x-axis in the FT-diagrams is in units cm, which is the reciprocal of the wavenum-
ber (1/ν̃ [cm]). The y-axis shows the amplitude of the frequency in question, scaled
against the largest amplitude in the FT-digram.

4.3.2 The Fourier transform of ADA

The first step is to take the Fourier transform of the Qext-curve of the anomalous
diffraction approximation (ADA). This approximation shares the broad oscillations
in the exact solution, but has none of the high frequent ripples and wiggles found
in the real solution (shown in fig. 3.3). The diameter of the sphere is 13µm, and
its refractive index is 2.5. The Qext-curve is calculated by eq. 3.10, and Fourier
transformed. The contribution from the constant 2 in 3.10, would lead to a large peak
at zero in the FFT-plot. To eliminate this contribution the constant 2 is subtracted
from the Qext curve. Figure 4.4 shows the squared absolute value of the result.
The peak is at 1, 95 · 10−3 cm, which is not surprising since this is the wavenumber
dependent phase lag defined by van de Hulst as ρ = 2ka(m− 1), which is the phase
lag suffered by the central ray going through the sphere (fig. 4.3 c). The phase lag ρ
also is the argument of the sine and cosine parts of 3.10. For this particular sphere
the phase lag is ρ = 1, 95 · 10−3 · k (cm). The peak changes position with changing
refractive index m and sphere size a according to the formula for ρ. Since the real
solution show the same broad oscillations (fig. 3.10), this peak is also expected to be
in the Fourier transform of the exact solution.
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Figure 4.4: Shows the Fourier transform of Qext made from ADA with
a = 6.5µm and m = 2.5, with the frequency of the oscillations in Qext
calculated by ADA.

4.3.3 The Fourier transform of the exact solution

In the exact solutions the high frequent wiggles are present, and will be represented
as peaks with a higher frequency in the Fourier transform than those originating from
the phase lag. The Qext-curve is calculated with the same size of the sphere as the last
section, a = 6.5µm and different refractive indices. To eliminate the large amplitude
at zero in the FT diagram a constant 2.3 is subtracted from the Qext-curve, since this
is approximately the value the curve oscillates about.

Figure 4.5 shows the Fourier transform of Qext radius a = 6.5µm and refractive index
m = 1.33. The figure also shows two plots of Qext for the sphere in different ranges
of the size parameter x. The plot with low x-values shows none of the sharp ripples,
while the plot of Qext with higher values of x shows the sharp ripple structure. The
first and largest peak is expected to be at ρ/k = 2a(m − 1) = 0.00043 cm, but
since the step size is 0.00005cm the peak appears at 0.0004cm. The triangular orbit,
if present, would according to 4.17 have a peak at ∼ 0.004cm. Fig. 4.5 does not
show a peak here. The closest peak is at 0.0049cm, which is closer to the diameter
orbit, expected to be at 3 · 0.0013 · 1.33 = 0.0052cm. The small peaks at 0.01cm
and 0.01495cm correspond to approximately integer multiples of the second peak,
meaning that they probably correspond to the same orbit at the first peak, but are
running two and three times around the orbit, suffering phase lags two and three
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Figure 4.5: a: Fourier transform of Qext calculated by the exact solution
of a sphere with radius a = 6.5µm and refractive index m = 1.33, with
the relative amplitude on the y-axis and frequency of the ripples and
oscillations in Qext on the x-axis. b: Excerpt from the whole Qext-curve
of the sphere showing the ripples and broad oscillations. c: Excerpt
from the whole Qext-curve of the sphere showing the ripples and broad
oscillations with larger size parameter x than b.

times as large as the orbit running once around the orbit.

Figure 4.6 shows the Fourier transform of Qext from a sphere with refractive index
m = 1.8 and radius a = 6.5µm. Apart from the expected peak at 0.00104cm, the
diagram shows a relatively large second peak at 0.0061cm. This is a little larger than
the resonant triangular orbit expected at 0.0058cm. The third and fourth peak is
approximately an integer multiple of the second one, as in the previous case.

Figure 4.7 shows the FT-diagram and an extract from the Qext-curve of the exact
solution of a sphere with the same size as the previous and with a refractive index
m = 2.0. The a second peak is located at 0.0675, which is the expected location
of the triangular orbit. The relative amplitude of the second peak is about twice as
high as in fig. 4.6. The second peak, believed to originate from the triangular orbit,
increases in relative amplitude with refractive index, and with a refractive index of
2.4 the second peak exceeds the phase lag peak described is sec. 4.3.2 and becomes
the most important contribution to the variation in Qext.

In figure 4.8 the Fourier transform of Qext from the exact solution, with increasing
refractive indices, is shown. The peaks generally show a trend where increasing re-
fractive index gives an increasing amplitude of the peak. The group of peaks showing
the largest amplitudes in the figure, all have a value on the x-axis of ∼ m ·0.0039 cm,
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Figure 4.6: a: Fourier transform of Qext calculated by the exact solution
of a sphere with radius a = 6.5µm and refractive index m = 1.8, with
the relative amplitude on the y-axis and frequency of the ripples and
oscillations in Qext on the x-axis. b: Excerpt from the whole Qext-curve
of the sphere, showing ripples and broad oscillations.

Figure 4.7: a: Fourier transform of Qext calculated by the exact solution
of a sphere with radius a = 6.5µm and refractive index m = 2.0, with
the relative amplitude on the y-axis and the frequency of the ripples and
oscillations in Qext on the x-axis. b: An excerpt from the whole Qext-
curve of the sphere, showing ripples and broad oscillations.
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Figure 4.8: The Fourier transform of Qext calculated by the exact so-
lution, with refractive indices m = 1.6, m = 1.8, m = 2.0, m = 2.2 and
m = 2.4. The sphere used in the calculations has a radius a = 7.5µm

where m is the refractive index. Only the line showing a peak at 0.0078, which rep-
resent the refractive index m = 2.0 and radius a = 7.5µm, have a value on the x-axis
exactly equal to 0.0039 cm. This is the exact path length predicted by equation
4.16, and is also the lowest refractive index at which this orbit can be obtained by
refraction. None of the other peaks fit the prediction of the path length made by
equation 4.16, with their respective refractive index used in the equation.

The peak at the x-value 0.0156 in figure 4.8 also belongs to the sphere with m = 2.0,
and is the first multiple of the peak at 0.0078. The peak at 0.0078 is perfectly
predicted by equation 4.17, and can be explained by rays undergoing a triangular
orbit. The peak at 0.0156 can be explained by rays undergoing a second lap around
the orbit before leaving the sphere. At m = 2.0 the entrance point of the ray is
the same as the exit point (fig. 4.3 d). Rays reflecting five times inside the sphere
will have made two laps around the orbit, with twice the path length l (eq. 4.16).
The triangular orbit at m = 2.0 is a at the limit of total internal reflection, which
corresponds to the limit where rays can enter the sphere via refraction.

The largest peak in figure 4.8 is from the FFT-line from Qext with m = 2.4. At
this refractive index the triangular orbit is realizable by refraction, which makes it
reasonable that this peak is much larger than the others. The peak one would expect
in the region near the second peak of the m = 2.0 FT-line, is nearly non-existing.
This can be explained by the entrance point not being in the same place as the exit
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4. The ripple structure

point. Which means that a ray undergoing five bounces will not leave the sphere in
direction of the incident ray.

4.3.4 The Fourier transform of QNA

The plots in figure 3.9 and 3.10 show similar type of ripple structure as the Qext-
curves of figure 4.1. The origin of these ripples are most likely much more complex
than the origin of the ripples in Qext, since the orbits causing these ripples will leave
the sphere in an interval of angles relative to the incident direction. Therefore, an
attempt to explain the results of this section will be futile within the scope of this
thesis.

The data used to plot the exact and approximated QNA-curves of section 3.4.1 are
Fourier transformed using the FFT-algorithm in MATLAB as described earlier in
this section. The exact solution and the approximation are plotted in the same figure
to compare the tops.

As seen in figure 4.9 the peaks in the Fourier transform of the exact and approximated
QNA coincide on the x-axis, but the amplitude is larger for the approximation.
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4. The ripple structure

Figure 4.9: The Fourier transforms of efficiency QNA with θNA = 35o

and different values of the refractive indexm. The striped lines show QNA
calculated the exact solution, and the solid lines show QNA calculated
by the PSP and Gordon approximation. a: m = 1.3, b: m = 1.4, c:
m = 1.5, c: m = 1.6
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5 Discussion and conclusions

5.1 Approximations to the exact solution

In this thesis different approximations with different regions of validity in terms of
angle of size parameter has been tested. In section 3.4.1 the approaches presented
are meant for integrations of a relatively large range of angles θ. The integration is
done for the range θ = 0o to θNA = 35o. This range is used since it corresponds to
the value of NA in standard FTIR microscopes. In addition to being the value of NA
used in the example in section 3.13. Since the pattern of the Mie scattering is very
different at angles near the forward direction (θ ∼ 0), it is hard to find approximations
that are valid both for small and large angles. Two of the approaches evaluated in
section 3.4.1 employ two different approximations in the integrations, the PSP or
FM approximation for small angles (≤ 10o) and the Gordon approximation for larger
angles (> 10o). The plots in figures 3.9, 3.10 and 3.11 show that the approaches
using two different approximations performs much better than the ones were one
approximation is used.

The intensity of the scattered light is about an order of magnitude larger near the
forward direction, which can be seen from figures 3.6, 3.7 and 3.8. This means the
lower angels are more important than the larger ones. Thus, the approximation in
the forward direction will perform reasonably well, even if it is combined with the ap-
proximations that is less accurate at larger angles. This is shown in the plots in figure
3.9. At large values of θ and large values of x, non of the approximations perform
very well. Integrations excluding the near forward angles is therefor not expected to
perform as well as the ones including the near forward direction 3.4.1.

The difference between the FM and PSP approximation is the two functions f1 and
f2 (eq. 3.21 and 3.22). These functions are multiplied with the PSP approximation
in discontinuous intervals dependent of the size parameter x. This extension is made
as an improvement of the PSP approximation, but does not improve the integrations
made in section 3.4.1. In fact the unmodified PSP approximation performs slightly

63



5. Discussion and conclusions

better. Neither does it contain the discontinuities induced by switching on and off
of the functions f1 and f2, which one could imagine would be a disturbance when
correcting spectroscopic data. The combination of the PSP approximation and the
Gordon approximation is found to give the best approximation to the exact value of
QNA, with θNA ≤ 35.

The combination of the PSP and Gordon approximation is applied in the example
given in section 3.13. The example shows that the Mie scattering estimated by the
approach in section 3.4.1 can be justified to give the scattering contribution to the
spectrum from the pollen grain. The only unknown parameter is the refractive index,
which in the example seemed to fit the best for m = 1.31. This is might be a little
low, but is not far off from refractive indices measured in other biological particles
and pollen of other species [24,25].

5.2 The ripple stucture

In chapter 4 the ripples in the exact Mie solution is analyzed. The problem of particle
scattering of at square potential is solved using quantum mechanics, and is shown
to be equivalent with the solving of the one dimensional case of light scattering at a
medium of different refractive index. This motivates using a semiclassical approach
to the scattering problem, where the light is viewed as rays which correspond to the
bound states of the quantum mechanical case. If this ray picture is applicable to two
and three dimensional problems, ray dynamics can be used to explain the resonances
giving the ripples in Qext. The resonances will correspond to rays going in orbits
inside the sphere, entering and exiting the sphere in the same direction.

In section 4.3 the Qext-curve calculated by the exact solution is Fourier transformed
to give the signatures of the ripples. This is done in an attempt to connect the ripples
with the rays. From ray dynamics, the path lengths of the orbits in the sphere can be
calculated. The orbits obtainable by refraction follow Snell’s law, thus giving simple
formulas for predicting the path length and location in the Fourier transform. At a
refractive index m = 2.0 a triangular orbit is obtainable (fig. 4.3 d). The analysis in
section 4.3 focuses on the triangular orbit.

Figure 4.8 shows that the first peak increases in amplitude with increasing refractive
index. The plot shows that the first peaks move towards higher frequency with
increasing refractive index. The location of the peaks are well but not perfectly
predicted by ray dynamics, except for the refractive index m = 2.0, where the peak is
perfectly predicted. The second peak on the Fourier transform in figure 4.8 is much
larger for m = 2.0 than for the curves representing other refractive indices, even the
ones with refractive index larger than m = 2.0. Since m = 2.0 is the only refractive
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5. Discussion and conclusions

index for which the triangular orbit can go twice around the sphere, and end up in
the direction of the incident light, it is natural that m = 2.0 is the only refractive
index with a significant contribution on the second peak. The relatively large first
peak in the Fourier transform for m = 2.4 is expected, since the triangular orbit is
an "open channel" at this refractive index. From this the conclusion can be drawn
that the triangular orbit has signatures in the Fourier transform of Qext is to a high
degree as expected from ray dynamics. The ripples in Qext analyzed in section 4.3 is
therefore likely to be connected with the triangular orbit.

The Fourier transforms in section 4.3 shows signatures of the triangular orbit for
lower values of the refractive index than m = 2.0. For m < 2.0 the triangular orbit
corresponds to a "closed channel", which is not obtainable by refraction, since they by
the localization principle miss the sphere (sec. 4.2.3). These orbits are not analyzed
in this thesis.

5.3 the extinction paradox - some consequences

The extinction paradox is not discussed earlier in this thesis, even though it is well
examined in the literature [11, 18]. The reason for this is that it does not interfere
with the use of the Mie solutions in theory, but might become a problem in practical
applications.

In section 3.1 the extinction efficiency Qext, based on the exact solution, was calcu-
lated and plotted. The extinction efficiency is the extinction cross section divided by
the geometrical cross section, with the extinction cross section being the area of the
incident beam one has to cover up to account for the scattered and absorbed light.
A natural assumption to make is that the extinction cross section cannot be larger
than the area of the geometrical cross section of the sphere, which in case would
correspond to an opaque disk, and an extinction efficiency Qext = 1. As we see in
section 3.1, and maybe even more explicitly in figure 3.3, this is not the case. The
extinction efficiency is in many cases much larger, and seem to oscillate around a
value of about about 2. This is called the extinction paradox [11].

When applying infrared spectroscopy to analyze a spherically shaped object, the
transmission T is defined in chapter 2.5 (eq. 2.42) as the transmitted light divided by
the incident light. This definition is equivalent with the other definition, in the same
section, (eq. transmission) which defines the transmission as T = 1−Qext, which will
often give a transmission of less than zero. This proposes a problem when calculating
the absorbance A (eq. 2.43), defined as A = − log10(T ), since the logarithm of a
negative number is not possible.
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5. Discussion and conclusions

The physical interpretation of the scattering paradox is that the scattering from a
sphere can be divided into two parts: A refraction part and a diffraction part. The
refraction part is the light redirected by entering and leaving the sphere, and is
the scattering originating from the light which hits the geometrical cross section of
the sphere. The diffraction part is the light which is diffracted at the edge of the
sphere, and forms a diffraction pattern as from a circular hole, according to Babinet’s
principle. This idea is the basis of the anomalous diffraction approximation in section
3.2.1. [11]

The extinction paradox may also be seen through the semiclassical ray picture intro-
duced in section 4.2.3. The rays which have an angular momentum lower than lmax,
where lmax correspond to the angular momentum which by the localization principle
(sec. 4.2.3) equals the radius of the sphere, is the rays contributing to the refraction
part of the scattering. The rays with angular momentum larger than lmax is the rays
contributing to the diffraction part of the scattering. [13]

5.4 Future work

To be able to properly correct IR-spectra distorted by Mie scattering, more extensive
methods than than in section 3.13 need to be developed. A similar approach as the
Extended Multiplicative Signal Correction (EMSC) [10] mentioned in the introduc-
tion, might be developed to estimate the Mie scattering contribution with a numerical
aperture.

The ripples in Qext needs to be more thoroughly examined to link the orbits to
the peaks in the Fourier transform. In this thesis only the classically obtainable
orbits are addressed, and the location of the whispering gallery modes in the Fourier
transform diagram is not discussed. Future work should also include ways to predict
the amplitude of the ripples in Qext by means of ray dynamics. This is already done
by semiclassical means [26,31,32].
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A Formulas

A.1 Mie equations and coefficients

The function π(cos θ) used to calculate the amplitude functions S(θ) [11]:

π(cos θ) =
1

sin θ
P 1
n(cos θ) =

1

sin θ
(1− cos2 θ)1/2

d

d cos θ
Pn(cos θ) =

d

d cos θ
Pn(cos θ)

(A.1)
The function τ(cos θ) expressed in terms of πn(cos θ) [11]:

τn(cos θ) = cos θ · πn(cos θ) + (cos2 θ − 1)
d

d cos θ
πn(cos θ) (A.2)

The coefficients for the internal field cn and dn are given as [18]:

cn =
µ1jn(x)[xh

(1)
n (x)]′ − µ1h(1)n (x)[xjn(x)]′

µ1jn(mx)[xh
(1)
n (x)]′ − µh(1)n (x)[mxjn(mx)]′

(A.3)

and:

dn =
µ1mjn(x)[xh

(1)
n (x)]′ − µ1mh(1)n (x)[xjn(x)]′

µm2jn(mx)[xh
(1)
n (x)]′ − µ1h(1)n (x)[mxjn(mx)]′

(A.4)

where µ1 is the magnetic permeability of the sphere, µ is the magnetic permeability
of the ambient medium, m is the refractive index, x is the size parameter. The

The scalar vector wave components mn and nn is given as [19].

mn =

∫ 1

−1
(mθ +mφ)d(cos θ) = 2(2n+ 1)|jn(z)|2 (A.5)

And:

nn =

∫ 1

−1
(nr+nθ+nφ)d(cos θ) = 2n(2n+1)

[
(n+ 1)

∣∣∣∣jn(z)

z

∣∣∣∣2 +

∣∣∣∣(zjn(z))′

z

∣∣∣∣2
]

(A.6)

where z = mrk, m is the refractive index, k is the wavenumber and r is the distance
from the center of the sphre (0 < r < a)
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A.1.1 Incident and scattered wave in spherical coordinates

The incident plane wave in spherical coordinates [11]:

u = eiωt cosφ
∞∑
n=1

(−i)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)jn(kr) (A.7)

v = eiωt sinφ
∞∑
n=1

(−i)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)jn(kr) (A.8)

The scattered wave in spherical coordinates [11]:

u = eiωt cosφ
∞∑
n=1

−an(−i)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)h(2)n (kr) (A.9)

v = eiωt sinφ
∞∑
n=1

−bn(−i)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)h(2)n (kr) (A.10)

The inside wave in spherical coordinates [11]:

u = eiωt cosφ
∞∑
n=1

m cn(−i)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)h(2)n (mkr) (A.11)

v = eiωt sinφ

∞∑
n=1

m dn(−i)n 2n+ 1

n(n+ 1)
P 1
n(cos θ)h(2)n (mkr) (A.12)

where φ and θ are the azimuth and scattering angle shown in figure 2.2, the function
P 1
n(cos θ) is the associated Legendre polynomial, and jn(kr) is the spherical Bessel

function.

A.2 Legendre polynomials

The Legendre polynomial Pn(cos θ) [33]:

Pn(cos θ) =

M∑
m=0

(−1)m
(2n− 2m)!

2nm!(n−m)!(n− 2m)!
cosn−2m θ (A.13)

Where M = n/2 or (n− 1)/2, whichever is an integer.

The associated Legendre polynomial is related to the Legendre polynomial through
[34]:

Pmn (x) = (1− x2)m/2 d
m

dxm
Pn(x) (A.14)
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A.3 Bessel functions

The spherical Bessel function is related to the Bessel function by [34]:

jn(z) =

√
π

2z
Jn+1/2(z) (A.15)

The first kind of Bessel function is given by [34]:

Jn+1/2(z) =
(z

2

)n+1/2
∞∑
l=0

(iz/2)2l

l! Γ(n+ l + 3/2)
(A.16)

where the gamma function Γ(x) is given by:

Γ(x) =
[
xeCx

∏
(1 + x/n)e−x/n

]−1
(A.17)

C is the Euler constant ' 0.577215.

The Hänkel function is given by [34]:

H(2)
n (z) = Jn(z)− iNn(z) = Jn(z)− i

sin(nπ)
[cos(nπ)Jn(z)− J−n(z)] (A.18)

The spherical Hänkel function [34]

h(2)n (z) =

√
π

2z
H(2)
n (z) (A.19)

A.4 Spherical harmonics

Scalar wave equation in spherical coordinates [18]

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2sinθ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2sinθ

∂2ψ

∂φ2
+ k2ψ = 0 (A.20)

Jackson spherical harmonics [13]:

Ylm(θ, φ) =

√(
2l + 1

4π

)
(l −m)!

(l +m)!
Pml (cos θ)eimθ (A.21)

where Pml (cos θ) is the associated legendre polynomials.
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A.4.1 Vector spherical harmonics

Memn = ∇× (rψemn)

Nemn =
∇×Memn

k
(A.22)

Momn = ∇× (rψomn)

Nomn =
∇×Momn

k

Where ψemn = cos(mφ)Pmn (cosφ)zn(kr) and ψomn = sin(mφ)Pmn (cosφ)zn(kr). The
subscript e and o denotes even and odd solutions. The function zn is any of the
spherical Bessel functions and n = m,m+ 1, ... .

A.5 Wiscombe´s approximation

Formulas for Qext and Qsca [12]:

Qext = 6xRe

(
â1 + b̂1 +

5

2
â2

)
(A.23)

And:
Qsca = 6x4T (A.24)

S1(cos θ) =
3

2
x3
[
â1 +

(
b̂1 +

5

3
â2

)
cos θ

]
(A.25)

S2(cos θ) =
3

2
x3
[
b̂1 + â1 cos θ +

5

3
â2(2 cos2 θ − 1)

]
(A.26)

The coefficients in Wiscombe´s approximation â1, â2, b̂1 and T are given as:

â1 = 2i
(m2 − 1)

3

(
1− 1

10x
2 + 4m2+5

1400 x4
)

D
(A.27)

D = m2 + 2 +

(
1− 7

10
m2

)
x2−

8m4 − 385m2 + 350

1400
x4 + 2i

m2 − 1

3
x3
(

1− 1

10
x2
)

(A.28)
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b̂1 = ix2
(m2 − 1)

45

(
1 + 2m2−5

70 x2
)

(
1− 2m2−5

30 x2
) (A.29)

â2 = ix2
(m2 − 1)

15

(
1− 1

14x
2
)(

2m2 + 3− 2m2−7
14 x2

) (A.30)

T ≡ |â1|2 + |b̂1|2 +
5

3
|â2|2 (A.31)

Where is the complex refractive index m = n+ in′ and x = ka

A.5.1 Derivation of εrel for Wiscombe’s approximation

When x→ 0 the terms b̂1 and â2 goes to 0, since they both are multiples of x2. The
expression for Qext reduces to:

Qext,W = 6x Re(â1) (A.32)

The term â1 reduces to:

â1 = 2i
m2 − 1

3D
(A.33)

since the rest are multiples of x2 and x4. The term D for similar reasons, reduces to
D = m2 + 2. The extinction efficiency now becomes:

Qext,W = 6x Re

(
m2 − 1

3m2 + 6

)
(A.34)

The squared of the complex refractive index ism2 = n2+2inn′+n′2. The denominator
includes a complex number ((3n2 − 3n′2 + 6inn′) , which means we have to multiply
over and under with the complex conjugate. Since we are only interested in the real
part, only the real terms in the numerator is carried along.

Qext,W = 6x

(
12n′n3 − 12n′n3 + 12nn′3 − 24n′n12nn′3 − 12n′n

(3n2 − 3n′2 + 6)2 + 36nn′

)
= 6x

(
−36nn′

9(n2 − n′2 + 2)2 + 36nn′

)
= 6x

(
−4nn′

(n2 − n′2 + 2)2 + 4nn′

)
=

(
−24nn′

n4 + n′4 − 2(nn′)2 + 4n2 − 4n′2 + 4 + 4nn′

)
(A.35)

The relative difference is defined in equation 3.15. Blümel’s approximation [13] proves
to converge to the real solution for x→ 0 in sec. 3.2.2. By using Blümels formula for
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very small x (dropping terms which are multiples of x2 and x3), we can estimate the
relative difference. Blümel’s approximation for very small x is given as [13]:

Qext,B =
6xnn′

(nn′)2 + [1 + 1
2(n2 − n′2)]2

(A.36)

By expanding the parenthesis and multiplying by 4 we get:

Qext,B =
24xnn′

4 + 4n2 − 4n′2 + n4 + n′4 + 2(nn′)2
(A.37)

Now by defining the term A = 4 + 4n2 − 4n′2 + n4 + n′4, the relative difference
εrel = (Qext,B −Qext,W )/Qext,W becomes:

lim
x→0

εrel =

24xnn′

A+2(nn′)2 −
(

−24nn′

A−2(nn′)2+4nn′

)
24xnn′

A+2(nn′)2

= 1 +
A+ 2(nn′)2

A− 2(nn′)2 + 4nn′
(A.38)
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B Matlab code

B.1 Angle integration; calculating QNA

Listing B.1: Inegrate_angles.m
%This i s a program that a l l ows you to i n t e g r a t e any s c a t t e r i n g property in
%a range o f wavenumbers from 'k_min ' to 'k_max ' , and over an i n t e r v a l l o f
%ange l s theta from ' theta_min ' to ' theta_max ' . By i n t e g r a t i n g from
% ' theta_min '=0 up to a ' theta_max ' a s s o c i a t ed with a numerica l aperture ,
%Q_NA can be found .
%Wavenumber k = (2∗ pi ∗(1/ lambda [ cm ] ) ) [ cm^−1].
%Wavenumber wn = (1/ lambda [ cm ] ) [ cm^−1]
%Uses the func t i on 'Fymat_Mease .m' f o r c a l c u l a t i o n o f the Fymat and Mease
%(FM) approximation and the Penndorf−Sh i f r i n−Punina (PSP) approximation ,
%the func t i on 'Gordon .m' to c a l c u l a t e the Gordon approximation , the
%func t i on 'Mie_approx .m' to c a l c u l a t e the anomalous d i f f r a c t i o n
%approximation , ' Mie_angle_intensity .m' to c a l c u l a t e the exact i n t e n s i t y
%at theta unequal to zero , and Matz lers MATLAB−f unc t i on 'Mie_S12 .m' to
%c a l c u l a t e the amplitude f unc t i on s .

%The program can be modi f i ed to use an e x i s t i n g array o f
%wavenumbers from exper imanta l data by uncommenting :
load ( ' Spectra /Wavenumbers . mat ' ) ; %load wavenumber array
% load ( ' Spectra / po l l en . mat ' ) ; %load exper imenta l data
wn = Wawenumbers ; %wavenumber array

%Choose parameters f o r the c a l c u l a t i o n s :
eps_r = 1.3^2 ; %Real constant part o f d i e l e c t r i c constant
dia_m = 22 ; %Diametre o f sphere ( micrometers )
k_min=0; %Star t wavenumber (cm^−1)
k_max=10000; %End wavenumber (cm^−1)
theta_min = 1 ; %Lower i n t e g r a t i o n l im i t ( theta=0 has no con t r i bu t i on )
theta_max = 35 ; %Upper i n t e g r a t i o n l im i t
dia = dia_m∗10^−4; %cm
a = dia /2 ; %rad iu s o f sphere
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Enter absorpt ion band as a new row : [ Lambda , Gamma ( imag ) , k_0 (cm^−1) ]
%Ca l cu l a t e s the absorpt ion band by :
%eps_imag (k ) = Lambda/(k_0^2 − k^2 − Gamma∗k )
abs_b = [700000 , 20i , 1650 ;

550000 , 15i , 2500 ;
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370000 , 50i , 2 6 5 0 ] ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Generate k−array
k = wn .∗2∗ pi ;
% k = k_min :k_max ;
k_range = length ( k ) ;
%Generates s i z e parameter x−ax i s :
x_ax=k .∗ a ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Q_fm_g = zero s ( [ 1 , k_range ] ) ;
Q_fm = zero s ( [ 1 , k_range ] ) ;
Q_m = zero s ( [ 1 , k_range ] ) ;
S = zero s ( [ 1 , k_range ] ) ;
%Generates ze ro ang le amplitude func t i on array S (0 ) :
m = sqr t ( eps_r ) ;
f o r i=1:k_range

x=a∗k ( i ) ;
%Co l l e c t s ampl itudes S (0 ) from Matz lers func t i on Mie_S12 .m
S12=Mie_S12 (m , x , cos (0 ) ) ;
S ( i )=S12 (1 ) ;

end

f o r theta=theta_min : theta_max
f o r i=1:k_range

eps_imag=eps_r ;
%Inc lude absorpt ion bands in d i e l e c t r i c func t i on by uncommenting :

% f o r i =1: l ength ( abs_b ( : , 1 ) )
% eps_imag = eps_imag + (abs_b( i , 1 ) / . . .
% (abs_b( i , 3 ) ^2 − k^2 − abs_b( i , 2 ) ∗k ) ) ;
% end

m=sqr t ( eps_imag ) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Sv i t che s approximation at g iven ang le theta
i f theta<=10

I_fm_g = Fymat_Mease (m , k ( i ) , dia_m , theta , S ( i ) ) ;
e l s e

I_fm_g = Gordon (m , k ( i ) , dia_m , theta , S ( i ) ) ;
end

% I_fm = Fymat_Mease(m, k ( i ) , dia_m , theta , S ( i ) ) ;
% Q_fm( i ) = Q_fm( i ) + (2∗ pi /360) ∗(2/ a^2)∗I_fm∗ s ind ( theta ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Cal cu l a t e s approxiamted Q_NA:
Q_fm_g ( i ) = Q_fm_g ( i ) + (2∗ pi /360) ∗(2/ a^2) ∗ I_fm_g∗sind ( theta ) ;

%Ca l cu l a t e s exact Q_NA:
Q_m ( i ) = Q_m ( i ) + (2∗ pi /360) ∗(2/ a^2) . . .

∗ Mie_angle_intensity (m , k ( i ) , dia_m , theta ) ∗ sind ( theta ) ;

%Ca l cu l a t e s Q_NA by the anomalous d i f f r a c t i o n approximation (ADA) :
% Q_m( i ) = Q_m( i ) + Mie_approx (m, x ) ;

end
%To get a r e f e r e n c e o f p rog r e s s during time consuming c a l c u l a t i o n s :
d i sp ( theta ) ;

end
f i g u r e (1 )
p l o t ( x_ax , Q_fm_g , 'k ' , x_ax , Q_m , 'b ' )
x l ab e l ( 'x=ka ' ) ;
y l ab e l ( 'Q_{NA} ' ) ;
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B.2 Functions

Listing B.2: Fymat_mease.m
f unc t i on I_fm = Fymat_Mease (m , k , dia , theta , S )

%Ca l cu l a t e s an approximation o f mie s c a t t e r i n g at a s p e c i f i e d ang le
%theta , a f t e r the formula proposed by A. L . Fymat and K. D. Mease . The
%approximation works best f o r at low ang l e s ( theta < 10 deg ) . By
%exc lud ing the extens i on func t i on s proposed by Fymat & Mease , the
%Penndorf , S h i f r i n & Punina approximation i c a l c u l a t ed . Takes the input
%arguments : 'm' − the r e f r a c t i v e index , 'k ' − the wavenumber (cm^−1) ,
% ' dia ' − the diameter o f the sphere ( micrometers ) , ' theta ' − the ang le
%away form the forward d i r e c t i o n ( degree s ) and 'S ' − the forward
%amplitude func t i on S (0 ) .

dia = dia∗10^−4;
x = 0.5∗ dia∗k ;
Q_ext = (4/ x^2)∗ r e a l ( S ) ;
g_theta = x∗sind ( theta ) ;
%Fraunhofer approximation to the Mie s o l u t i o n
I_f = x^4∗( besselj (1 , g_theta ) ) ^2∗(1/(( k∗g_theta ) ^2) ) ;
%Fymat and Mease cons tant s
a = 3 . 6 3 ; b = 5 . 5 2 ; c = 6 . 6 ; d = 2 . 4 ;
%Generates FM extens i on func t i on s to the PSP approxmation
i f ( ( m−1)∗x <= a ) | | ( ( m−1)∗x >= b && (m−1)∗x <= c )

f_1 = (1−besselj (0 , (m−1)∗x ) )^−1;
e l s e

f_1 = 1 ;
end

i f 2∗(m−1)∗x <= d
f_2 = (1−besselj (0 , 2∗(m−1)∗x ) )^−1;

e l s e
f_2 = 1 ;

end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Penndorf , S h i f r i n & Punina formula :

% I_fm = ((1/2) ∗Q_ext)^2∗ I_f ;

%Fymat & Mease formula :
I_fm = ((1/2 ) ∗Q_ext ) ^2∗I_f∗f_1∗f_2 ;
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Listing B.3: Gordon.m
f unc t i on I_g = Gordon (m , k , dia , theta , S )

%Ca l cu l a t e s the i n t e n s i t y at an ang le theta from the approximation
%given by J . E. Gordon . This approximation works best f o r
%ang l e s > 10 deg . Takes input arguments : 'S ' − the forward
%s c a t t e r i n g amplitude S (0 ) , 'k ' − the wavenumber (cm^−1) ,
% ' dia ' − the diameter o f the sphere ( micrometers ) , and ' theta ' −
%the ang le r e l a t i v e to the d i r e c t i o n o f the i n c i d en t l i g h t ( degree s ) .

a = 0.5∗ dia∗10^−4; %cm
x = a∗k ;
x_g = a∗k∗ s q r t (1 + m^2 − 2∗m∗cosd ( theta ) ) ;
%In t e n s i t y in forward d i r e c t i o n
I_0 = (1/( k^2) ) ∗( r e a l ( S )^2 + imag ( S ) ^2) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%Modulating func t i on gamma(x ) :
gamma = 0 . 5∗ ( 0 . 3∗ x_g^(−x /30) + . . .

1 .4∗ x_g^(−x /50) ∗cosd ( theta ) ^10)∗sind ( theta /2) ^(1/3) ;

%Gordons cho i c e o f gamma(x ) :
% gamma = x_g^(−3/2) ;
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I_g = I_0 ∗ ( ( abs (3∗ ( s i n ( x_g )−x_g∗ cos ( x_g ) ) /x_g^2)/x_g + gamma) ^2) . . .

∗ (1+(cosd ( theta ) ) ^2) /2 ;

Listing B.4: Mie_angle_intensity.m
f unc t i on I_m = Mie_angle_intensity (m , k , dia , theta )

%Ca l cu l a t e s the i n t e n s i t y at an ang le theta from the exact Mie
%s c a t t e r i n g ampl itudes (S( theta ) ) by the formula from van de Hulst .
%Takes the input arguments : 'm' − r e f r a c t i v e index , 'k ' − wavenumber
%(cm^−1) , ' dia ' − diameter ( micrometers ) , ' theta ' − ang le ( degree s ) .
%Uses the func t i on Mie_S12 .m by C. Matzler .

a = 0.5∗ dia∗10^−4; %cm
x = a∗k ;

%Real Mie s c a t t e r i n g i n t e n s i t y
S = Mie_S12 (m , x , cosd ( theta ) ) ;
i_1 = abs ( S (1 ) ) ^2;
i_2 = abs ( S (2 ) ) ^2;
I_m = ( i_1 + i_2 ) /(2∗ k^2) ;
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