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Summary

In this work homogenization theory is applied to existing thermal models for
lithium ion batteries. We study a battery with prismatic cell geometry. The
inner region of the battery has a thermal conductivity that is periodic in a
local variable. In this work we describe the inner region by a homogenized
partial differential equation. The obtained homogenized thermal conduc-
tivity tensor is equivalent with the tensor obtained by applying a thermal
equivalent-resistance approach. Thermal equivalent-resistance approaches
are reported in the literature on thermal modeling of lithium ion batteries.
Furthermore, the homogenized thermal conductivity in different directions
varies by a factor 10. The outer region of the battery consist of a casing that
is wrapped around the inner region. The outer region is described by a non-
homogenized partial differential equation. Both regions is described by the
two coupled partial differential equations in dimensionless form. The coupled
model is applied to a conventional lithium ion pouch-cell battery with 17.5
Ah capacity. Input data to the model are obtained from experiments. The
model is solved in 2 dimensions by means of the finite element method in
the FEniCS software. As input parameters, an ambient temperature and an
initial condition of 298 (K) are applied. Moreover is the external heat trans-
fer coefficient estimated to be 18 (W/m2 K). Simulations of a 1C discharge
from 100 to 10% state of charge is performed. The modeled battery consists
in 2 dimensions of a rectangle with long and short sides. It was found that
the temperature parallel with the long side varied significant compared with
the temperature parallel with the short side. A maximum temperature is
achieved in the center of the battery. This occurs at the time just before the
battery is at end of discharge. The maximum temperature is 2.4 (K) above
the ambient air temperature. A validation of the results are necessary.
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Nomenclature

Symbol Description Unit
a′ Constant (V/s3)
ã Constant (V)
au Constant (V)
av Constant (V)

a(û, v̂) Bilinear form -
a(u, v) Bilinear form -
A Scaling constant (K)
A0 Differential operator -
A1 Differential operator -
A2 Differential operator -
b′ Constant (V/s2)

b̃ Constant (V)
bu Constant (V)
bv Constant (V)
B Scaling constant (K)
c′ Constant (V/s)
c̃ Constant (V)
cu Constant (V)
cv Constant (V)
C Scaling constant (J/m3K )
C1 Integration constant -
Cp Specific heat capacity (J/kg K)
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Symbol Description Unit
d′ Constant (V)

d̃ Constant (V)
du Constant (V)
dv Constant (V)
D Differential operator (m−1)
Dγξ Differential operator -
Dξ Differential operator -
D′ξ Differential operator -
DOD Depth of discharge
e(T ) Convection coefficient (J/m2K s0.5)
f Dimensionless mass density · heat capacity -
f(v̂) Linear form -
f(v) Linear form -
g Ambient air temperature (K)
g′ Constant (W/m2)
h External heat transfer coefficient (W/m2K)
h′ Constant (W/m2)
i Scaling constant (A)
i Unit vector in ξ1−direction (A)
I Current (A)
K1 Numerical parameter -
K2 Numerical parameter -
Lxi Scaling constant (m)
Li Scaling constant (m)
Lkar Length convection estimation (m)
LY Period length (m)
LY ξ Period length -
Lξi Scaling constant (m)
LiΩa Inner region start coordinate (m)
LiΩb Inner region end coordinate (m)
LiΓa Inner region start coordinate -
LiΓb Inner region start coordinate -
n Unit normal vector -
n1 Unit normal vector -
n2 Unit normal vector -
q Source term (W/m3)
Q Dimensionless source term -

SOC State of charge -
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Symbol Description Unit
t Time (s)
tc Time, current cut off (s)
tτ Scaling constant (s)
T Temperature (K)
T0 Initial temperature (K)
Tc Time at end of discharge (h)
û Dimensionless temperature -
u Dimensionless temperature -
U Open-circuit potential (V)
v̂ Test function -
v Test function -

vol(Ω1) Volume of battery interior (m3)
V Closed-circuit potential (V)
wi Y-periodic function -
x Euclidean coordinate vector (m)
x1 Euclidean coordinate (m)
x2 Euclidean coordinate (m)
x3 Euclidean coordinate (m)
X Function space -
X ′ Function space -

X̂ Function space -

X̂ ′ Function space -
y Local dimensionless variable -
z Y-periodic function -
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Table 1: Greek
Symbol Description Unit

α Scaling constant (W/mK)
α̂ Potential difference function (V)

β̂ Entropic heat coefficient (V/K)
∆τ Finite difference parameter -
ε Micro to macro scale ratio -
λ Thermal conductivity tensor (W/m2 K)
Λ Dimensionless thermal conductivity tensor -
Λ1 Dimensionless thermal conductivity -
γi Dimensionless scaling constant -
Γ Scaled region -
Γ1 Scaled region, interior -
Γ2 Scaled region, casing -
∂Γ Scaled boundary -

∂Γ̃ Scaled boundary -
Ω Region, battery -
Ω1 Region, battery interior -
Ω2 Region, battery casing -
∂Ω Boundary, battery -
ρ Mass density (kg/m3)
τ Dimensionless time -
τc Dimensionless time, current cut off -
τk Discrete dimensionless time -
θ Finite difference parameter -
σ Depth of discharge -
ν Air velocity (m/s)
χ Y-periodic function -
Φ Function -
z1 Function -
ξ Dimensionless coordinate vector -
ξ1 Dimensionless coordinate -
ξ2 Dimensionless coordinate -
ξ3 Dimensionless coordinate -
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Table 2: Subscript
Symbol Description Value

i - 1,2,3
k Time counter 1,2,3,..

Table 3: Superscript
Symbol Description Value

k Time counter 1,2,3,..
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Chapter 1

Introduction

Lithium ion batteries have been on the commercial market since they were
introduced by SONY Inc. in 1991. These batteries have been used in video
recorders, cellular phones and laptops, among others [40]. Moreover, com-
pared with other battery chemistries, lithium ion batteries offers both higher
specific energy and higher energy density. Therefore they are preferred for
use in electric and hybrid electric vehicles. However, by 2011 lithium ion
batteries were still prevented from being widely introduced for use in elec-
tric and hybrid electric vehicles due to issues regarding safety, cost, and low
temperature performance [2]. One safety issue is the possibility of a ther-
mal runaway due to abuse behavior of the battery. Thermal runaway can
occur due to exothermic reactions that are believed to occur above certain
temperatures [55]. Furthermore, one factor that affects the cost of a battery
is its lifetime. Moreover there are strong connections between the internal
temperature of a lithium ion battery, and its lifetime [2]. It is therefore clear
that it is of great importance to obtain information about the temperature
field inside lithium ion batteries. One way of obtaining this information is
by means of mathematical modeling.

Therefore, we will in this work first consider the properties of a conven-
tional so-called lithium ion pouch-cell. This pouch-cell is made for use in
electric vehicles. Thermal models presented in the literature are then stud-
ied. Motivated by the periodic micro-structure inside the pouch-cell, we
apply mathematical homogenization theory to existing thermal models. A
homogenized thermal model for lithium ion batteries is then derived. The
homogenized model is equipped with input parameters obtained from exper-
iments conducted on the pouch-cell. Finally the model is solved by means of
numerical methods, and modeling results are presented.
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2 CHAPTER 1. INTRODUCTION

1.1 Lithium Ion Batteries

A typical lithium ion battery cell consists of a pair of electrodes with current
collectors, a separator and an electrolyte. In accordance with the literature
on lithium ion batteries [56], we refer to the negative and the positive elec-
trode as anode and cathode, respectively. The anode typically consists of a
carbon material which exhibits a layered microscopic structure. Conventional
cathode materials for lithium ion batteries also have a layered structure, and
the preferred material is typically a metal oxide [15]. Both of the electrodes
are in contact with a current collector. The current collector for the anode is
typically made of copper. For the cathode current collector, aluminum is the
preferred material [15]. We emphasize that more advanced structures than
layered have been used for electrode materials [15]. We do not pursue any
details on such materials in this work, however. Figure 1.1 shows a schematic
representation of a lithium ion battery cell.

Figure 1.1: Schematic representation of lithium ion cell configuration. Length
of anode, cathode and separator are denoted as Ln, Ls and Lp, respectively.
Originally presented by Gomadam et al. Reprinted with permission from
Elsevier.

The layered structure of the electrodes allows intercalation of lithium ions,
i.e. the lithium ions can be inserted and stored between the layers of the
electrodes [15]. The intercalation process is a so-called topotactic reaction.
This process is characterized by the fact that no significant structural changes
occur in the electrodes when the lithium ions are intercalated [15]. The
electrodes in lithium ion batteries are commonly also referred to as lithium
insertion compounds [39]. Lithium ion batteries are also called rocking chair
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batteries. The name origins from the lithium ions that ”rock” back and forth
between the two electrodes when the battery is cycled [15].

In a fully charged lithium ion battery, the anode contains the maximum
amount of lithium ions while the cathode has the opposite situation [21].
As the battery is discharged, the lithium ions are deintercalated from the
anode, thus the anode is oxidized. At the cathode, these lithium ions are
intercalated and the cathode is reduced [15]. The opposite process occur
during charge [15].
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Chapter 2

A Lithium Ion Pouch-Cell

In this chapter we study a conventional lithium ion battery made for use in
electric vehicles. This type of batteries are commonly referred to as pouch-
cell batteries. The battery has a nominal capacity of 17.5 Ah and provides a
voltage of approximately 4.1 V, when fully charged. A picture of this battery
is shown in figure 2.1.

Figure 2.1: Lithium ion battery of pouch-cell type. Nominal capacity 17.5
Ah. 4.1 V provided when fully charged. Photographer: Erlend Finden.

5



6 CHAPTER 2. A LITHIUM ION POUCH-CELL

2.1 Battery Structure

For modeling purposes it is important to obtain information about the in-
ternal geometry of the battery. Based on descriptions of pouch-cell batteries
in the literature, we assume that this pouch-cell battery has a prismatic cell
geometry. A few earlier modeling works on lithium ion batteries presents
the prismatic cell geometry. An illustration which is presented in a work by
Chen and Evans [12] is shown in figure 2.2. In their illustration the battery is
composed of several layers of electrodes, currents collectors and separators in
a periodic pattern. This configuration yields a parallel connection of all the
unit cells. In this work we define a unit cell as a cell composed of layers of
anode current collector, anode, electrolyte, separator, cathode and cathode
current collector.

Figure 2.2: Schematic representation of prismatic lithium ion cell configura-
tion. White, gray and black layers illustrates the current collectors, electrodes
and separators, respectively. Unit cells are labeled 1-6. This configuration
yields a parallel connection of unit cells. Originally presented by Chen and
Evans [12]. Reproduced by permission of ECS - The Electrochemical Society.

Also Spotnitz and Franklin [55] illustrates the internal geometry in their
thermal model for prismatic lithium ion batteries. Their illustration is pre-
sented in figure 2.3.
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Figure 2.3: Schematic representation of prismatic lithium ion cell configu-
ration. Positive and negative electrodes are labeled “Positive” and “Nega-
tive”, respectively. Positive current collector is labeled “Aluminium“ while
negative current collector is labeled ”Copper“. 1-5 represents unit cells as
indicated with ”Cell # “ labels. Also casing surrounding the battery interior
are shown in this illustration. Casing is labeled ”Can“. This figure was orig-
inally presented by Spotnitz and Franklin [55]. Reprinted with permission
from Elsevier.

By studying figure 2.3 we observe that the geometry is similar as in figure
2.2. Based on the works by Chen and Evans [12] and Spotnitz and Franklin
[55] we therefore assume that the pouch-cell obeys the prismatic cell config-
uration illustrated in this section.

To describe the pouch-cell further it is convenient to specify a coordinate
system. Let us introduce an Euclidean coordinate system with a coordinate
vector x defined as

x = [x1, x2, x3]

Let us assume that the pouch-cell has a casing wrapped around the bat-
tery interior. We assume that the casing consists of an aluminum layer which
is coated at the outside with a plastic film and at the inside with the sepa-
rator material. In accordance with the literature, let us furthermore assume
that the battery in the x1-direction has the following composition: Plastic
coating, Al-casing, separator, cathode current collector, cathode, separator,
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anode, anode current collector, anode, separator, cathode, cathode current
collector, cathode, separator,...,cathode, cathode current collector, separator,
Al-casing, plastic coating. This composition is visualized in figure 2.4, where
only the first few layers of unit cells in the x1− direction are illustrated.

Figure 2.4: Schematic representation of the pouch-cell configuration. The
illustration is at a given x3−value in the x1 − x2 plane. Only the first few
layers of unit cells in the x1−direction are illustrated. The casing which is
wrapped around the battery interior is here composed of an aluminum layer
coated with plastic at the outside and coated with the separator material at
the inside.

We remark that the material composition at the interior of the battery is
periodic in the x1- coordinate. The layers of cell components in the interior
of the battery are homogeneous in the x2 and x3 directions. In the x2 − x3

plane these components can thus be considered as homogeneous sheets, as far
as the interior is considered. The battery casing breaks this independence,
however. Figure 2.5 illustrates the composition of the battery at a given x1
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value in the x2 − x3 plane.

Figure 2.5: Schematic representation of the pouch-cell configuration. The
illustration is taken at a given x1−value in the x2−x3 plane. The casing which
is wrapped around the battery interior is here composed of an aluminum layer
coated with plastic at the outside and coated with the separator material at
the inside. The interior of the battery is thus homogeneous in the x2 − x3

plane. Here, at the illustrated x1 value, a sheet of an anode constitutes the
battery interior.

Based on values found in the literature, totally 24 unit cells are present in
the prismatic configuration of the pouch-cell. For the battery interior in the
x1−direction, this yields in total 97 layers consisting of a periodic pattern of
electrodes, current collectors and separators. The size and thickness of the
battery components are presented in table 2.1.
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Table 2.1: Geometric data: Thickness refer to the x1−direction, length to
the x2−direction and width to the x3−direction.

Thickness of anode 9.9 · 10−5 (m)
Thickness of cathode 8.0 · 10−5 (m)

Thickness of Cu current collector 2.2 · 10−5 (m)
Thickness of Al current collector 1.7 · 10−5 (m)

Thickness of separator 2.2 · 10−5 (m)
Thickness of Al-layer in the casing 11.7 · 10−5 (m)

Thickness of plastic-layer in the casing 3.0 · 10−5 (m)
Width of separator 1.49 · 10−1 (m)
Width of anodes 1.45 · 10−1 (m)
Length of anodes 2.35 · 10−1 (m)

Width of cathodes 1.40 · 10−1 (m)
Length of cathodes 2.34 · 10−1 (m)

Total thickness 5.7 · 10−3 (m)
Thickness of interior 5.3 · 10−3 (m)

In this work we neglect the current collector tabs and the edges of the
casing that can be observed in figure 2.1. We also neglect the difference
in length and width between the electrodes and the separator. Instead we
assume that the battery interior has an average length of 2.345 · 10−1(m)
and average with of 1.447 · 10−1(m). The average quantities are presented in
table 2.2. Based on these simplifications, the battery can be represented as
a box. This may be an oversimplification however since the current collector
tabs are assumed to be made of Ni. They may thus represent significant
resistive heating sources that may transmit thermal energy into the battery
through the current collectors. However, a model that considers this effect
would need to distribute resistive heating effects locally. Modeling resistive
heating locally are beyond the scope of this work. Nevertheless, the modeling
framework presented here is assumed to be excellent for such extensions.
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Table 2.2: Geometric model data: Thickness refer to the x1−direction, length
to the x2−direction and width to the x3−direction.

Average width of interior 1.447 · 10−1(m)
Average length of interior 2.345 · 10−1(m)

Average total length 2.346 · 10−1(m)
Average total width 1.450 · 10−1(m)

Total thickness 5.7 · 10−3 (m)
Thickness of interior 5.3 · 10−3 (m)

Average volume of interior 1.793 · 10−4(m3)
Average total volume 1.192 · 10−4(m3)

2.2 Physical Properties

In this section we present the assumed physical properties of the pouch-cell.
The anode are assumed to be carbon based and the cathode are assumed to
be a LiNiCoMnO2-type. LiNiCoMnO2 is also referred to as NCM .

Table 2.3: Physical properties
Material ρ (kg/m3) Cp (J/kg K) λ (W/m K)

LiC6 anode 5032 700 5 [24]
LiNiCoMnO2 cathode 1500 700 5 [24]
Al current collector 2700 870 200 [24]
Cu current collector 9000 381 380 [24]

Separator 1200 700 1 [24]
Al casing 2770 875 177 [8], [7]

Plastic coating (LDPE) 920 2500 0.40 [60]

Table 2.3 presents the physical properties of the different battery compo-
nents. As in the work by Chen et al. [8], the aluminum casing is assumed to
constitute of the alloy 2024-T6 and not pure Al. Thus the thermal conduc-
tivity differ from the Al current collector. We also assume that the applied
material for the plastic coating is low-density polyethylene (LDPE).
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Chapter 3

Thermal Modeling

In this chapter a thermal model is presented. The source term in this model
has expressions that are the result of experiments conducted on the pouch-
cell. The model is scaled, before homogenization theory is applied. Finally
the dimensionless-scaled-homogenized model is summarized.

3.1 Governing Equations

In order to describe the thermal effects inside a battery mathematically,
we need to define a region Ω in <3 that is occupied by the battery. The
corresponding boundary ∂Ω lies in <2. Moreover, the region Ω is the box
given by

0 < xi < Lxi , i = 1, 2, 3

where Lx1 , Lx2 and Lx3 are constants measured in (m). Let us also
introduce the two regions Ω1 and Ω2 that occupy the battery interior and
the battery casing, respectively, i.e.

Ω = Ω1 ∪ Ω2 (3.1)

Let the inner region Ω1 occupy the box given by

LiΩa < xi < LiΩb , i = 1, 2, 3

Here LiΩa and LiΩb are constants measured in (m).

Many works are presented on thermal modeling of lithium ion batteries.
The most common approach consist of applying a partial differential equation

13
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to describe the thermal energy balance around an arbitrary volume element
inside the battery (e.g. [21]), i.e.

ρ(x)Cp(x)
∂T (x, t)

∂t
= ∇ · (λ(x)∇T (x, t)) + q(x, t), x ∈ Ω, t > 0 (3.2)

Here ρ denotes the mass density measured in (kg/m3), Cp is the constant-
pressure heat capacity measured in (J/kg K), T represents the temperature
field measured in (K), t denotes the time measured in (s), while λ represents
the thermal conductivity tensor measured in (W/m K). The rate of heat
generated while the battery is charged or discharged is represented by the
source term q measured in (W/m3).

The heat generation in batteries can be related to three separate processes.
These are activation heating due to interfacial kinetics, heating from species
transport which is concentration driven and resistive heating of charged par-
ticles [2]. The literature on thermal modeling of lithium ion batteries differ
mainly in the choice of the source term q. A review on different thermal mod-
eling strategies is given in Appendix A. In this work we apply the source
term presented by Bernardi et al. [3], i.e.

q(x, t) =
I(t)

vol(Ω1)
(U(t)− V (t))− I(t)

vol(Ω1)
T
∂U

∂T
, x ∈ Ω1, t ≤ tc (3.3)

q(x, t) = 0, x ∈ Ω1, t > tc (3.4)

q(x, t) = 0, x ∈ Ω2, t ≥ 0 (3.5)

Here I(t) is the total cell current measured in (A) and vol(Ω1) represents
the volume of the battery interior, measured in (m3). U(t) and V (t) are
the open-circuit and closed-circuit potentials, respectively, both measured in
(V). We will model the battery during discharge. Therefore tc represents the
time measured in (s) when the battery current is cut off. The heating effects
are obviously not present in the casing of the battery, therefore the source
term is zero elsewhere than in the battery interior.

The first term on the right in equation (3.3) represents the heat generation
rate due to charge transfer overpotentials at the interfaces, mass transfer
limitations and ohmic losses [2]. The second term is related to the entropy
of reaction and is referred to as entropic heat [2]. Furthermore ∂U

∂T
is the
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entropic heat coefficient [2]. From a thermodynamic perspective the first term
represents irreversible effects while the second term corresponds to reversible
effects [21]. Details about derivation, assumptions and discussions about a
valid modeling regime for this source term are provided in Appendix A.

In this work we will model a 1C discharge at constant current from 100-10%
state of charge (SOC). This yields a current of

I(t) = 17.5 (A), t ≤ tc (3.6)

I(t) = 0 (A), t > tc (3.7)

Here the time at end of discharge is tc = 3240 (s). Experiments are con-
ducted to obtain expressions for the difference between the open-circuit and
closed-circuit potentials ( U(t)− V (t) ) and for the entropic heat coefficient
∂U
∂T

. Experimental details, analysis of experimental results and conclusions
of these experiments are given in Appendix B. Here we present the main
results of these experiments.

The difference between the open-circuit and closed-circuit potentials is
expressed by a time-dependent function α̂, i.e.

α̂(t) = U(t)− V (t) = a′t3 + b′t2 + c′t+ d′ (3.8)

Here a′, b′, c′ and d′ are constants measured in (V/s3), (V/s2), (V/s) and
(V), respectively. These constants are given in table 3.1.

Table 3.1: Polynomial coefficients
a′ = 1.3 · 10−11 (V/s3)
b′ = −6.461 · 10−8 (V/s2)
c′ = 9.907361 · 10−5 (V/s)
d′ = 4.51243100 · 10−2 (V)

The entropic heat coefficient is approximated by a constant β̂ measured
in (V/K), i.e.

∂U

∂T
= β̂ (3.9)

where β̂ has the following value
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β̂ = −2.7 · 10−4 (V/K)

This yields the following expression for the source term 3.3

q(x, t) =
I(t)

vol(Ω1)
α̂(t)− I(t)

vol(Ω1)
T β̂, x ∈ Ω1, t ≤ tc (3.10)

Let us define the initial temperature field in the region Ω as T0. The
problem (3.2) then has the following initial condition:

T (x, 0) = T0(x), x ∈ Ω (3.11)

In order to model the interaction between the ambient air and the bat-
tery surface represented by the boundary ∂Ω, we impose a Robin boundary
condition to the problem (3.2). We thus neglect the exchange of heat by
radiation. The Robin boundary condition is expressed as

−λ∇T · n = h(T − g), x ∈ ∂Ω (3.12)

where g is a constant measured in (K) that represents the ambient air
temperature. Furthermore are n an outward unit normal vector defined on
∂Ω and h a constant measured in (W/m2K) representing the external heat
transfer coefficient.

3.2 Scaling of the Model

In this section, we scale the model problem to obtain a dimensionless form.
The region Ω is transformed into the region Γ with the boundary ∂Γ by the
dimensionless vector ξ defined as

ξ = [
x1

L1

,
x1

L2

,
x3

L3

]

Here L1, L2 and L3 are constants measured in (m). The scaled region Γ
is given by the box

0 < ξi < Lξi , i = 1, 2, 3

We observe that by definition,

Lξi =
Lxi
Li

i.e. if
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Li = Lxi

we have that

Lξi = 1

We also divide the region Γ into the two regions Γ1 and Γ2 representing
the scaled battery interior and the scaled battery casing, respectively, i.e.

Γ = Γ1 ∪ Γ2 (3.13)

Let us furthermore introduce the dimensionless time-variable τ defined
as

τ =
t

tτ

Here tτ is a constant measured in (s). tτ and Li are often referred to as
characteristic time and length scales, respectively.

3.2.1 Scaling of the PDE

Consider the model equation

ρ(x)Cp(x)
∂T (x, t)

∂t
= ∇ · (λ(x)∇T (x, t)) + q(x, t) (3.14)

We now introduce a dimensionless temperature distribution û(ξ, τ) given
by

T (x, t) = Aû(ξ, τ) +B (3.15)

Here A and B are constants measured in (K). Furthermore we introduce
the dimensionless thermal conductivity tensor Λ defined as

λ(x) = αΛ(ξ)

where α is a constant measured in (W/mK). Λ(ξ) is expressed as

Λ(ξ) =

 Λ1(ξ) 0 0
0 Λ2(ξ) 0
0 0 Λ3(ξ)

 (3.16)

Moreover we scale the spatial dependent mass density and specific heat
capacity by introducing a dimensionless function f dependent of the variable
ξ, i.e.



18 CHAPTER 3. THERMAL MODELING

ρ(x)Cp(x) = Cf(ξ) (3.17)

Here C is a constant measured in (J/m3 K). Inserting (3.15)-(3.17) into
equation (3.14), applying the chain rule and rearranging we get

f
∂û

∂τ
=
tτα

C
D · (ΛDû) +

qtτ
AC

(3.18)

where D is the differential operator defined as

D = [
1

L1

∂

∂ξ1

,
1

L2

∂

∂ξ2

,
1

L3

∂

∂ξ3

] (3.19)

Equation (3.18) can also be expressed in terms of the Einstein summation
convention, i.e.

f
∂û

∂τ
=
tτα

C

1

L2
i

∂

∂ξi
(Λi

∂û

∂ξi
) +

qtτ
AC

(3.20)

We now introduce γi as

γi =
L1

Li
(3.21)

By choosing

tτ =
CL2

1

α

we get
tτα

CL2
1

= 1

tτ is referred to as the diffusion timescale. Furthermore we define the
scaled source term Q as

Q =
qL2

1

αA
(3.22)

This yields the following form for the scaled PDE:

f
∂û

∂τ
=

∂

∂ξ1

(Λ1
∂û

∂ξ1

) + γ2
2

∂

∂ξ2

(Λ2
∂û

∂ξ2

) + γ2
3

∂

∂ξ3

(Λ3
∂û

∂ξ3

) +Q (3.23)

The source termQ in this general model equation needs now to be specified.
For this work, we apply the source term presented in section 3.1. We will
thus scale the expression (3.10).
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We introduce the dimensionless function J(τ) describing the current as

I(t) = iJ(τ) (3.24)

where i is a constant measured in (A). Furthermore we introduce the
dimensionless function κ̂(τ) that represents the dimensionless potential dif-
ference as

α̂(t) = δκ̂(τ) (3.25)

Here δ is a constant measured in (V). Let the dimensionless constant µ̂
representing the entropic heat coeffient β̂ be defined as

β̂(t) = εµ̂ (3.26)

where ε is a constant measured in (V/K). We chose δ = 1 and ε = 1, it
follows that

κ̂(τ) = a′t3ττ
3 + b′t2ττ

2 + c′tττ + d′ (3.27)

and that

µ̂ = β̂ (3.28)

We conveniently introduce the constants ã = a′t3τ , b̃ = b′t2τ , c̃ = c′tτ and
d̃ = d′. These constants are measured in (V). κ̂(τ) can then be expressed as

κ̂(τ) = ãτ 3 + b̃τ 2 + c̃τ + d̃ (3.29)

The scaled dimensionless source term thus reads

Q(τ, ξ) =
L2

1iJ

Aαvol(Ω1)
(κ̂− Aµ̂û−Bµ̂), ξ ∈ Γ1, τ ≤ τc, (3.30)

Q(τ, ξ) = 0, ξ ∈ Γ1, τ > τc (3.31)

Q(τ, ξ) = 0, ξ ∈ Γ2, τ ≥ 0, (3.32)

Here τc is defined as

τc =
tc
tτ

(3.33)

thus representing the dimensionless time for which the dimensionless cur-
rent is cut off. Equation (3.30) can now be written as
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Q(τ, ξ) =
L2

1iJ

Aαvol(Ω1)
(κ̂−Bµ̂)− L2

1iJ

αvol(Ω1)
µ̂û (3.34)

Let us introduce the dimensionless function O defined as

O =
L2

1iJ

Aαvol(Ω1)
(κ̂−Bµ̂) (3.35)

and the dimensionless function P defined as

P = − L2
1

αvol(Ω1)
iJµ̂ (3.36)

The scaled dimensionless source term (3.30) can thus be expressed as

Q(τ) = O(τ) + P (τ)û, ξ ∈ Γ1, τ ≤ τc (3.37)

3.2.2 Scaling of the Initial and Boundary Conditions

The initial condition

T (x, 0) = T0, x ∈ Ω (3.38)

is scaled by imposing the scaled temperature distribution T = Aû+B to
equation (3.38), i.e.

Aû(ξ, 0) +B = T0 (3.39)

By rearranging equation (3.39) we get the scaled initial condition

û(ξ, 0) =
T0 −B
A

(3.40)

The model problem is equipped with a Robin boundary condition, i.e.

−λ∇T · n = h(T − g), x ∈ ∂Ω (3.41)

Imposing the scaled temperature distribution T = Aû+B and the scaled
thermal conductivity tensor λ = αΛ to the boundary condition yields

−AαΛDû · n = h(Aû+B − g), ξ ∈ ∂Γ (3.42)

Here the chain rule is exploited. We conveniently introduce

g′ = h(g −B)
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and
h′ = hA

.
It is convenient to chooseB = g, which yields a simplified Robin boundary

condition. It follows that the scaled boundary condition reads

h′û+ AαΛDû · n = 0, ξ ∈ ∂Γ (3.43)

3.3 Homogenization Theory

In lithium ion batteries electrochemical and mechanical phenomena occur
at both micro and macro-scales. Therefore, homogenization theory has ear-
lier been applied to derive macroscale equations from underlying microscale
equations. We refer the reader to the works by Golomon et al. [20], Ciucci
and Lai [13] and Zhang [63] for details.

Our contribution consists of applying homogenization theory to a thermal
model for lithium ion batteries with prismatic cell geometry.

3.3.1 Homogenization of the Thermal Model

In this section we apply homogenization theory to the partial differential
equation (3.23) describing the dimensionless temperature field inside a lithium
ion battery. We emphasize that general parabolic problems as the problem
(3.23) are successfully homogenized in Persson et al. [45].

The battery occupies the scaled region Γ, where the battery interior occu-
pies the region Γ1 and the casing of the battery occupies the region Γ2. Let
the region Γ1 be given by the box

LiΓa < ξi < LiΓb , i = 1, 2, 3

Here LiΓa and LiΓb are dimensionless constants. We observe that the
region Γ1 is a simply connected bounded region with the boundary Γ̃. The
region Γ2 is a doubly connected bounded region with the outer boundary ∂Γ
and the inner boundary ∂Γ̃ [33].

The geometry of the battery interior Γ1 yields a periodic structure in the
ξ1−direction. The period length corresponds to a series of layers in the fol-
lowing order: Positive electrode current collector, cathode, separator, anode,
negative electrode current collector, anode, separator, cathode and positive
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electrode current collector. We define this series of layers as a unit Y−cell.
Let the length of a Y -cell in the unscaled region Ω1 be defined as LY .

Furthermore let the respective scaled dimensionless length of a Y -cell in
Γ1 be defined as LY ξ.

We then have the following relation:

LY ξ =
1

L1

LY (3.44)

In this work we refer to functions that are periodic in the interval LY ξ
as Y-periodic functions. Let us introduce the parameter ε which describes
the fractional relation between the dimensionless period-length LY ξ and the
dimensionless length of the periodic battery interior in ξ1−direction | L1Γb −
L1Γa |, i.e.

ε =
LY ξ

| L1Γb − L1Γa |
=

1
L1
LY

1
L1
| L1Ωb − L1Ωa |

=
LY

| L1Ωb − L1Ωa |
(3.45)

We observe that ε is conserved under scaling.

The battery has a so-called prismatic cell geometry which is described in
section 2.1. In accordance with the literature (e.g. [8]), we assume that the
thermal conductivity, mass density and specific heat capacity are dependent
on the spatial coordinates only. By these assumptions the dimensionless
thermal conductivity tensor Λ describing the regions Γ1 and Γ2 is expressed
as:

Λ(ξ) =

 Λ1(ξ) 0 0
0 Λ1(ξ) 0
0 0 Λ1(ξ)

 (3.46)

The thermal conductivity in the interior Γ1 is only dependent on the ξ1-
coordinate. Moreover, in Γ1 the thermal conductivity is periodic in the ξ1

variable, i.e.

Λ1(ξ) =

(
Λ1(ξ), ξ ∈ Γ2

Λ1(ξ1), ξ ∈ Γ1

)
(3.47)

Furthermore, the dimensionless function f that represents the product of
the mass density and the specific heat capacity are dependent on position
only. Thus f can be described as
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f(ξ) =

(
f(ξ), ξ ∈ Γ2

f(ξ1), ξ ∈ Γ1

)
(3.48)

We also stress that any source term Q should naturally be zero in the
region Γ2, as pointed out in section 3.1.

3.3.2 The Inner Region Γ1

Here we describe the model problem for the inner region Γ1. We empha-
size that the theory applied in this section is mainly taken from the work
by Persson et al. [45]. The periodic properties of the geometry affects cer-
tain physical parameters. In general the solution û is dependent on these
parameters as well. Based upon this, we make the following assumptions:

1. It is convenient to describe the model problem by the parameter ε.

2. Furthermore, the physical parameters and the solution can conveniently
be described by a local variable considering the periodicity on a different
scale than the scale of the regular spatial variable.

By means of vector notation and 1., the scaled equation (3.23) can be
expressed as

f ε
∂ûε(ξ, τ)

∂τ
= Dγξ · (ΛεDξû

ε(ξ, τ)) +Q (3.49)

Here we tacitly have introduced the operators Dγξ and Dξ defined as

Dγξ = [
∂

∂ξ1

, γ2
2

∂

∂ξ2

, γ2
3

∂

∂ξ3

] (3.50)

and

Dξ = [
∂

∂ξ1

,
∂

∂ξ2

,
∂

∂ξ3

] (3.51)

respectively.

2. leads to the following assumptions:

Λε
1(ξ1) = Λ(

ξ1

ε
) (3.52)

f ε(ξ1) = f(
ξ1

ε
) (3.53)
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ûε(ξ, τ) = û(ξ,
ξ1

ε
, τ) (3.54)

The thermal conductivity tensor then reads

Λ(
ξ1

ε
) =

 Λ1( ξ1
ε

) 0 0

0 Λ1( ξ1
ε

) 0

0 0 Λ1( ξ1
ε

)

 (3.55)

Furthermore we introduce the local variable y defined as

y =
1

ε
ξ1 (3.56)

As stated above, we will refer to functions that are periodic in the variable
y as Y−periodic functions. It follows directly that the thermal conductivity
tensor can be described as

Λ(y) =

 Λ1(y) 0 0
0 Λ1(y) 0
0 0 Λ1(y)

 (3.57)

Now, when we consider Dξû
ε, we have that

Dξû
ε(ξ, τ) = Dξû(ξ, y, τ) +

1

ε

∂û(ξ, y, τ)

∂y
i = D′ξû (3.58)

by the chain rule. Here we tacitly have introduced the operator D′ξ defined

as Dξ + 1
ε
∂
∂y
i, where i denotes the unit vector in the ξ1−direction. Writing

out the first term on the right side of equation (3.49) yields

Dγξ · (ΛεDξû
ε) = (

∂

∂ξ1

, γ2
2

∂

∂ξ2

, γ2
3

∂

∂ξ3

) · (ΛD′ξû) =

(
∂

∂ξ1

, γ2
2

∂

∂ξ2

, γ2
3

∂

∂ξ3

) ·

 Λ1( ∂û
∂ξ1

+ 1
ε
∂û
∂y

)

Λ1
∂û
∂ξ2

Λ1
∂û
∂ξ3

 (3.59)

Exploiting the chain rule gives the following result:

Dγξ · (ΛεDξû
ε) =

1

ε2

∂

∂y
(Λ1

∂û

∂y
) +

1

ε
(Λ1

∂2û

∂ξ1∂y
+

∂

∂y
(Λ1

∂û

∂ξ1

))+

1

ε0
(Λ1

∂2û

∂ξ2
1

+ γ2
2Λ1

∂2û

∂ξ2
2

+ γ2
3Λ1

∂2û

∂ξ2
3

) (3.60)
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We now introduce the three following operators:

A0 =
∂

∂y
(Λ1

∂

∂y
) (3.61)

A1 = (Λ1
∂2

∂ξ1∂y
+

∂

∂y
(Λ1

∂

∂ξ1

)) (3.62)

A2 = Λ1
∂2

∂ξ2
1

+ γ2
2Λ1

∂2

∂ξ2
2

+ γ2
3Λ1

∂2

∂ξ2
3

(3.63)

It follows that equation (3.49) can be expressed as

f
∂û

∂τ
= ε−2A0û+ ε−1A1û+ ε0A2û+Q (3.64)

Furthermore we assume that the solution can be represented by an asymp-
totic expansion of functions wi that are periodic in the variable y, i.e.

û(ξ, y, τ) =
∞∑
i=0

εiwi(ξ, y, τ) (3.65)

Inserting (3.65) into (3.64) and equating terms of equal order in ε yields
the following three lowest order equations (i.e. terms with ε−2, ε−1 and ε0,
respectively):

A0w0 = 0 (3.66)

A0w1 + A1w0 = 0 (3.67)

f
∂w0

∂τ
= A0w2 + A1w1 + A2w0 +Q (3.68)

In order to solve the hierarchy (3.66)-(3.68) we make use of the follow-
ing Lemma (see Persson et al. [45]):
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Lemma 3.3.1. For the boundary value problem

A0Φ = F, in a unit Y − cell,

where Φ is Y-periodic and F belongs to L2(LY ξ), we have that:

� There exists a weak Y-periodic solution Φ if and only if 〈F 〉 = 0.

� If there exists a weak Y-periodic solution Φ, then it is unique up to
an additive constant.

Here 〈F 〉 is defined as 〈F 〉 ≡ 1
meas(LY ξ)

∫
LY ξ

Fdy, where meas(LY ξ) is the

so-called Lebesgue measure of LY ξ.

Furthermore L2(LY ξ) is the space defined as {F :
∫
LY ξ
|F |2dx <∞},

with the norm ‖F‖L2 = (
∫
LY ξ
|F |2dx)1/2

By Lemma 3.3.1, there exists a weak Y−periodic solution w0 to equation
(3.66). Furthermore, this solution is unique up to an additive constant. The
trivial solution w0 = 0 clearly fulfills equation (3.66). Since this solution also
can be considered as periodic in the variable y, the trivial solution is unique
up to a constant. Therefore the unique solution to (3.66) is given by

w0(ξ, y, τ) = z(ξ, τ) (3.69)

Furthermore, if we insert the solution w0 into equation (3.67), we obtain
the following problem

A0w1 = −A1z = −dΛ1(y)

dy

∂z(ξ, τ)

∂ξ1

(3.70)

By Lemma 3.3.1 the existence of a periodic solution to the problem (3.70)
is guaranteed. Furthermore, by the same Lemma, this solution is unique up
to an additive constant. When assuming that the solution can be represented
by

w1(ξ, y, τ) = Φ(ξ, τ)χ(y) (3.71)

the problem (3.70) can be expressed as

Φ(ξ, τ)A0χ(y) = −dΛ1(y)

dy

∂z(ξ, τ)

∂ξ1

(3.72)
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By separation of variables, we obtain

Φ(ξ, τ) =
∂z

∂ξ1

(3.73)

By substitution of (3.73) into (3.72) we obtain the so-called cell problem,
i.e.

A0χ(y) = −dΛ1(y)

dy
(3.74)

Since Φ(ξ, τ) is known, by the solution of the cell problem, we obtain a
solution w1 to (3.70) that is unique up to the additive arbitrary constant
z1(ξ, τ), i.e.

w1(ξ, y, τ) =
∂z(ξ, τ)

∂ξ1

χ(y) + z1(ξ, τ) (3.75)

We now consider the problem (3.68). For w2 to be a unique solution, by
Lemma 3.3.1, the following equation must hold:

〈f ∂z
∂τ
〉 = 〈A2z〉+ 〈A1(

∂z

∂ξ1

χ)〉+ 〈A1z1〉+ 〈Q〉 (3.76)

Here we tacitly have substituted the expressions for the solutions w0 and
w1. By Gauss’ theorem, the third term on the right in equation (3.76) is
zero. Furthermore the second term can be expressed as

〈A1(
∂z

∂ξ1

χ)〉 = 〈 ∂
∂ξ1

(Λ1
∂

∂y
(
∂z

∂ξ1

χ))〉+ 〈 ∂
∂y

(Λ1
∂

∂ξ1

(
∂z

∂ξ1

χ))〉 (3.77)

The second term of equation (3.77) vanishes by Gauss’ theorem, hence

〈A1(
∂z

∂ξ1

χ)〉 =
∂2z

∂ξ2
1

〈Λ1
dχ

dy
〉 (3.78)

By these findings, the following equation must hold for in order w2 to be
a Y−periodic solution to the problem (3.68):

〈f〉∂z
∂τ

= 〈Λ1 + Λ1
dχ

dy
〉∂

2z

∂ξ2
1

+ 〈Λ1〉γ2
2

∂2z

∂ξ2
2

+ 〈Λ1〉γ2
3

∂2z

∂ξ2
3

+ 〈Q〉 (3.79)

where we tacitly have written out A2z. By means of vector notation, we
get the following homogenized equation
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〈f〉∂z
∂τ

= Dγξ · (ΛhomDξz) + 〈Q〉 (3.80)

where we have introduced the homogenized thermal conductivity tensor
Λhom defined as

Λhom =

 〈Λ1 + Λ1
dχ
dy
〉 0 0

0 〈Λ1〉 0
0 0 〈Λ1〉

 (3.81)

We observe that

〈Λ1 + Λ1
dχ

dy
〉 = 〈Λ1(1 +

dχ

dy
)〉 (3.82)

Furthermore, let us express the cell-problem (3.74) as

d

dy
((Λ1

dχ

dy
) + Λ1) = 0 (3.83)

Taking the indefinite integral with respect to y yields

Λ1
dχ

dy
+ Λ1 + C1 = 0 (3.84)

where C1 is an arbitrary integration constant. From equation (3.84) we
can express (1 + dχ

dy
) as

(1 +
dχ

dy
) = −C1

Λ1

(3.85)

Substituting this expression into equation (3.82) results in

〈Λ1 + Λ1
dχ

dy
〉 = 〈Λ1(−C1

Λ1

)〉 = 〈−C1〉 = −C1 (3.86)

Let us integrate equation (3.85) over the interval LY ξ with respect to y.
The result is ∫

LY ξ

dy = −
∫
LY ξ

C1

Λ1

dy (3.87)

where
∫
LY ξ

dχ
dy
dy = 0 by Gauss’ theorem. Dividing both sides of equation

(3.87) by meas(LY ξ) results in

1

meas(LY ξ)

∫
LY ξ

dy = − 1

meas(LY ξ)

∫
LY ξ

C1

Λ1

dy (3.88)
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The result is that

〈−C1

Λ1

〉 = 1 (3.89)

Furthermore we have that

−C1 = 〈Λ−1
1 〉−1 (3.90)

We substitute (3.90) into (3.86), i.e.

〈Λ1 + Λ1
dχ

dy
〉 = 〈Λ−1

1 〉−1 (3.91)

To summarize, the homogenized thermal conductivity coefficient 〈Λ−1
1 〉−1

can be expressed as

〈Λ−1
1 〉−1 =

1
1

meas(Y )

∫
LY ξ

1
Λ1
dy

(3.92)

By (3.91), the homogenized thermal conductivity tensor thus reads

Λhom =

 〈Λ−1
1 〉−1 0 0
0 〈Λ1〉 0
0 0 〈Λ1〉

 (3.93)

3.3.3 The Outer Region Γ2

The equation describing the outer region Γ2 is given by the scaled equation
(3.23). By means of vector notation the model problem for region Γ2 reads

f
∂û(ξ, τ)

∂τ
= Dγξ · (ΛDξû(ξ, τ)), ξ ∈ Γ2 (3.94)

where the corresponding scaled thermal conductivity tensor Λ is expressed
as follows:

Λ =

 Λ1(ξ) 0 0
0 Λ1(ξ) 0
0 0 Λ1(ξ)

 (3.95)

Moreover the function f is defined as

f = f(ξ) (3.96)
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3.3.4 Initial and Boundary Conditions

The scaled initial condition (3.40) must hold for the regions Γ1 and Γ2. How-
ever, for the region Γ1, we have that û =

∑∞
i εiwi. The corresponding initial

condition for the homogenized problem thus reads

z(ξ, 0) =
T0 −B
A

, ξ ∈ Γ1 (3.97)

For the region Γ2 the initial condition reads

û(ξ, 0) =
T0 −B
A

, ξ ∈ Γ2 (3.98)

At the interface between Γ1 and Γ2, defined as ∂Γ̃ the flux-density of the
thermal energy must be pointwise continuous, i.e.

ΛhomDz · n1 = ΛDû · n2, ξ ∈ ∂Γ̃ (3.99)

Here n1 and n2 are the outer unit normal vectors defined at the boundary

∂Γ̃. We remark that the two unit normal vectors have the opposite direction.

The scaled Robin boundary condition is imposed to the problem (3.94),
i.e.

h′û+ AαΛDû · n = 0, ξ ∈ ∂Γ (3.100)

3.4 Summary

In this section the results of the scaled-dimensionless-homogenized thermal
model for the lithium ion battery are summarized. The governing equations
are:
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〈f〉∂z
∂τ

= Dγξ · (ΛhomDξz) + 〈Q〉, ξ ∈ Γ1 (3.101)

f
∂û

∂τ
= Dγξ · (ΛDξû), ξ ∈ Γ2 (3.102)

z(ξ, 0) =
T0 −B
A

, ξ ∈ Γ1 (3.103)

û(ξ, 0) =
T0 −B
A

, ξ ∈ Γ2 (3.104)

ΛhomDz · n1 = ΛDû · n2, ξ ∈ ∂Γ̃ (3.105)

h′û+ A
1

L1

αΛDγξû · n = 0, ξ ∈ ∂Γ (3.106)

The homogenized thermal conductivity tensor is expressed as:

Λhom =

 〈Λ−1
1 〉−1 0 0
0 〈Λ1〉 0
0 0 〈Λ1〉

 (3.107)

This is the outcome of the requirement of existence of periodic solutions to
the lowest order equations of the asymptotic expansion in the microvariable
y. We emphasize that the result (3.107) is similar as the result obtained by
applying a thermal equivalent-resistance approach. This approach estimates
thermal resistances for parallel and series coupling of thermal resistors [7].
Such equivalent expressions are introduced in thermal models of lithium ion
batteries by e.g. Chen et al. [8]. We remark that the assumption of an
asymptotic expansion representation of the solution to the partial differential
equation leads to, in the lowest orders of correction, the expression also
applied in thermal engineering. This illustrates the beauty and power of
mathematical theories.

As a final remark we observe that if the source term Q exhibit a peri-
odic behavior, one can assume that it can be represented by an asymptotic
expansion, i.e.
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Q(ξ, τ) =
∞∑
i=0

εiQi(ξ, y, τ) (3.108)

Here Qi are Y−periodic functions. As a result of this expansion the lowest
order approximation of the asymptotic expansion of Q (i.e. Q0) shall appear
instead of Q in equation (3.101). In this manner homogenization theory may
serve as a powerful tool as an alternative justification of the simplifications of
the more local source terms described in the literature. It may even extend
the limits for the modeling regime for these simplified expressions. A further
analysis in this direction is beyond the scope of this thesis, however.



Chapter 4

Variational Formulation

In this chapter we will bring the scaled-dimensionless-homogenized problem
over to variational formulation. This is done in order to solve the problem
numerically by means of the finite element method. We will first present a
continuous variational formulation, however.

4.1 Continuous Variational Formulation

In this section we express the two partial differential equations on differential
form that describes the dimensionless temperature field in each of the regions
Γ1 and Γ2 as a variational problem for the whole region Γ. The dimensionless
temperature distribution of the region Γ is described by the two following
equations:

〈f〉∂û
∂τ

= Dγξ · (ΛhomDξû) + 〈Q〉, ξ ∈ Γ1 (4.1)

f
∂û

∂τ
= Dγξ · (ΛDξû), ξ ∈ Γ2 (4.2)

In addition, we have the initial and boundary conditions, i.e.

û(ξ, 0) =
T0 −B
A

, ξ ∈ Γ1 (4.3)

û(ξ, 0) =
T0 −B
A

, ξ ∈ Γ2 (4.4)

h′û+ A
1

L1

αΛDγξû · n = 0, ξ ∈ ∂Γ (4.5)

33
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Here we tacitly have replaced the operator D with 1
L1
Dγξ. We also replace

the solution z with û in order to have the same notation for the solution in
both of the regions Γ1 and Γ2.

We now multiply equations (4.1) and (4.2) by a test function v̂(ξ) and
integrate over the respective regions, i.e.

〈f〉
∫

Γ1

∂û

∂τ
v̂dΓ1 =

∫
Γ1

Dγξ · (ΛhomDξû)v̂dΓ1 +

∫
Γ1

〈Q〉v̂dΓ1 (4.6)∫
Γ2

f
∂û

∂τ
v̂dΓ2 =

∫
Γ2

Dγξ · (ΛDξû)v̂dΓ2dΓ2 (4.7)

By applying Green’s Lemma on the first term on the left in the equations
(4.6) and (4.7), we get

〈f〉
∫

Γ1

∂û

∂τ
v̂dΓ1 =

∮
∂Γ̃

(ΛhomDγξû)v̂ · n1dA

−
∫

Γ1

(ΛhomDγξû) · (Dξv̂)dΓ2 +

∫
Γ1

〈Q〉v̂dΓ1 (4.8)

and

∫
Γ2

f
∂û

∂τ
v̂dΓ2 =

∮
∂Γ̃

(ΛDγξû)v̂ · n2dA

+

∮
∂Γ

(ΛDγξû)v̂ · ndA

−
∫

Γ2

(ΛDγξû) · (Dξv̂)dΓ2 (4.9)

We now add equation (4.8) and (4.9), i.e.

〈f〉
∫

Γ1

∂û

∂τ
v̂dΓ1 +

∫
Γ2

f
∂û

∂τ
v̂dΓ2 =∮

∂Γ̃

(ΛhomDγξû)v̂ · n1dA−
∫

Γ1

(ΛhomDγξû) · (Dξv̂)dΓ2

+

∫
Γ1

〈Q〉v̂dΓ1 +

∮
∂Γ̃

(ΛDγξû)v̂ · n2dA+

∮
∂Γ

(ΛDγξû)v̂ · ndA

−
∫

Γ2

(ΛDγξû) · (Dξv̂)dΓ2 (4.10)
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By requiring a pointwise continuity of the flux-density and the test func-
tion v̂ on every point at the interface ∂Γ̃ we have that

〈f〉
∫

Γ1

∂û

∂τ
v̂dΓ1 +

∫
Γ2

f
∂û

∂τ
v̂dΓ2 =

−
∫

Γ1

(ΛhomDγξû) · (Dξv̂)dΓ2

+

∫
Γ1

〈Q〉v̂dΓ1 +

∮
∂Γ

(ΛDγξû)v̂ · ndA

−
∫

Γ2

(ΛDγξû) · (Dξv̂)dΓ2 (4.11)

Inserting the Robin boundary condition yields

〈f〉
∫

Γ1

∂û

∂τ
v̂dΓ1 +

∫
Γ2

f
∂û

∂τ
v̂dΓ2 =

−
∫

Γ1

(ΛhomDγξû) · (Dξv̂)dΓ2 −
∫

Γ2

(ΛDγξû) · (Dξv̂)dΓ2

− L1

Aα

∮
∂Γ

(h′û)v̂dA+

∫
Γ1

〈Q〉v̂dΓ1 (4.12)

Inserting the expressions for the scaled source term Q represented by
the equations (3.31), (3.32) and (3.37) from section 3.2.1 to specify a real
modeling example yields

〈f〉
∫

Γ1

∂û

∂τ
v̂dΓ1 +

∫
Γ2

f
∂û

∂τ
v̂dΓ2 +

∫
Γ1

(ΛhomDγξû) · (Dξv̂)dΓ1

+

∫
Γ2

(ΛDγξû) · (Dξv̂)dΓ2 − P
∫

Γ1

ûv̂dΓ1

+
L1h

′

Aα

∮
∂Γ

ûv̂dA = O

∫
Γ1

v̂dΓ1 (4.13)

Introduce the bilinear form a : X̂ × X̂ ′ → < defined as
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a(û, v̂) = 〈f〉
∫

Γ1

∂û

∂τ
v̂dΓ1 +

∫
Γ2

f
∂û

∂τ
v̂dΓ2 +

∫
Γ1

(ΛhomDγξû) · (Dξv̂)dΓ1

+

∫
Γ2

(ΛDγξû) · (Dξv̂)dΓ2 − P
∫

Γ1

ûv̂dΓ1

+
L1h

′

Aα

∮
∂Γ

ûv̂dA (4.14)

and the linear form f : X̂ ′ → < defined as

f(v̂) = O

∫
Γ1

v̂dΓ1 (4.15)

The variational problem is as follows: Find û ∈ X̂ such that

a(û, v̂) = f(v̂), ∀v̂ ∈ X̂ ′ (4.16)

holds for appropriate function spaces X̂ and X̂ ′.

4.2 Discrete Variational Formulation

In this section we discretize the variational problem (4.16) in section 4.1. We
first replace the time derivative by a finite difference approximation, then we
choose discrete function spaces X and X ′ for the trial and test functions,
respectively. We start by restricting the time dependent functions û, O and
P in equation (4.16) to be represented only at discrete points in time τ = τk,
i.e.

û(ξ, τ)→ û(ξ, τk), k = {0, 1, 2, 3, ...}

O(τ)→ O(τk), k = {0, 1, 2, 3, ...}

P (τ)→ P (τk), k = {0, 1, 2, 3, ...}

We conveniently introduce the notation ûk, Ok and P k to represent û(ξ, τk),
O(τk) and P (τk), respectively. Simultaneously, we must replace the time
derivative which is not defined in the discrete variable τk. Let us introduce
the distance between the two points in time τk and τk+1 as

∆τ = τk+1 − τk
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The first order time derivative is replaced by a flexible finite difference
approximation referred to as the θ-rule [35]. The θ-rule yields either a forward
Euler, backward Euler or a Crank-Nicolson scheme for a θ-value of 0, 1 or
1/2, respectively.

Furthermore we introduce finite-dimensional function spaces defined as X
and X ′ for the trial and test functions defined as uk and v, respectively, i.e.

X̂ → X

X̂ ′ → X ′

ûk → uk

v̂ → v

The spaces X and X ′ are specified by the choice of finite element space
in the implementation section.

As a result of this discretization we may now introduce the bilinear form
a : X ×X ′ → < defined as

a(uk, v) =

〈f〉
∫

Γ1

ukvdΓ1 +

∫
Γ2

fukvdΓ2 + θ∆τ

∫
Γ1

(ΛhomDγξu
k) · (Dξv)dΓ1

− θ∆τP k

∫
Γ1

ukvdΓ1 + θ∆τ

∫
Γ2

(ΛDγξu
k) · (Dξv)dΓ2

+
θ∆τL1h

′

Aα

∮
∂Γ

ukvdA (4.17)

and the linear form f : X ′ → < defined as
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f(v) =

〈f〉
∫

Γ1

uk−1vdΓ1 +

∫
Γ2

fuk−1vdΓ2

− (1− θ)∆τ
∫

Γ1

(ΛhomDγξu
k−1) · (Dξv)dΓ1

+ θ∆τOk

∫
Γ1

vdΓ1 + (1− θ)∆τOk−1

∫
Γ1

vdΓ1

+ (1− θ)∆τP k−1

∫
Γ1

uk−1vdΓ1

− (1− θ)∆τ
∫

Γ2

(ΛDγξu
k−1) · (Dξv)dΓ2

− (1− θ)∆τL1h
′

Aα

∮
∂Γ

uk−1vdA (4.18)

We can then express the following discrete variational formulation:

Find uk ∈ X such that

a(uk, v) = f(v), ∀v̂ ∈ X ′ (4.19)

holds for appropriate function spaces X and X ′.

The problem (4.19) can be solved by inserting the unknown at the previous
timestep uk−1 and solve each variational problem in a loop over all timesteps.
The discrete expression for the very first timestep u0 can be obtained from
the variational formulation of the initial condition, i.e.∫

Γ1

u0vdΓ1 +

∫
Γ2

u0vdΓ2 =

∫
Γ1

T0 −B
A

vdΓ1 +

∫
Γ2

T0 −B
A

vdΓ2 (4.20)

We conveniently introduce the bilinear form a0 : X ×X ′ → < defined as

a0(u0, v) =

∫
Γ1

u0vdΓ1 +

∫
Γ2

u0vdΓ2 (4.21)

Define the corresponding linear form f : X → < as

f0(v) =

∫
Γ1

T0 −B
A

vdΓ1 +

∫
Γ2

T0 −B
A

vdΓ2 (4.22)

The discrete variational problem for the initial condition is thus expressed
as:
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Find u0 ∈ X such that the following equation holds:

a0(u0, v) = f0(v), ∀v ∈ X ′ (4.23)

However, since u(ξ, 0) is known by the initial condition, one could also
interpolate u(ξ, 0) with functions from the space X.

4.3 Implementation in FEniCS

The discrete variational formulation is implemented in the finite element
software FEniCS. The three different layers in the casing constituting the
region Γ2 are defined and marked as separate so-called subdomains. Also the
inner region Γ1 is defined as a separate subdomain. This is done in order
to assign different values to the spatial dependent dimensionless parameters
in the problem. We use a loop in order to solve the stationary variational
problems for each timestep. The source code is given in Appendix C.
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Chapter 5

Results

In this chapter the results of the numerical implementation are presented.
First we specify the parameters for the numerical simulations.

5.1 Input Parameters

This section presents the parameter set that is used in the simulations. We
apply a constant ambient air temperature of 25 � which yields g = 298.15
(K). We also use an initial condition corresponding to a uniform tempera-
ture distribution of T0 = 298.15 (K). Furthermore, an external heat transfer
coefficient of h = 18 (W/m2 K) is applied. The choice for this value of h is
given by an estimation in Appendix B.4. The physical input parameters are
presented in table 5.1. We also included the time tc for which the current is
cut off in the table.

Table 5.1: Physical input parameters
Parameter Value Unit

g 298.15 (K)
h 18 (W/m2K)
T0 298.15 (K)
tc 3240 (s)

We choose the scaling constants L1, L2, L3 equal to the length of the
battery in the x1, x2 and x3 directions, respectively. This is done in order
to obtain a scaled unit geometry. Moreover we choose the other scaling
constants so that the different terms in the discrete variational formulation
(4.19) obtains nearly the same order of magnitude. The scaling constants
are presented in table 5.2.

41
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Table 5.2: Scaling constants and dimensionless parameters
Parameter Value Unit

A 1.0 · 10−2 (K)
B = g 298.15 (K)
C 1.4 · 106 (J/m3 K)
α 1.0 · 10−2 (W/m2 K)
L1 5.65 · 10−3 (m)
L2 2.346 · 10−1 (m)
L3 1.450 · 10−1 (m)
γ1 1 (-)
γ2 0.0241 (-)
γ3 0.0389 (-)
tτ 4469.2 (s)
τc 0.725 (-)
i 1.0 (A)
δ 1.0 (V)
ε 1.0 (V)
g′ 0 (W/m2)
h′ 1.8 · 10−1 (W/m2)
〈f〉 1.648 (-)
〈Λ−1

1 〉−1 381.02 (-)
〈Λ1〉 3082.54 (-)
ε 0.083 (-)

We find it sufficient to model the problem in 2 dimensions, since the
geometry in the ξ2 and ξ3−direction are quite similar. Therefore we chose to
solve the problem in the ξ1-ξ2−plane. The problem was solved numerically
with the discrete function spaces of piecewise linear Lagrange polynomials,
i.e.

X = X ′ = {Space of piecewise linear Lagrange polynomials}

Regarding the specifications of the mesh in FEniCS, we find it convenient
to define the number of partitions on the ξ1 and ξ2 axis as K1 and K2, respec-
tively. These partitions yields a grid of rectangles, where each rectangle is
divided into two triangles. The triangles are referred to as cells [36]. We find
it sufficient to apply K1 = K2 = 30 for the modeling purposes. The differ-
ent numerical parameters are given values based on numerical experiments
presented in section 5.2.
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The numerical parameters are presented in table 5.3.

Table 5.3: Numerical parameters
Parameter Value Unit

θ 0.5 -
∆τ 0.005 -
K1 30 -
K2 30 -

5.2 Numerical Experiments

In this section we demonstrate some effects of varying numerical parameters.
However, this should not be considered as a study on numerical stability and
accuracy, which is beyond the scope of this work.

5.2.1 Effect of Element Size

Here we show that a mesh built by the parameters K1 = K2 = 10 causes
artifacts. The mesh is shown in figure 5.1.

Figure 5.1: 2D finite element mesh. K1 = K2 = 10.

A snapshot of the dimensionless temperature profile at τ = 0.1 along the
line ξ2 = 0.5 is shown in figure 5.2. The numerical parameters were θ = 0.5,



44 CHAPTER 5. RESULTS

∆τ = 0.005 and K1 = K2 = 10. Other input parameters are given by tables
5.1-5.2.
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Figure 5.2: Snapshot of temperature profile at τ = 0.1 along the line ξ2 = 0.5.
Numerical parameters θ = 0.5, ∆τ = 0.005, K1 = 10 and K2 = 10. Input
data given by tables 5.1-5.2. The figure shows the effect of few cells, causing
the edges in the curve.

As figure 5.2 shows, there are artifacts in the solution by means of sharp
edges in the curve. These artifact disappears by choosing K1 = K2 = 30,
which is the choice for the further simulations.

5.2.2 Effect of Time Derivative Approximation Method

Here we show that a forward Euler approximation of the time derivative
yields an unstable scheme at certain values of ∆τ . Figure 5.3 illustrate this,
where a snapshot of the solution at τ = 0.1 is plotted along the line ξ2 = 0.5
for ∆τ = 0.001. The other numerical parameters are K1 = 30, K2 = 30 and
θ = 0.0. Other input parameters are given by tables 5.1-5.2.

We therefore omit the forward Euler approximation in our further nu-
merical simulations. The backward Euler approximation however provides
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Figure 5.3: Snapshot of temperature profile at τ = 0.1 along the line ξ2 = 0.5.
Numerical parameters θ = 0.0, ∆τ = 0.001, K1 = 30 and K2 = 30. Input
data given by tables 5.1-5.2. Heavy artifacts are observed for this forward
Euler approximation.

no numerical artifacts at a timestep length ∆τ = 0.1, i.e. 100 times longer
step-length than the length that caused an unstable forward Euler scheme.
This is illustrated in figure 5.4, where a snapshot of the solution at τ = 0.9
along the line ξ2 = 0.5 is presented. The other numerical parameters are
K1 = 30, K2 = 30 and θ = 1.0. Other input parameters are given by tables
5.1- 5.2.
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Figure 5.4: Snapshot of temperature profile at τ = 0.9 along the line ξ2 = 0.5.
Numerical parameters θ = 1.0, ∆τ = 0.1, K1 = 30 and K2 = 30. Input data
given by tables 5.1-5.2. No numerical artifacts are observed in this backward
Euler approximation.

However, from now on we only apply the Cranc-Nicolson approximation
for our numerical simulations. This is done because it in general provides
higher accuracy than the backward Euler approximation [35]. We emphasize
however that a Cranc-Nicolson scheme may be more unstable for certain
problems, than the backward Euler scheme [35].

5.2.3 Verification of the Code

To sort out bugs in the code or detect numerical artifacts, we run the code
with the source term set to zero and with an initial condition that corresponds
to the ambient temperature. Visual changes in the temperature are thus the
results of bugs in the code or numerical artifacts. Figure 5.5 shows a snapshot
of the solution along the line ξ2 = 0.5 at τ = 0.9. Input parameters are given
by tables 5.1-5.3.
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Figure 5.5: Snapshot of the solution along the line ξ2 = 0.5 at τ = 0.9. The
source term is here set to zero. Input parameters given by tables 5.1-5.3. No
numerical artifacts or errors are observed.

As figure 5.5 shows, no numerical artifacts or errors are observed.

Based on the numerical experiments done in this section, we choose the
numerical parameters given by table 5.3 for the numerical simulations.

5.3 Simulation Results

Here we present the numerical solutions of the discrete variational problem
defined in chapter 4.2. The solutions are provided by the FEniCS code as
described in chapter 4.3. We model the problem in 2 dimensions due to
the nearly similar geometry in the ξ2 and ξ3 directions. For the numerical
solutions in this section, we use a mesh defined by the numerical parameters
K1 = 30 and K2 = 30. This mesh is shown in figure 5.6.
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Figure 5.6: Mesh used in the numerical solutions. K1 = K2 = 30.

The input parameters in this section are given by tables 5.1-5.3. Figure
5.7 shows the initial condition projected onto the vector space of piecewise
linear Lagrange polynomials.
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Figure 5.7: Initial condition (projected). Input parameters in tables 5.1-5.3.

Figure 5.8 shows a snapshot of the dimensionless temperature field at the
instant τ = 0.3.
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Figure 5.8: Snapshot of temperature field at τ = 0.3. Input parameters given
in tables 5.1 -5.3.

The temperature profile in the ξ2−direction vary significantly compared
with the temperature profile in the ξ1−direction. Thus the temperature
variation in the ξ1 direction can not be observed in figure 5.8. However, a
snapshot of the dimensionless temperature profile along the line ξ2 = 0.5 at
τ = 0.3 shows this situation. This can be observed in figure 5.9.
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Figure 5.9: Snapshot of temperature profile along the line ξ2 = 0.5 at τ = 0.3.
Input data given by tables 5.1 -5.3. Relatively low variation in dimensionless
temperature is observed in the ξ1− variable.

To study the qualitative behavior of the time dependent system, we plot
snapshots of the dimensionless temperature profile along the line ξ1 = 0.5 at
different instants in time. This is shown in the series of figures 5.10- 5.13.
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Figure 5.10: Snapshots of temperature profile along the line ξ1 = 0.5 at
different instants in time. Input parameters given by tables 5.1-5.3. Here the
snapshots are taken right after the dimensionless temperature is starting to
increase.
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Figure 5.11: Snapshots of temperature profile along the line ξ1 = 0.5 at
different instants in time. Input parameters given by tables 5.1-5.3. These
snapshots follows the dimensionless temperature profile of the battery from
the start to it approaches end of discharge at τ = 0.725.
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Figure 5.12: Snapshots of temperature profile along the line ξ1 = 0.5 at
different instants in time. Input parameters given by tables 5.1-5.3. These
snapshots follows the dimensionless temperature profile of the battery from
it approaches end of discharge at τ = 0.725 and after the source term is cut
off.
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Figure 5.13: Snapshots of temperature profile along the line ξ1 = 0.5 at
different instants in time. Input parameters given by tables 5.1-5.3. These
snapshots follows the dimensionless temperature profile of the battery from
it approaches end of discharge at τ = 0.725 and in the instants after the
source term is cut off.

As the figures in this section illustrates, the temperature of the battery
varies significant in the ξ2−direction compared with the ξ1−direction. This
trend is found to be independent of time. The battery is approximately
longer by a factor 40 in the ξ2−direction than in the ξ1−direction. One
may at first think that the difference in length scales are the reason to these
results. However, the dimensionless homogenized thermal conductivity in
the ξ2−direction is larger by approximately a factor 10 compared with the
ξ1−direction. This clearly also affects the results.

The maximum temperature is obtained in the center of the battery at
the time just before the source term no longer contribute. The dimension-
less maximum temperature corresponds to a temperature 2.4 (K) above the
ambient air temperature at 298.15 (K).

The figures 5.10-5.13 also shows that the dimensionless temperature in-
creases and decreases at a higher rate shortly after the source term are start-
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ing to contribute and shortly after the source term becomes zero.
The results from this modeling seem to be reasonable from a physical

point of view. However we emphasize that the results are obtained from
a homogenized model with a simplified source term. The geometry is also
slightly simplified. Moreover, heat generating contributions from the main
current collector terminals are neglected. Furthermore, we have only a crude
estimation of the external heat transfer coefficient.
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Chapter 6

Conclusions and Outlook

In this work a homogenized thermal model that describes the dimension-
less temperature field in a lithium ion battery is derived. The battery is
divided into an inner and an outer region. In the inner region the thermal
conductivity tensor is periodic in a microvariable. The outer region consists
of 3 layers that is wrapped around the inner region. We describe the di-
mensionless temperature field of the inner region by a homogenized partial
differential equation. However, in the outer region the dimensionless temper-
ature field is described by a non-homogenized partial differential equation.
The temperature field in both regions is described by the two coupled partial
differential equations. The coupled model is applied to a conventional lithium
ion pouch-cell battery with 17.5 Ah capacity. Input data to the model are
obtained from experiments. The model is solved in 2 dimensions by means
of the finite element method in the FEniCS software.

In order to solve a corresponding non-homogenized model for both regions
in FEniCS, it is required in addition to program 97 regions or subdomains
in the mesh. Therefore the homogenization greatly simplifies the implemen-
tation.

We remark that the derived homogenized thermal conductivity tensor
is identical with expressions obtained by applying a thermal equivalent-
resistance approach. Such expressions are applied in thermal models of
lithium ion batteries by e.g. Chen et al. [8]. However, we stress that other
researchers have solved thermal models for lithium ion batteries numerically
without applying such expressions.

The modeled dimensionless temperature field is found to vary signifi-
cant in the ξ2−direction, compared to the ξ1−direction. In the homogenized
model the dimensionless thermal conductivity for the homogenized region is
larger by approximately a factor 10 in the ξ2−direction, compared with the
ξ1−direction. However, the length of the physical battery is larger by approx-
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imately a factor 40 in the ξ2−direction than in the ξ1−direction. We conclude
that both these factors affect the modeled dimensionless temperature field.

The maximum temperature is achieved at a single spot at the time just
before the source term no longer contributes. This spot is located at the
center of the battery. The dimensionless maximum temperature corresponds
to a temperature 2.4 (K) above the ambient air temperature at 298.15 (K).

The results of the numerical solutions seem to be physical reasonable.
However, due to the simplifications taken one should be careful assuming that
they are realistic before a validation procedure is performed. As pointed out
in Appendix A the applied source term may represent an oversimplification
from a theoretical point of view. In addition, as pointed out in Appendix B
there is a need for obtaining more experimental data for the entropic heat
coefficient in this source term. Furthermore the homogenization needs to be
validated. However, if validated the presented model could be applied to
describe any lithium ion battery with prismatic cell geometry. A validated
model can be used to determine the internal temperature of the pouch-cell.
The model may in the future also be used as a starting point of a parameter
study on effects of different modeling parameters.

Although no numerical artifacts are observed and the numerical solution
seems to be stable, it is necessary to perform both stability analysis and a
numerical truncation analysis.

A natural extension of this work would be to validate the homogeniza-
tion by comparing it with a non-homogenized model. The non-homogenized
model may be solved analytically or numerically. One could also add the
first order correction of the asymptotic expansion representation and study
the effect of this. The result of this experiment could say something about
the limit for the validity of the homogenization theory. Homogenization is
expected to be exact in the limit when the micro to macroscale parameter ε
goes to zero.

If the homogenization is found to provide reliable results, the source term
and the geometrical simplifications must be validated as well.

In future work an experimental validation should be feasible. It will
eventually validate the simplification of the source term, geometrical simpli-
fications and the homogenization.

Another interesting extension is to apply a more detailed heat source
term. The modeling framework presented in this work is assumed to handle
this.
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Appendix A

A Review of Previous Thermal
Models

In this chapter a brief review of previous thermal models for lithium ion
batteries is presented. The main focus in this Appendix is on the approach
taken to estimate the heat generation in thermal models. As the number
of symbols used in this Appendix is quite large, we do not include these in
the nomenclature. In this way we also preserve the original notation in the
reviewed works. For easier reading, we also omit the units for the symbols
when we present the various models.

A.1 A Brief Review of Previous

Thermal Models

The recent years have shown a growth of published papers on thermal models
of lithium ion batteries. The most detailed thermal models share the common
feature that the thermal energy conservation on differential form is expressed
in terms of a single partial differential equation, i.e.

ρ(x)Cp(x)
∂T (x, t)

∂t
= ∇ · (λ(x)∇T (x, t)) + q(x, t), x ∈ Ω, t > 0 (A.1)

Here ρ denotes the mass density, Cp is the constant-pressure heat capacity,
T represents the temperature field, t denotes the time and x is the Euclidean
coordinate vector defined as

x = [x1, x2, x3]

65



66 APPENDIX A. A REVIEW OF PREVIOUS THERMAL MODELS

Furthermore, Ω is a region in <3 that is occupied by the battery. The
thermal conductivity tensor is denoted as λ. The rate of heat generated while
the battery is charged or discharged is represented by the source term q. It
is mainly the composition of the source term q that varies in the different
modeling works.

Bernardi et al. [3] presents a general energy balance equation that could
be applied to various battery chemistries. Their energy equation is the first
in the literature considering contributions from mixing, phase changes, and
simultaneous electrochemical reactions with composition-dependent open-
circuit potential. In their work, each of these contributions are derived and
their importance discussed.

Bandhauer et al. [2] reviews the work by Bernardi et al. [2]. In the review
they states that heat generated inside a battery is related to three different
processes. These are activation heating due to interfacial kinetics, heating
from species transport which is concentration driven and ohmic heating re-
lated to resistive heating of charged particles [2]. Bernardi et al. [3] presents
a simplified expression for the heat generation q. A version of this simplified
expression where phase changes and mixing effects are neglected is frequently
reported in the literature on lithium ion battery models [2]. This source term
reads

q = I(U − V )− I(T
∂U

∂T
) (A.2)

Here I is the total cell current, V is the overall cell potential and U
is the open circuit potential. The contributions to heat generation from
overpotential related to ohmic losses, charge transfer overpotentials at the
interface, and mass transfer limitations is described by the first term on the
right side. The electrode potential is taken at the average composition. The
heat due to entropy change is described by the second term on the right [2].

In a work by Thomas and Newman [57] it is found that the heat generated
by mixing is small compared to heat generation from entropy change and
resistive heating for a realistic and properly designed battery.

In larger cells developed for electric vehicle purposes, Ohmic heating in
the current collectors may be of significance [2]. In the works by Kim et al.
[28, 29], a temperature-independent parametrized electrochemical model is
used to model the current distributions of two electrode current collectors.
The local current production is estimated by means of local overpotential.
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Moreover Ohm’s law is applied to obtain the current distribution in the
current collectors. They use the following heat generation term

q = i(U − V − T ∂U
∂T

) + (σ|∇φ|2)cc,pos + (σ|∇φ|2)cc,neg (A.3)

Here the first term is similar to that of equation (A.2) and the two latter
terms represents ohmic heating in the current collectors. The first study
finds a 17 (K) temperature difference across the battery, where the hottest
region is where the current collector ends in a current collector tab.

As Bandhauer et al. [2] points out, the thermal modeling works done on
lithium ion batteries can be divided into models that use experimental data
to obtain their heat generation rate and models that apply electrochemical
models to obtain the heat generation rate.

One approach is to describe the source term by means of polynomials that
is obtained by least square fitting of experimental data. This is done in the
work by Sabbah et al. [49]. Another modeling work by Smyshlyaev et al. [1]
assumes that the heat generation term can be measured/estimated. Kizilel et
al. [32] predicts heat generation by means of an accelerating rate calorimetry
(ARC) measurement. ARC measurement is also used in a simulation of a
thermal management system for a lithium ion battery by Khateeb et al.
[25]. A work by Mills and Al-Hallaj [41] measures experimentally the heat
generation during a constant current discharge. An alternative approach
consists of of considering only pure ohmic electrical heating effects as in the
work by Bhide and Shim [4].

Chen et al. [8] studies a thermal model of a battery that consists of many
layers of cells. They solve the equation considering the different thermal
conductivities in each direction by means of the finite difference method.
However, they also present a simplified model where the thermal conductivity
is estimated by a thermal equivalent-resistance approach. Their result for the
thermal conductivity in the direction perpendicular to the layered cells is:

λ =

∑
i Li∑
i(
Li
ki

)
(A.4)

This result is similar to that obtained from a homogenization procedure
in section 3.3. Chen et al. [8] assumes a uniform heat generation distribution
in the cell. The following source term are used

q =
I

Vtotal
(EOC − U − T

dEOC
dT

) (A.5)
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Here, Vtotal represents the volume of the heat generating region, EOC and
E represents the open-circuit and closed-circuit potential. I represents the
total current while T represents the temperature.

Chen et al. [9] also presents a thermal model of a spiral wound lithium
ion battery. The source term applied is (A.5). The model equation is then
solved by an advanced numerical method.

Funahashi et al. [18] applies the source term (A.2) in their modeling work.
They perform thermal simulation of a lithium ion battery that shows good
agreement with experimental results. Their model equation is expressed in
cylindrical coordinates, and is solved by means of the finite element method.
However, they consider the thermal conductivity coefficient as homogeneous
through the battery.

Chen and Evans [10] also applies the source term (A.5) to model the heat
generation inside batteries with lithium cathode and polymer electrolyte.
These batteries have a layered structure of many thin cells that constitute a
cell-stack. The particular approach assumes uniform heat generation q inside
the battery, expressed as

q =
iNcell

LX
(Eoc − V − T

dEoc
dT

) (A.6)

Here i is the superficial current density, Eoc is the open-circuit voltage of
a cell, LX is the thickness of the cell stack, T is the temperature, V is the cell
voltage and Ncell is the number of cells in a stack. They furthermore use the
source term in a 2 dimensional transient thermal energy balance equation to
calculate the temperature distribution in each layer i in the cell, i.e.

ρiCpi
∂T

∂t
= λi

∂2T

∂x2
+ λi

∂2T

∂y2
+ q (A.7)

Here, ρi is the mass density of layer i, Cpi is the specific heat capacity of
layer i, λi is the thermal conductivity of layer i and t is time. x and y are the
spatial coordinates. The equation is solved by means of a finite difference
method. In Chen and Evans [11], this model is extended to three dimensions.
In that work, they estimate a value for the thermal conductivity in a similar
manner as the way electrical equivalent resistance is calculated. Here they
also justify the assumption of uniform heat generation more in detail. Their
argument is that the cells are very thin compared to the length of the cell
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stack. Furthermore, the heat generation takes place in each cell. Therefore
they argue that this approach is reasonable.

Several other authors use a similar heat generation term as (A.2). Some
of them are Maleki and Shamsuri [38], Portnyagin [46], Mahamud and Park
[37], Prada et al. [47], Sievers et al. [50].

Pals and Newman [44] use it in a thermal model that is coupled to an elec-
trochemical model, i.e. they use the thermal model to update temperature-
dependent parameters in the electrochemical model. Their study considers
a single-cell model, in one dimension. Moreover, they assume uniform tem-
perature trough the cell, thus avoiding the use of a thermal conductivity
coefficient. Doyle and Newman [14] also use the heat generation term A.2 to
calculate the temperature of a single lithium anode/polymer electrolyte cell.

Williford et al. [61] apply the following source term in their thermal model:

q = I2R + T∆S
I

nF
(A.8)

Here I is the current density, R is the material resistance T is temperature,
∆S is the entropy change, n represents one electron per reaction and F is
Faraday’s constant. The equation (A.8) can be integrated over the cell to
obtain the heat generation for the whole cell. They measure the entropy
change ∆S using an electrochemical thermodynamic measurement system
(ETMS). The experimental results are then used as inputs to the model. An
experiment is set up for a prismatic lithium ion battery, using thermocouples
at the surface of the battery. The battery consist of 8 cells that are stacked
inside. The battery is under the experiment placed in a channel to allow
convective air cooling that should have a similar effect on the different sides
of the surface. The experimental results shows relatively good agreement
with the simulated predictions.

Also a work by Inui et al. [23] considers heat generation due to entropy
change. They apply a source term q expressed as

q = rii
2 − T∆S

i

nF
(A.9)

Here ri is the internal equivalent resistance per unit volume and i is the
discharge current per unit volume. T is temperature, ∆S is the entropy
change, n is the number of electrons involved in the reaction and F is Fara-
day’s constant. They measure the the entropy change experimentally based
on the the equation
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∆S = nF
∂E0

∂T
(A.10)

where E0 is the open circuit voltage of the battery. They find that the
entropy change is dependent on state of charge and little affected by the tem-
perature. They also measure the internal equivalent resistance. The corre-
sponding energy balance equation is solved for both prismatic and cylindrical
cell geometry. However, the thermal conductivities of the core region of the
battery are considered as constants in each spatial direction.

Chen and Evans [12] presents a thermal model for a lithium ion battery.
In their model, the convective flow of the liquid electrolyte is neglected.
This is justified by the fact that the liquid electrolyte is trapped in the pore
structure of the separator. The heat generation rate in each cell is assumed
to be uniform. The authors use an experimental determined heat generation
term q for their thermal model.

In a work by Song and Evans [53], a thermal model for a lithium/polymer
electrolyte battery is presented. Their heat generation term reads

q = (
∆φ

L
)2σe + i2(

RT

ioanF
+

RT

iocnF
)− iT (

dEoc
dT

) (A.11)

Here ∆φ is the potential difference across the electrolyte, L is the thick-
ness of the polymer electrolyte and i is the current density. R and T is the
gas constant and the temperature, respectively. n is the number of electrons
involved in a stoichiometric reaction and F is Faraday’s constant. ioa and
ioc is the current exchange density of the anode and cathode, respectively.
Finally, Eoc is the cell open-circuit potential. The first term on the right
side of equation (A.11) represents ohmic heating in the polymer electrolyte.
However, ohmic heating in the lithium and counter electrode is neglected by
the authors. The next term is heat effects of the overpotentials at the an-
ode and the cathode. Here they assume that the electrodes are in the linear
polarization regime. The last term represents the reversible heat generation.
The local current density i is here calculated for each time step based on the
local value of the conductivity of the polymer electrolyte, which in turn is
calculated by the temperature.

Gerver and Meyers [19] presents an thermal-electrochemical coupled model
where the thermal model is based on the heat generation term (A.2). More-
over they extend it by including local heat generating effects from ohmic
heating in the current collectors.
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Botte et al. [5] reviews modeling of lithium ion batteries. In their work,
they point out that the thermal conductivity vary in different directions even
inside the cathode or anode of lithium ion cells. The same study find the
heat capacity to be dependent of state of charge (SOC). However, no ther-
mal models presented in literature consider these effects, they are therefore
neglected in this work.

Kim et al. [28] presents a thermal model with the following heat source
term:

q = aJ(EOC − E − T
dEOC
dT

) + aprpi
2
p + anrni

2
n (A.12)

Here a is the specific battery area, J is the current density, EOC is the
open-circuit potential of the cell, E is the voltage of the cell, T is the temper-
ature, ap,n denotes the specific area of the negative and the positive electrodes
and in,p is the magnitude of the linear current density vectors at the negative
and the positive electrode. rn,p denote the resistance in the negative and
the positive electrode. The current density J is calculated by the following
equation

J = Y (Vp − Vn − U) (A.13)

Here Y and U are parameters that needs to be fitted. In their work
these parameters are described by means of polynomial fitting of the variable
depth of discharge (DOD) based on experiments. Vn,p is the potential at the
negative or the positive electrode. Moreover is the magnitude of the linear
current density vectors calculated by the two following equations

~in,p = − 1

rn,p
∇Vn,p, in Ωn,p (A.14)

where Ωn,p is the domain of the negative and positive electrode. The
equations (A.13)-(A.14) are then substituted into equation (A.12). As in the
work by Chen et al. [8], the thermal conductivity in the different directions
is estimated based by thermal equivalent networks.

In a later work by Kim et al. [29] this model is also applied. The thermal
model is not coupled back to update the electrochemical model, however.
The model is extended by Kim et al. [30] to be applied for different ambient
temperatures. Thus the parameters in the heat generation term are made
temperature dependent. In this work, they use IR images to verify their
model experimentally. This thermal model is also applied in a work by Kim
et al. [31] to simulate a lithium ion battery during charge.
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Coupled thermal-electrochemical models which consider local heat genera-
tion phenomena are frequently presented in the literature. Advanced models
consists of coupled partial differential equations for the temperature field,
chemical concentrations, electric potentials etc. The coupling enters the
thermal model equation through the source term. The most detailed of these
models also have temperature dependent parameters in the electrochemical
models, such that both models need to be solved simultaneously. These mod-
els are referred to as fully coupled models. A review of the most detailed cou-
pled models are beyond the scope of this work, however. We refer the reader
to the references [6, 16, 21, 57, 22, 26, 31, 27, 34, 43, 48, 51, 52, 54, 59, 62]
for presentations, reviews and applications of detailed coupled models for
thermal modeling of lithium ion batteries.

However, many of these models are similar, we therefore present the source
term from Somasundaram et al. [52]:

q = Jη + JT
∂Uref,i
∂T

+ σeffs (∇φs)2

+ σeffl (∇φl)2 +
2RTσeffl

F
(1− t0+)∇(ln cl) · ∇φl,

i = ne, pe (A.15)

Here J is the local charge transfer current per unit volume, η is the
overpotential, Uref,i is the open circuit potential of the electrode, σeffs and

σeffl is the effective electronic conductivity of the solid and the liquid phase,
respectively. φs and φl is the solid and liquid phase potential, respectively.
t0+ is the transference number of the cations, R is the gas constant, F is
Faraday’s constant and cl is the electrolyte concentration. ne and pe denotes
the negative and the positive electrode, respectively. Models with this type
of source term which are fully coupled are, by our opinion, the most detailed
thermal models of lithium ion batteries in the literature.

The source term q is here dependent on local electrochemical parameters
obtained from an electrochemical model. Furthermore, as the electrochemi-
cal model parameters are temperature dependent, they are updated by the
solutions of the thermal model.
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A.2 Summary

Although advanced coupled electrochemical-thermal models are presented in
the literature, more simple models are still applied. Hence, the source term
A.5, is frequently used for various modeling and thermal analysis applications
in the literature.

According Bandhauer et al. [2], the heat generation term (A.2) is the most
frequent reported heat source term for thermal models in the literature. It
can be applied to estimate the heat generation from electrochemical origins in
the case when no heat from mixing and phase changes are present. Moreover
should no spatial variations in state of charge occur. It is also applicable
only when the temperature across a cell is uniform, when there is only one
reaction occurring at each electrode, and when ohmic heating in the current
collectors can be neglected [2]. However, side reactions and phase changes
are normally not present in lithium ion batteries [2]. Furthermore, the heat
of mixing is shown to be small [57]. However, spatial variations in state
of charge, non-uniform temperature distributions, and ohmic heating in the
current collectors may occur in the battery we model. Therefore we conclude
that it may be an oversimplification to apply the source term (A.6).
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Appendix B

Experimental Input Parameters

In this chapter we present results from experiments conducted on a commer-
cial lithium ion pouch-cell. All input parameters obtained in this chapter
are the results of experimental data provided by Senior Research Scientist
Preben Vie at the Norwegian Institute for Energy Technology. The data are
analyzed, used and published with permission from Dr. Preben Vie.

B.1 Irreversible Heat Generation

We present in this section measured data of the open-circuit potential U and
the closed-circuit potential V . Moreover we estimate the difference between
these two, i.e. (U − V ). We refer to this potential difference multiplied by
the total cell current I as the irreversible heat generation, although a correct
terminology would be irreversible heat generation rate. In the literature this
potential difference is mostly measured directly [2], we therefore adapted this
method also in this work.

B.1.1 Open and Closed-Circuit Potential

The closed-circuit data were obtained from cell potential measurements dur-
ing a 1C−discharge from 100 to 10% state of charge (SOC). Alternatively
this can be expressed as from 0 to 90% depth of discharge (DOD). The poten-
tial is measured by a PEC battery tester at approximately 300 points during
the discharge process. The current is constant during discharge, which for
the 1C discharge corresponds to I = 17.5 (A). During this test the surface
temperature of the battery is 23-24 �.

75
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To obtain a mathematical representation for the closed-circuit potential V ,
we apply a 3. order polynomial regression approximation to these data. This
offers the possibility to compare the closed-circuit potential with results from
other tests at corresponding DOD at points not represented by this data set.
This advantage are utilized later in this section.

Let us denote the dimensionless depth of discharge as σ. The regression
equation then reads

V = avσ
3 + bvσ

2 + cvσ + dv (B.1)

Here av, bv, cv and dv are constants measured in (V), respectively. The
constants are given in table B.1.

Table B.1: Regression coefficients
av = −1.444 · 10−6 (V)
bv = 8.008 · 10−5 (V)
cv = −1.247945 · 10−2 (V)
dv = 4.04037689 (V)

We define the coefficient of determination [42] as R2.

For this approximation R2 = 0.9998 is achieved.

The closed-circuit potential curve from the 1C discharge together with the
polynomial regression approximation are presented in figure B.1 and figure
B.2.
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Figure B.1: Closed-circuit potential from 1C discharge with 3. order poly-
nomial regression. Equation V = avσ

3 + bvσ
2 + cvσ+ dv. σ denotes depth of

discharge. R2 = 0.9998.

Figure B.2: Closed-circuit potential from 1C discharge with 3. order poly-
nomial regression. Equation V = avσ

3 + bvσ
2 + cvσ+ dv. σ denotes depth of

discharge. R2 = 0.9998. Some discrepancy can be observed at low σ.

To estimate the open-circuit potential U as a function of the depth of
discharge σ, we analyze data from a characterization test for lithium ion
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batteries. The test is conducted with a PEC battery tester, and the relevant
features in the test are now described shortly. It starts out with a fully
charged battery and performs first a 30 seconds 1C discharge pulse. This
pulse is followed by a 15 minutes zero-current period before a 2C current
pulse of 30 seconds is performed. After this the current is again zero for 15
minutes before a 4 minutes 1C pulse discharges the battery such that the
depth of discharge increases 10%. This step is followed by a 15 minutes zero-
current period before the short 1C pulse is performed again. The test follows
this cyclic pattern and ends with a long 1C pulse until the battery depth of
discharge reaches about 90%. After the test the cell potential is measured
during a 20 minutes zero-current period. We also note that the test starts
out with a 10 minutes zero-current period. The history before this period is
a 0.1C discharge over 30 minutes. During this test the surface temperature
of the battery is 23-24 �. The current profile for a small period of the test
is shown in figure B.3.

Figure B.3: Current profile for a short period of a characterization test for
lithium ion batteries.

To obtain values of the open-circuit potential U for a given depth of
discharge, we measure the potential 15 minutes after the current is cut off
in the 1C discharge pulses in the characterization test. This is done for
both the long and short pulses. Figure B.4 shows the cell potential first
during open-circuit, then during 1C discharge from 23.5 to 40.0% depth of
discharge followed by a period after the current is cut off. The first open-
circuit period corresponds to the points in the graph where the potential
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profile is horizontal. As the load is connected the current starts to flow
causing a sudden drop in the voltage. The voltage decrease with time until
the current is cut off, which can be observed as the lowest point in the curve.
After this the potential increases again. The period after the current is cut
off and before a stable cell potential is obtained is referred to as relaxation of
the cell and is a process occurring as the cell is returning to an equilibrium
state [2]. As described earlier, we register the open-circuit potential as the
data point where time is 8.50 hours in figure B.4.

Figure B.4: Cell potential before and after 1C discharge pulse. The pulse
causes a change in depth of discharge of 23.5-40%.

In this manner we obtain values for the open-circuit potential at various
depth of discharges. We emphasize that the first data point of the open-
circuit potential is measured 10 minutes after a 0.1C 30 minutes discharge.
The rest of the data points are measured 15 minutes after the current is cut
off from either a short or a long 1C discharge pulse.

The open-circuit potential after both the short and long pulses is plotted
as separate data sets in figure B.5. As the figure shows, the two set of data
follows each other rather close. This is shown when the figure is zoomed
in, as can be observed in figure B.6. This may indicate that 15 minutes is
sufficient to obtain an equilibrium potential. Alternatively, it may indicate
that the relaxation state is similar after 15 minutes for both the short and
the long pulse. We assume that an equilibrium potential is achieved after 15
minutes. Therefore, we apply the data from both the short and long pulses
in our estimation of the open-circuit potential U .
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Figure B.5: Cell potential 15 minutes after short and long 1C discharge
pulses, plotted as separate data sets.

Figure B.6: Cell potential 15 minutes after short and long 1C discharge
pulses, plotted as separate data sets. The data sets follows each other close.

The open-circuit potentials obtained from the characterization test are
measured at relatively few points. To obtain corresponding values of U at the
same depth of discharge as in the expression for the closed-circuit potential
V , we apply a 3. order polynomial regression to these data.
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The regression equation are expressed as follows:

U = auσ
3 + buσ

2 + cuσ + du (B.2)

Here au, bu, cu and du are constants measured in (V), respectively. The
constants are given in table B.2.

Table B.2: Regression coefficients
au = −7.8 · 10−7 (V)
bu = −3.66 · 10−6 (V)
cu = −8.91275 · 10−3 (V)
du = 4.08550120 (V)

For this approximation R2 = 0.9999 is achieved.

The open-circuit potential curve together with the polynomial regression
approximation are presented in figure B.7 and figure B.8.

Figure B.7: Open-circuit potential with 3. order polynomial regression.
Equation U = auσ

3 + buσ
2 + cuσ + du. σ denotes depth of discharge.

R2 = 0.9999.
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Figure B.8: Open-circuit potential with 3. order polynomial regression.
Equation U = auσ

3 + buσ
2 + cuσ + du. σ denotes depth of discharge.

R2 = 0.9999. Some discrepancy can be observed at low σ.

We present data from the closed-circuit potential V from a 1C continuous
discharge test. However, it is also interesting to study the closed-circuit po-
tential V in the 1C discharge pulses in the characterization test. We plot the
closed-circuit potential V in the point just before the current is interrupted.
This means a closed-circuit potential V taken approximately 30 seconds or
4 minutes after the current is turned on, for the two different pulses. The
closed-circuit potential V from these pulses and from the regression repre-
sentation of the continuous discharge is shown in figures B.9-B.10.
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Figure B.9: Closed-circuit potential V from pulses and from regression of
continuous discharge.

Figure B.10: Closed-circuit potential V from pulses and from regression of
continuous discharge. The potential from the short pulses are clearly higher
than for the long pulses, which follows the continuous discharge potential
rather close.

As figure B.10 shows, the closed-circuit potential is higher for the shorter
pulses. We further observe that the closed-circuit potential from the long
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pulses follows the regression potential representation of the continuous curve
quite close. This indicates that at 1C discharge, the potential does not
drop more if longer pulses than 4 minutes are imposed at a given depth of
discharge.

We need an expression for the difference between the open-circuit and the
closed-circuit potential, i.e. (U − V ). We choose to apply the data from
the continuous discharge test to represent V in further estimations. The
potential difference (U − V ) is calculated by the regression approximations
of the potentials from the characterization test and from the 1C continuous
discharge test, respectively. We emphasize that U and V correspond as
functions of depth of discharge despite they are from different tests. This is
possible since the depth of discharge is a parameter that is independent of
cell potential.

The equation for the potential difference thus reads

U − V = ãσ3 + b̃σ2 + c̃σ + d̃ (B.3)

Here ã, b̃, c̃ and d̃ are constants measured in (V), respectively. The
constants are defined in table B.3.

Table B.3: Polynomial coefficients
ã = (au − av) = 6.2 · 10−7 (V)

b̃ = (bu − bv) = −8.374 · 10−5 (V)
c̃ = (cu − cv) = 3.566650 · 10−3 (V)

d̃ = (du − dv) = 4.51243100 · 10−2 (V)

Figure B.11 shows a plot of the potential difference between U and V :
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Figure B.11: 3. order polynomial regression approximation of the difference
between U and V . U : Open-circuit potential. V : Closed-circuit potential.
Equation U − V = ãσ3 + b̃σ2 + c̃σ + d̃. σ: Depth of discharge.

The irreversible heat generation rate can also be considered as a function
of the total internal resistance multiplied by the total cell current I. We cal-
culate the total internal resistance for the characterization test. This is done
by taking the difference between the open-circuit potential U , and the closed
circuit potential V at the end of each current pulse. Thereafter this difference
is divided with the current I at the moment the closed-circuit potential V is
registered. The PEC battery tester also calculates the pure electric resistance
in the cells. We present the calculated total internal resistance together with
the pure electric resistance in figure B.12.
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Figure B.12: Total internal resistance on long 1C pulses, short 1C pulses and
short 2C pulses are shown together with pure electric resistance.

The information provided on the internal resistance could be used to sep-
arate the different heat generating mechanisms in the battery. This opens the
possibility of distributing different heating effects locally inside the battery.
We do not apply the internal resistance in our model, however.

B.2 Reversible Heat Generation

In this section we present experiments performed to estimate the entropic
heat coefficient ∂U

∂T
. Since this reversible contribution in the heat source term

could be in the same order of magnitude as the irreversible contribution
[17], we are motivated to estimate this coefficient. An estimation method
frequently reported in the literature is to measure the open-circuit potential U
of the cell while the temperature T is varied at a given state of charge [2]. This
method is adopted in our study. The tests are performed in Thermax climatic
chambers where the cells are exposed to temperature changes, both from
high temperature to low temperature “warmup“ and vice versa ”cooldown”.
While the temperature in the chambers changes, the surface temperature of
the cells is measured with thermocouples and the cell voltages are registered
by a PEC battery tester. As the entropic heat coefficient is known to vary
with state of charge [58], we conducted measurements on 80% and at 50%
state of charge.
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B.2.1 Entropic Heat Coefficient at 80% SOC

For the tests conducted at 80% SOC, experimental data for some hours after
the heating process are available. This allows a study of the self-discharge
of the cells, which may affect the data for the entropic heat coefficient. All
data of the cells at 80% SOC are data from warmup processes.

Test 1

As figure B.13 shows, the surface temperature is steady over a 4 hour period
after warmup. We can therefore study the decrease in cell potential over this
period and assume it is related to self-discharge only. The test cell in figure
B.13 is referred to as test cell A.

Figure B.13: Surface temperature of test cell A at 80% SOC measured during
and after a warmup period.

The cell potential for the constant-temperature period of 4 hours at ap-
proximately 55 � for test cell A is shown in figure B.14. A linear regression
fit to the cell potential as a function of time shows a decrease in cell potential
rate of 4.7 (mV/h) with R2 = 0.98.



88 APPENDIX B. EXPERIMENTAL INPUT PARAMETERS

Figure B.14: Cell potential of test cell A at 80% SOC during a constant
temperature period of 4 hours at approximately 55 �. A linear regression
fit to these data shows a decrease rate in cell potential of 4.7 (mV/h) with
R2 = 0.98.

To study the self-discharge at a lower temperature, a short period in time
with constant temperature before the warmup process starts can be exam-
ined. This period for test cell A is shown in figure B.15, and the corresponding
self-discharge is shown in figure B.16.
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Figure B.15: Surface temperature for test cell A at 80% SOC measured before
and during a warmup period.

The self-discharge at 25 � for this cell differ substantially from the self-
discharge at 55 �. A linear regression fit to the cell potential as a function
of time at 25 � shows a decrease in cell potential rate of 8.6 (mV/h) with
R2 = 0.91. This implies that the self-discharge may vary with temperature.
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Figure B.16: Cell potential for test cell A at 80% SOC during a constant
temperature period of 0.3 hours at approximately 25 �. A linear regression
fit to these data shows a decrease rate in cell potential of 8.6 (mV/h) with a
R2 = 0.91.

Figure B.17 shows the change in cell potential for test cell A plotted
against temperature during the warmup period only.

Figure B.17: Cell potential of test cell A at 80% SOC during a warmup
period of 1 hour. A linear regression fit to these data seems not appropriate
due to the obvious nonlinear trend.
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As figure B.17 shows, test cell A seems to have a nonlinear relation be-
tween the cell potential U and the temperature T .

Test 2

A similar examination can be performed to the test cell B. This cell obtains
a stable temperature after approximately 3 hours, which can be observed in
figure B.18.

Figure B.18: Surface temperature of test cell B at 80% SOC measured during
and after a warmup period.

The cell potential during the constant-temperature period of 3 hours at
41 � for test cell B is shown in figure B.19. A linear regression fit to the
cell potential as a function of time shows a decrease in cell potential rate of
0.90 (mV/h) with R2 = 0.71.
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Figure B.19: Cell potential of test cell B at 80% SOC during a constant
temperature period of 3 hours at approximately 41 �. A linear regression
fit to these data shows a decrease rate in cell potential of 0.90 (mV/h) with
R2 = 0.71.

Figure B.20 shows the change in cell potential for test cell B plotted
against the temperature during the warmup period only. A linear regression
fit to these data results in an entropic heat coefficient of ∂U

∂T
= −0.46 (mV/K)

with R2 = 0.95.
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Figure B.20: Cell potential of test cell B at 80% SOC during a warmup period
of 0.75 hour. A linear regression fit to these data results in an entropic heat
coefficient of ∂U

∂T
= −0.46 (mV/K) with R2 = 0.95.

To obtain an overview of whether the self-discharge is capable of affect-
ing the results for the entropic heat coefficient, we do the following simple
analysis. We consider the self-discharge measured on test cell B, which is
0.90 mV/h at 41 �. We assume that the self-discharge remains constant at
0.90 mV per hour during the warmup period of 0.75 hour (which may not
be a valid assumption since the temperature increases). This yields a cell
potential decrease related to self-discharge alone during this period of 0.68
mV. Thus the absolute value of the potential change related to the change
in temperature for the warmup period is 0.68 mV to high. We then estimate
a corrected entropic heat coefficient, i.e.

(
∂U

∂T
)corr ≈

(∆U)corr
∆T

(B.4)

where corr denotes the corrected values. Obviously, ∆T is the same. We
have the regression expression for the uncorrected entropic heat coefficient,
i.e.

∂U

∂T
≈ ∆U

∆T
= −0.46 (mV/K) (B.5)

Dividing (B.4) with (B.5) results in
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(∂U
∂T

)corr
∂U
∂T

=
∆Ucorr

∆U
(B.6)

Moreover we assume the relation

∆Ucorr = ∆U + 0.68 (mV ) (B.7)

(∂U
∂T

)corr
∂U
∂T

=
∆U + 0.68 (mV )

∆U
(B.8)

We find that ∆U during this 0.75 hour period is -6.6 mV. By this we
obtain the value for the estimated corrected entropic heat coefficient, i.e.

(
∂U

∂T
)corr =

∂U

∂T
(1− 0.68

6.6
) = −0.41 mV/K (B.9)

which yields an error of approximately 11%.

Test 3

We now perform an examination of test cell C. This cell obtains a stable
temperature after approximately 3 hours, which can be observed in figure
B.21.

Figure B.21: Surface temperature of test cell C at 80% SOC measured during
and after a warmup period.
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The cell potential for the constant-temperature period of 3 hours at 40
� for test cell C is shown in figure B.22. A linear regression fit to the cell
potential as a function of time shows a decrease in cell potential rate of 0.88
(mV/h) with R2 = 0.81.

Figure B.22: Cell potential of test cell C at 80% SOC during a constant
temperature period of 3 hours at 40 �. A linear regression fit to these data
shows a decrease rate in cell potential of 0.88 (mV/h) with R2 = 0.81.

Figure B.23 shows the change in cell potential for test cell C plotted
against the temperature during the warmup period only. A linear regression
fit to these data results in an entropic heat coefficient of ∂U

∂T
= −0.42 (mV/K)

with R2 = 0.94.
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Figure B.23: Cell potential of test cell C at 80% SOC during a warmup
period of 0.7 hour. A linear regression fit to these data results in an entropic
heat coefficient of ∂U

∂T
= −0.42 (mV/K) with R2 = 0.94.

Test 4

We perform a similar examination of test cell D. This cell obtains a stable
temperature after approximately 2 hours, which can be observed in figure
B.24.
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Figure B.24: Surface temperature of test cell D at 80% SOC measured during
and after a warmup period.

The cell potential for the constant-temperature period of 4 hours at 55
� for test cell D is shown in figure B.25. A linear regression fit to the cell
potential as a function of time shows a decrease in cell potential rate of 1.8
(mV/h) with R2 = 0.97.
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Figure B.25: Cell potential of test cell D at 80% SOC during a constant
temperature period of 4 hours at approximately 55 �. A linear regression
fit to these data shows a decrease rate in cell potential of 1.8 (mV/h) with
R2 = 0.97.

Figure B.26 shows the change in cell potential for test cell D plotted
against temperature during the warmup period only. A linear regression fit
to these data results in a entropic heat coefficient of ∂U

∂T
= −0.59 (mV/K)

with R2 = 0.99.
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Figure B.26: Cell potential of test cell D at 80% SOC during a warmup
period of 0.64 hour. A linear regression fit to these data results in a entropic
heat coefficient of ∂U

∂T
= −0.59 (mV/K) with R2 = 0.99.

Test 5

We perform a similar examination of test cell E. This cell obtains a stable
temperature after approximately 3 hours, which can be observed in figure
B.27.
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Figure B.27: Surface temperature of test cell E at 80% SOC measured during
and after a warmup period.

The cell potential for the constant-temperature period of 3 hours at 38
� for test cell E is shown in figure B.28. A linear regression fit to the cell
potential as a function of time shows a decrease in cell potential rate of 0.82
(mV/h) with R2 = 0.58.
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Figure B.28: Cell potential of test cell E at 80% SOC during a constant
temperature period of 3 hours at approximately 38 �. A linear regression
fit to these data shows a decrease rate in cell potential of 0.82 (mV/h) with
R2 = 0.58.

Figure B.29 shows the change in cell potential for test cell E plotted
against the temperature during the warmup period only. A linear regression
fit to these data results in an entropic heat coefficient of ∂U

∂T
= −0.45 (mV/K)

with R2 = 0.95.
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Figure B.29: Cell potential of test cell E at 80% SOC during a warmup
period of 0.7 hour. A linear regression fit to these data results in a entropic
heat coefficient of ∂U

∂T
= −0.45 (mV/K) with R2 = 0.95.

The results of Test 1 - Test 6 are summarized in table B.4. The results
from Test 1 are summarized in the first two rows. Thereafter the results
from the tests are summarized in the order they are presented. As table
B.4 shows, test cell A seems to have a high self-discharge compared with the
other cells. We therefore exclude data of test cell A in further studies.

Table B.4: Entropic heat coefficient and self-discharge at 80% SOC
Test cell ∂U

∂T
(mV/K) R2 Self discharge (mV/h) T (�) R2

A - - 4.7 55 0.98
A - - 8.6 25 0.91
B -0.46 0.95 0.90 41 0.71
C -0.42 0.94 0.88 40 0.81
D -0.59 0.99 1.8 55 0.97
E -0.45 0.95 0.82 38 0.58

B.2.2 Entropic Heat Coefficient at 50% SOC

We perform the same experiments on 50% SOC as we did on 80% SOC. How-
ever, at 50% SOC data for the self-discharge are less sufficient. Nevertheless
are the data here both from warmup and cooldown processes.
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Test 6

Figure B.30 shows the change in cell potential for test cell F plotted against
the temperature during the warmup period only. A linear regression fit to
these data results in an entropic heat coefficient of ∂U

∂T
= −0.11 (mV/K) with

R2 = 0.97. No data for the self-discharge are available.

Figure B.30: Cell potential of test cell F at 50% SOC during a warmup period
of 0.7 hour. A linear regression fit to these data results in an entropic heat
coefficient of ∂U

∂T
= −0.11 (mV/K) with R2 = 0.97.

Test 7

We perform a similar examination of test cell A. Figure B.31 shows the
change in cell potential for test cell A plotted against temperature during
the cooldown period only. A linear regression fit to these data results in an
entropic heat coefficient of ∂U

∂T
= −0.11 (mV/K) with R2 = 0.97. No data

for the self-discharge are available.
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Figure B.31: Cell potential of test cell A at 50% SOC during a cooldown
period of 1.64 hour. A linear regression fit to these data results in an entropic
heat coefficient of ∂U

∂T
= −0.11 (mV/K) with R2 = 0.97.

Test 8

We perform another examination of test cell A. In this test, the cell obtains
a stable temperature after approximately 2 hours, which can be observed in
figure B.32.
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Figure B.32: Surface temperature of test cell A at 50% SOC measured during
and after a warmup period.

The cell potential for the constant-temperature period of 2 hours at 54
� for test cell A is shown in figure B.33. As the figure indicates, there is no
clear trend for the self-discharge.

Figure B.33: Cell potential of test cell A at 50% SOC during a constant
temperature period of 2 hours at 54 �. The data provides no clear trend for
the self-discharge.
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Figure B.34 shows the change in cell potential for test cell A plotted
against the temperature during the warmup period only. A linear regression
fit to these data results in an entropic heat coefficient of ∂U

∂T
= −0.12 (mV/K)

with R2 = 0.97.

Figure B.34: Cell potential of test cell A at 50% SOC during a warmup
period of 0.5 hour. A linear regression fit to these data results in an entropic
heat coefficient of ∂U

∂T
= −0.12 (mV/K) with R2 = 0.97.

Test 9

We performed another test of test cell A. Figure B.35 shows the change in
cell potential for test cell A plotted against the temperature during a warmup
period only. A linear regression fit to these data results in an entropic heat
coefficient of ∂U

∂T
= −0.35 (mV/K) with R2 = 0.98. No data for the self-

discharge are available.



B.2. REVERSIBLE HEAT GENERATION 107

Figure B.35: Cell potential of test cell A at 50% SOC during a warmup period
of 0.75 hour. A linear regression fit to these data results in an entropic heat
coefficient of ∂U

∂T
= −0.35 (mV/K) with R2 = 0.98.

Test 10

We perform an examination of test cell B. Figure B.36 shows the change in
cell potential for test cell B plotted against temperature during the warmup
period only. A linear regression fit to these data results in an entropic heat
coefficient of ∂U

∂T
= −0.11 (mV/K) with R2 = 0.85. No data for the self-

discharge are available.
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Figure B.36: Cell potential of test cell B at 50% SOC during a warmup
period of 1 hour. A linear regression fit to these data results in an entropic
heat coefficient of ∂U

∂T
= −0.11 (mV/K) with R2 = 0.85.

Test 11

We perform a similar examination of test cell C. This cell obtains a stable
temperature after approximately 1.5 hours, which can be observed in figure
B.37.
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Figure B.37: Surface temperature of test cell C at 50% SOC measured during
and after a warmup period.

The cell potential for the constant-temperature period of 2 hours at 40
� for test cell C is shown in figure B.38. As the figure indicates, the self-
discharge may be neglected.

Figure B.38: Cell potential of test cell C at 50% SOC during a constant
temperature period of 2 hours at approximately 40 �. The trend of the
self-discharge indicates that it can be neglected.
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Figure B.39 shows the change in cell potential for test cell C plotted
against temperature during the warmup period only. A linear regression fit
to these data results in an entropic heat coefficient of ∂U

∂T
= −0.12 (mV/K)

with R2 = 0.90.

Figure B.39: Cell potential of test cell C at 50% SOC during a warmup
period of 1 hour. A linear regression fit to these data results in an entropic
heat coefficient of ∂U

∂T
= −0.12 (mV/K) with R2 = 0.90.

Test 12

We now study test cell E. Figure B.40 shows the change in cell potential for
test cell E plotted against temperature during the warmup period only. A
linear regression fit to these data results in an entropic heat coefficient of
∂U
∂T

= −0.11 (mV/K) with R2 = 0.88. No data for the self-discharge are
available.
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Figure B.40: Cell potential of test cell E at 50% SOC during a warmup
period of 1 hour. A linear regression fit to these data results in an entropic
heat coefficient of ∂U

∂T
= −0.11 (mV/K) with R2 = 0.88.

Test 13

A similar test is performed on test cell G. Figure B.41 shows the change
in cell potential for test cell G plotted against temperature during the 1.5
hours cooldown period only. A linear regression fit to these data results in
an entropic heat coefficient of ∂U

∂T
= −0.12 (mV/K) with R2 = 0.81. No data

for the self-discharge are available.
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Figure B.41: Cell potential of test cell G at 50% SOC during a cooldown
period of 1.5 hours. A linear regression fit to these data results in an entropic
heat coefficient of ∂U

∂T
= −0.12 (mV/K) with R2 = 0.81.

The results of Test 7 - Test 13 are summarized in table B.4. The first
row summarize the results of Test 7. The second row summarize the results
of Test 8, and so forth.

Table B.5: Entropic heat coefficient and self-discharge at 50% SOC
Test cell ∂U

∂T
(mV/K) R2 Self discharge (mV/h) T (�) R2

A -0.11 0.97 - - -
A -0.12 0.97 - - -
A -0.35 0.98 - - -
B -0.11 0.85 - - -
C -0.12 0.90 0 40 -
E -0.11 0.88 - - -
F -0.11 0.97 - - -
G -0.12 0.81 - - -
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B.3 Total Heat Generation

In this section we summarize and make conclusions about the heat gener-
ation. This is mainly done based on the presented experimental results in
section B.1 and B.2.

B.3.1 Summary and Conclusions

We obtain an excellent expression for the irreversible heat generation in the
battery.

In order to examine whether the irreversible or the reversible contributions
can be neglected, we compare the sizes of these two.

We first determine the irreversible heat generation rate at 50% SOC, i.e.
insert σ = 50 in equation B.3 which yields

I(U − V ) = 1.6 (W) (B.10)

Here I = 17.5 (A) for the 1C discharge considered in this work. The
reversible contribution at 50% SOC is

−IT ∂U
∂T

= 0.6 (W) (B.11)

where we tacitly assumed T = 308.15 (K) and ∂U
∂T

= −0.11 (mV/K).

At 80% SOC or we obtain

I(U − V ) = 1.5 (W) (B.12)

Compared to the reversible heat at 80% SOC which is

−IT ∂U
∂T

= 2.5 (W) (B.13)

where we assumed T = 308.15 (K) and ∂U
∂T

= −0.46 (mV/K).

This shows that both the irreversible and the reversible heat generation
terms are important in the model. This is in accordance with the findings in
a work by Viswanathan et al. [58] where also values for the entropy change
at various SOC are presented for different lithium ion chemistries. Their pre-
sented entropy changes are shown in figure B.42. The label LiNixCoyMnzO2−
LICO/G− L represents a lithium ion cell chemistry with LiNixCoyMnzO2

cathode and graphite anode.
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Figure B.42: Entropy change for various lithium ion chemistries. The label
LiNixCoyMnzO2 − LICO/G − L represents a lithium ion cell chemistry
with LiNixCoyMnzO2 cathode and graphite anode. Originally presented by
Viswanathan et al. [58]. Reprinted with permission from Elsevier.

We observe in figure B.42 that the NCM − C chemistry has an entropy
change and thus a reversible heat generation term that varies significantly
with state of charge. The trend do not look linear, so an approximation
from the data we have at 50% and 80% SOC would be difficult. Moreover,
the reversible heat generation is found to contribute significantly to the total
heat generation. Therefore it should not be neglected. We conclude that
there is a need to perform measurements of the entropic heat coefficient at
other values of state of charge. In this manner a representative expression for
the reversible heat generation can be obtained. However, for this modeling
work we apply an average value as a representation for the entropic heat
coefficient. By consideration of table B.4 in section B.1 and table B.5 in
section B.2, we observe that there is consistence in the measured data for
the entropic heat coefficient at a given SOC. We choose an entropic heat
coefficient from the same pouch-cell as representative values for the average
entropic heat coefficient at all SOC. As input to the average value we apply
∂U
∂T

= −0.11 (mV/K) for 50% SOC and ∂U
∂T

= −0.42 (mV/K) for 80% SOC
(test cell B in both values). This results in an average value of the entropic
heat coefficient of
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β̂ = −0.27 (mV/K) (B.14)

We denote this average value as β̂, in order to separate it from the real
entropic heat coefficient. One single estimation of the self-discharge at 80%
SOC in section B.2.1 show that it may affect the entropic heat coefficient by
introducing an error of 11%. We assume that the self-discharge is dependent
on temperature, state of charge, and of the battery health. The battery
health may depend on the temperature it has been exposed to, the number
of cycles and the rate of the cycles [2]. This may explain the difference in self-
discharge observed in table B.4 in section B.2. Furthermore, lack of proper
self-discharge data indicates that more experiments on self-discharge should
be performed. However, since the induced error was found to be relatively
small, we neglect the self-discharge in this work.

B.3.2 Input Data for the Heat Source Term

As input parameters to the source term in this work, we need a time depen-
dent expression for the potential difference between the open-circuit potential
and the closed-circuit potential, i.e. (U(t)− V (t)).

Let us introduce the time-dependent function α̂(t) to describe this poten-
tial difference, i.e.

α̂(t) = U(t)− V (t) (B.15)

However, the potential difference is by the regression approximation (B.3)
a function of depth of discharge σ. In order to obtain the relation between
time t and depth of discharge σ we consider the current I during discharge.
For the 1C discharge considered here, the current I is a function of time
described as follows:

I(t) =

(
I(t) = 17.5(A) 0 ≤ t ≤ tc
I(t) = 0(A) t > tc

)
(B.16)

Here tc is the time at end of discharge with unit (s).

Let us introduce Tc as the time at end of discharge with unit (h).

For our data, we have a constant current discharge at 1C from σ = 0 %
to σ = 90 %. Based on the nominal capacity of 17.5 Ah, 15.75 Ah is then
extracted from the battery. At this rate, the process requires the time
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Tc =
15.75 (Ah)

17.5 (A)
= 0.90 (h) (B.17)

In seconds the process requires tc = 3240 (s).

We observe that for the 1C constant current discharge, we have the fol-
lowing relation between depth of discharge σ and time t, as far as time is
expressed in hours:

t =
1

100
σ (B.18)

However if time is expressed in seconds the relation is

t = 36σ (B.19)

By (B.19) and (B.3) we now express α̂(t) as

α̂(t) = a′t3 + b′t2 + c′t+ d′ (B.20)

Here a′, b′, c′ and d′ are constants measured in (V/s3), (V/s2), (V/s) and
(V), respectively. These constants are given in table B.6.

Table B.6: Polynomial coefficients
a′ = ( ã

363
) = 1.3 · 10−11 (V/s3)

b′ = ( b̃
362

) = −6.461 · 10−8 (V/s2)
c′ = ( c̃

36
) = 9.907361 · 10−5 (V/s)

d′ = d̃ = 4.51243100 · 10−2 (V)

The other input parameter to the source term is the constant β̂ that
represents the average entropic heat coefficient ∂U

∂T
, i.e.

β̂ = −0.27 (mV/K) (B.21)

B.4 External Heat Transfer Coefficient

The battery we want to model is cycled in a closed cabinet equipped with a
fan that constantly blows air around the battery surface. Proper measure-
ments and calculations must be taken to estimate the external heat transfer
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coefficient h. However, in a work by Chen et al. [8], an equation for estimat-
ing h for forced convection is presented, i.e.

h = e(T )

√
ν

Lkar
(B.22)

Here e(T ) is a temperature dependent coefficient which has units of
(J/m2K s0.5), ν is the air flow velocity measured in (m/s) and Lkar is the char-
acteristic length of the surface measured in (m). Chen et al. [8] also presents
the following values of e(T ) at two temperatures: e(298.15 (K)) = 3.87
(J/m2K s0.5) and e(323.15 (K)) = 3.78 (J/m2K s0.5). We assume that the
reason that the constant have units of (J) is that it has been integrated over
time. Chen et al. [8] states that they use an average value of this constant,
since it varies with temperature. This implies that they use a constant value
of this coefficient that has the units (W/m2K s0.5). However, this is also re-
quired to have consistence with the units for h. Details around the derivation
and around a valid modeling regime for this coefficient are not given, how-
ever. We assume that the coefficient can be considered as a constant in the
temperature regime around 298 (K). We furthermore assume that the air ve-
locity is ν = 3 (m/s). The characteristic length is taken as Lkar = 1.45 · 10−1

(m). The estimated coefficient h is likely to be different for the various sur-
face sides of the battery. However, for simplicity, we apply only one side in
our calculation. The result is an estimated value of h = 18 (W/m2K).

Furthermore, we observe that external heat transfer coefficients are influ-
enced by many parameters when we study the topic in the book by Cengel
[7]. We are especially aware of the fact that the estimated coefficient may not
apply for the particular geometry and air flow conditions for our battery. We
stress that this estimation must be considered as a guess for this constant,
and that proper experimental determination has to be set out to get a more
realistic value.
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Appendix C

Source Code

# Code s t a r t

from d o l f i n import *

import sys
import numpy as numpy
import s c i t o o l s . e a syv i z as ev
import s c i t o o l s . BoxField
import numpy as py

#####################################
# INPUT START
#####################################
# Numerical parameters
#####################################

dt = 0.005 # timestep d i s t . \Delta \ tau
dt 1 = dt # \Delta \ tau
T = 1.0 # s c a l e d end o f s imu la t i on
T c = 0.725 # s c a l e d time cur rent o f f

the ta 1 = 0 .5 # number ok
theta = Constant ( the ta 1 ) # theta−r u l e i f . d .m.

# Must be the same as command−l i n e input spec . when
# apply ing S c i t o o l s BoxField p l o t t i n g r e s o u r c e s !

119
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nx = 30
ny = 30
nz = 30

#####################################
# Phys i ca l s i z e o f bat te ry components
#####################################

p l a s t i c c o a t = ( 3 . 0 ) * ( 1E−05) #(m)
a l c a s e = ( 1 1 . 7 )* ( 1E−05) #(m)
sepa ra to r = ( 2 . 2 ) * ( 1E−05) #(m)
cathode cc cathode = ( 1 7 . 7 )* ( 1E−05) # 17.7*10ˆ{−5}(m)
anode cc anode = ( 2 2 . 0 )* ( 1E−05) #(m)
cc cathode = (8 .0+1 .7 )* (1E−05) #(m)
cu cc = ( 2 . 2 ) * ( 1E−05) #(m)
a l c c = ( 1 . 7 ) * ( 1E−05) #(m)

p e r i o d l e n g t h = (2* s epa ra to r + anode cc anode \
+ cathode cc cathode )

########################################
# Phys i ca l parameters / s c a l i n g Constants :
########################################
#h = 5.0
h = 18 .0
g = (273 .15 + 25 . 0 )
T 0 = (273 .15 + 25 . 0 )
I = 17 .5 # Current 1C d i s cha rge

B = g
A s = 0.01 # = A in hatu . .
alpha = 0.01
C = ( 1 . 4 e+06)
i = 1 .0
c = 1 .0
d = 1 .0

h m = h*A s # h ’
g 1 = h*( g−B) # g ’

####################################
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# Gamma r : Real thermal cond .
####################################

Gamma plastic r = 0 .40
#Gamma plastic r = 177 .0 # t e s t o f other thermal
# cond in p l a s t i c coat
Gamma Al cas r = 177 .0
Gamma sep r = 1 .0
Gamma half al r = 200 .0

f 1 r = 920.0*2500 # p l a s t i c # unsca led
f 2 r = 2770.0*875 # Al
f 3 r = 1200.0*700 # sep
f 4 r = 2700.0*870 # 1/2 Al . c . c .

####################################
# Gamma: Sca led thermal cond .
####################################

Gamma plastic e = ( Gamma plastic r )/ ( alpha )
Gamma Al cas e = ( Gamma Al cas r )/ ( alpha )
Gamma sep e = ( Gamma sep r )/ ( alpha )
Gamma half al e = ( Gamma half al r )/ ( alpha )

f 1 e = ( f 1 r )/ (C) # p l a s t i c
f 2 e = ( f 2 r )/ (C) # Al
f 3 e = ( f 3 r )/ (C) # sep
f 4 e = ( f 4 r )/ (C) # 1/2 Al . c . c .

####################################
# Gamma: Sca led thermal cond .
####################################

Gamma hom 1 = (381 . 02 ) # Calcu lated from s c a l e d
Gamma hom 2 = (3082 . 54 ) # homogenized th . cond .
Gamma hom 3 = (3082 . 54 ) # d i r e c t l y

Gamma plastic = Constant ( Gamma plastic e )
Gamma Al cas = Constant ( Gamma Al cas e )
Gamma sep = Constant ( Gamma sep e )
Gamma half al = Constant ( Gamma half al e )
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f hom = Constant ( 1 . 6 4 8 ) # \ l a n g l e f \ r ang l e
# Calcu lated from
#s c a l e d va lue s d i r e c t l y

f 1 = Constant ( f 1 e ) # p l a s t i c
f 2 = Constant ( f 2 e ) # Al
f 3 = Constant ( f 3 e ) # sep
f 4 = Constant ( f 4 e ) # 1/2 Al . c . c .

a r r = (1 .328875171 e−11) # \alpha= (U−V)
# expres sed in t
# in seconds ( unsca led )
b r r = (−6.461419753 e−08)
c r r = (9 .907361111 e−05)
d r r = (0 .04512431)

t tau = 4469.2 # d i f f u s i o n t i me s c a l e :
# \ tau = \ f r a c { t }{ t {\ tau} }

a r = a r r * t t au * t t au * t t au # \kappa=
# expres sed in \ tau ( s c a l e d )
b r = b r r * t t au * t t au
c r = c r r * t t au
d r = d r r

#####################################
# INPUT END
#####################################

# Automatic c a l c . o f geometry

inne r x1 = 11* cathode cc cathode +\
12* anode cc anode + 2* cc cathode \
− 0 .5*2* a l c c + 24* s epa ra to r

p r i n t ’ i nne r x1 = ’ , i nne r x1 # t h i c k n e s s in
# x−d i r e c t i o n o f p e r i o d i c r eg i on

# Phys i ca l l o c a t i o n s i n s i d e the bat te ry
L1 outa r = p l a s t i c c o a t #(m)
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# r denotes p h y s i c a l s i z e

L1 out1a r = p l a s t i c c o a t + a l c a s e #(m)

L1 out2a r = p l a s t i c c o a t +\
a l c a s e + separa to r #(m)

L1 out3a r = p l a s t i c c o a t + a l c a s e \
+ separa to r + 0 .5* a l c c #(m)

L1 out3b r = p l a s t i c c o a t + a l c a s e +\
s epa ra to r + 0.5* a l c c \

+ inner x1 #(m)

L1 out2b r = p l a s t i c c o a t + a l c a s e + \
s epa ra to r + 0.5* a l c c \
+ inner x1 + 0.5* a l c c #(m)

L1 out1b r = p l a s t i c c o a t + a l c a s e + \
s epa ra to r + 0.5* a l c c \
+ inner x1 + 0.5* a l c c + separa to r #(m)

L1 outb r = p l a s t i c c o a t + a l c a s e + \
s epa ra to r + 0.5* a l c c \
+ inner x1 + 0.5* a l c c + separa to r + a l c a s e #(m)

L x1 = p l a s t i c c o a t + a l c a s e + \
s epa ra to r + 0.5* a l c c \
+ inner x1 + 0.5* a l c c + separa to r + a l c a s e \
+ p l a s t i c c o a t #(m)

L 1 = L x1 # choose s c a l i n g constant so that s c a l e d
# reg i on becomes un i t . . ## Caution : Do not change ,
# code based on s c a l e d r eg i on o f unity in
# c h o i s e o f geometry and in par t i on o f
# subdomains , i . e . must have L xi1 = 1 . 0 .

##

inne r x2 = (23 .425 e−02) #(m)
i n n e r x 2 t o t = inne r x2 + 2* p l a s t i c c o a t \
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+ 2* a l c a s e + 2* s epa ra to r

L2 outa r = p l a s t i c c o a t #(m) r denotes p h y s i c a l s i z e

L2 out1a r = p l a s t i c c o a t + a l c a s e #(m)

L2 out2a r = p l a s t i c c o a t + a l c a s e + separa to r #(m)

L2 out2b r = p l a s t i c c o a t + a l c a s e + separa to r \
+ inner x2 #(m)

L2 out1b r = p l a s t i c c o a t + a l c a s e + separa to r \
+ inner x2 + separa to r #(m)

L2 outb r = p l a s t i c c o a t + a l c a s e + separa to r \
+ inner x2 + separa to r + a l c a s e #(m)

L x2 = p l a s t i c c o a t + a l c a s e + separa to r \
+ inner x2 + separa to r + a l c a s e \
+ p l a s t i c c o a t #(m)

L 2 = L x2 # choose s c a l i n g constant so that s c a l e d
# reg i on becomes un i t . . ## Caution : Do not change ,
# code based on s c a l e d r eg i on o f unity in
# c h o i s e o f geometry and in par t i on o f
# subdomains , i . e . must have L xi2 = 1 . 0 .

##

inne r x3 = (14 .467 e−02) #(m)
i n n e r x 3 t o t = inne r x3 + 2* p l a s t i c c o a t \
+ 2* a l c a s e + 2* s epa ra to r

L3 outa r = p l a s t i c c o a t #(m) r denotes p h y s i c a l s i z e

L3 out1a r = p l a s t i c c o a t + a l c a s e #(m)

L3 out2a r = p l a s t i c c o a t + a l c a s e + separa to r #(m)

L3 out2b r = p l a s t i c c o a t + a l c a s e + separa to r \
+ inner x3 #(m)
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L3 out1b r = p l a s t i c c o a t + a l c a s e + separa to r \
+ inner x3 + separa to r #(m)

L3 outb r = p l a s t i c c o a t + a l c a s e + separa to r \
+ inner x3 + separa to r + a l c a s e #(m)

L x3 = p l a s t i c c o a t + a l c a s e + separa to r \
+ inner x3 + separa to r + a l c a s e \
+ p l a s t i c c o a t #(m)

L 3 = L x3 # choose s c a l i n g constant so that s c a l e d
# reg i on becomes un i t . . ## Caution : Do not change ,
# code based on s c a l e d r eg i on o f unity in
# c h o i s e o f geometry and in par t i on o f
# subdomains , i . e . must have L xi3 = 1 . 0 .

##

# Scaled l o c a t i o n s i n s i d e the bat te ry
L1 outa = ( L1 outa r )/ ( L 1 ) #(−)

L1 out1a = ( L1 out1a r )/ ( L 1 ) #(−)

L1 out2a = ( L1 out2a r )/ ( L 1 ) #(−)

L1 out3a = ( L1 out3a r )/ ( L 1 ) #(−)

L1 out3b = ( L1 out3b r )/ ( L 1 ) #(−)

L1 out2b = ( L1 out2b r )/ ( L 1 ) #(−)

L1 out1b = ( L1 out1b r )/ ( L 1 ) #(−)

L1 outb = ( L1 outb r )/ ( L 1 ) #(−)

L xi1 = ( L x1 )/ ( L 1 ) #(−)

##

L2 outa = ( L2 outa r )/ ( L 2 ) #(−)
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L2 out1a = ( L2 out1a r )/ ( L 2 ) #(−)

L2 out2a = ( L2 out2a r )/ ( L 2 ) #(−)

L2 out2b = ( L2 out2b r )/ ( L 2 ) #(−)

L2 out1b = ( L2 out1b r )/ ( L 2 ) #(−)

L2 outb = ( L2 outb r )/ ( L 2 ) #(−)

L xi2 = ( L x2 )/ ( L 2 ) #(−)

##

L3 outa = ( L3 outa r )/ ( L 3 ) #(−)

L3 out1a = ( L3 out1a r )/ ( L 3 ) #(−)

L3 out2a = ( L3 out2a r )/ ( L 3 ) #(−)

L3 out2b = ( L3 out2b r )/ ( L 3 ) #(−)

L3 out1b = ( L3 out1b r )/ ( L 3 ) #(−)

L3 outb = ( L3 outb r )/ ( L 3 ) #(−)

L xi3 = ( L x3 )/ ( L 3 ) #(−)

# Inner and outer r e g i o n s
L1Gammaa = L1 out3a
L1Gammab = L1 out3b
L2Gammaa = L2 out2a
L2Gammab = L2 out2b
L3Gammaa = L3 out2a
L3Gammab = L3 out2b

gamma1 = ( L 1 )/ ( L 1 ) # gamma i d i f f . op .
gamma2 = ( L 1 )/ ( L 2 ) # gamma i d i f f . op .
gamma3 = ( L 1 )/ ( L 3 ) # gamma i d i f f . op .
gamma1 2 = gamma1*gamma1 # gamma i d i f f . op .
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gamma2 2 = gamma2*gamma2 # gamma i d i f f . op .
gamma3 2 = gamma3*gamma3 # gamma i d i f f . op .

brok 1 a = ( the ta 1 * dt 1 *L 1*h m )/( A s* alpha )
broka = Constant ( brok 1 a )

theta m1 = (1.0− the ta 1 )
theta minus1= Constant ( theta m1 )

brok 2 a = ( the ta 1 *L 1* dt 1 * g 1 )/ ( A s* alpha )
brok 2 = Constant ( brok 2 a )

brok 3 a = ( theta m1* dt 1 *L 1*h m )/( A s* alpha )
brok 3 = Constant ( brok 3 a )

brok 4 a = ( theta m1* dt 1 *L 1* g 1 )/ ( A s* alpha )
brok 4 = Constant ( brok 4 a )

#pr in t ’ brok 2 a ’ , brok 2 a
#pr in t ’ brok 4 a ’ , brok 4 a

p r i n t ’ L x1=L 1 = ’ , L x1 # Total t h i c k n e s s in x1−d i r .
p r i n t ’ L x i1 = ’ , L x i1 # Scaled t h i c k n e s s in xi1−d i r .

p r i n t ’ L x2=L 2 = ’ , L x2 # Total t h i c k n e s s in x2−d i r .
p r i n t ’ L xi2 ’ , L x i2 # Scaled t h i c k n e s s in xi2−d i r .

p r i n t ’ L x3=L 3 = ’ , L x3 # Total t h i c k n e s s in x3−d i r .
p r i n t ’ L xi3 ’ , L x i3 # Scaled t h i c k n e s s in xi3−d i r .

p r i n t ’ i n ne r x 2 t o t ’ , i n n e r x 2 t o t
p r i n t ’ i n ne r x 2 t o t ’ , i n n e r x 3 t o t

p r i n t ’gamma1 ’ , gamma1
pr in t ’ gamma1 2 ’ , gamma1 2
pr in t ’gamma2 ’ , gamma2
pr in t ’ gamma2 2 ’ , gamma2 2
pr in t ’gamma3 ’ , gamma3
pr in t ’ gamma3 2 ’ , gamma3 2
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# Check : Ok

# Automatic spec . o f degree o f polynomial , o f space
# dimension and number o f d i v i s o n s
#
# e . g .
# wr i t e ”%run f i l ename . py 3 10 4 3” on command−l i n e
# f o r 3D polynomial o f degree 3 and with 10 , 4 and
# 3 d i v i s i o n s in the x , y , and z d i r e c t i o n s
# wr i t e ”%run f i l ename . py 1 4 3” on command−l i n e
# f o r 2D polynomial o f degree 1 and with 4 and 3 di−
# v i s i o n s in the x and y d i r e c t i o n s
degree = i n t ( sys . argv [ 1 ] )
d i v i s i o n s = [ i n t ( arg ) f o r arg in sys . argv [ 2 : ] ]
d = len ( d i v i s i o n s )
domain type = [ Uni t Inte rva l , UnitSquare , UnitCube ]
mesh = domain type [ d−1](* d i v i s i o n s )

p r i n t ’ number o f space dim : d = ’ , d

V = FunctionSpace (mesh , ’ Lagrange ’ , degree )
u = Tria lFunct ion (V) #u must be de f ined as
# Tr ia lFunct ion ob j e c t f o r the unknown in the
# problem spec .
v = TestFunction (V)

# Def ine the subdomains f o r the
# homogenized r eg i on and f o r
# the ca s ing :
# I n t e r i o r , homogenized reg i on
c l a s s Gamma1(SubDomain ) :

de f i n s i d e ( s e l f , x , on boundary ) :
i f d==3:

re turn True i f \
x [ 0 ] >= L1Gammaa and \

\
x [ 0 ] <= L1Gammab and \

\
x [ 1 ] >= L2Gammaa and \

\
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x [ 1 ] <= L2Gammab and \
\

x [ 2 ] >= L3Gammaa and \
\

x [ 2 ] <= L3Gammab \
\

e l s e Fa l se
e l i f d==2:

re turn True i f \
x [ 0 ] >= L1Gammaa and \

\
x [ 0 ] <= L1Gammab and \

\
x [ 1 ] >= L2Gammaa and \

\
x [ 1 ] <= L2Gammab \

\
e l s e Fa l se

e l i f d==1:
re turn True i f \

x [ 0 ] >= L1Gammaa and \
\

x [ 0 ] <= L1Gammab \
\

e l s e Fa l se

#Casing , outermost l a y e r ( p l a s t i c coat ing )
c l a s s Gamma3(SubDomain ) :

de f i n s i d e ( s e l f , x , on boundary ) :
i f d==3:

re turn True i f \
x [ 0 ] <= L1 outa or \

x [ 0 ] >= L1 outb or \
x [ 1 ] <= L2 outa or \
x [ 1 ] >= L2 outb or \
x [ 2 ] <= L3 outa or \
x [ 2 ] >= L3 outb e l s e Fa l se

e l i f d==2:
re turn True i f \

x [ 0 ] <= L1 outa or \
x [ 0 ] >= L1 outb or \
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x [ 1 ] <= L2 outa or \
x [ 1 ] >= L2 outb \
e l s e Fa l se

e l i f d==1:
re turn True i f \

x [ 0 ] <= L1 outa or \
x [ 0 ] >= L1 outb \
e l s e Fa l se

#Casing , Al−l a y e r
# d==3,d==2,D==1

c l a s s Gamma4(SubDomain ) :
de f i n s i d e ( s e l f , x , on boundary ) :

i f d==3:
re turn True i f \

x [ 0 ] <= L1 out1a and \
x [ 0 ] >= L1 outa and \
x [ 1 ] <= L2 outb and \
x [ 1 ] >= L2 outa and \
x [ 2 ] <= L3 outb and \
x [ 2 ] >= L3 outa or \
x [ 0 ] <= L1 outb and \
x [ 0 ] >= L1 out1b and \
x [ 1 ] <= L2 outb and \
x [ 1 ] >= L2 outa and \
x [ 2 ] <= L3 outb and \
x [ 2 ] >= L3 outa or \
x [ 1 ] <= L2 out1a and \
x [ 1 ] >= L2 outa and \
x [ 0 ] <= L1 outb and \
x [ 0 ] >= L1 outa and \
x [ 2 ] <= L3 outb and \
x [ 2 ] >= L3 outa or \
x [ 1 ] <= L2 outb and \
x [ 1 ] >= L2 out1b and \
x [ 0 ] <= L1 outb and \
x [ 0 ] >= L1 outa and \
x [ 2 ] <= L3 outb and \
x [ 2 ] >= L3 outa or \
x [ 2 ] <= L3 outb and \
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x [ 2 ] >= L3 out1b and \
x [ 0 ] <= L1 outb and \
x [ 0 ] >= L1 outa and \
x [ 1 ] <= L2 outb and \
x [ 1 ] >= L2 outa or \
x [ 2 ] <= L3 out1a and \
x [ 2 ] >= L3 outa and \
x [ 0 ] <= L1 outb and \
x [ 0 ] >= L1 outa and \
x [ 1 ] <= L2 outb and \
x [ 1 ] >= L2 outa e l s e \
False

e l i f d==2:
re turn True i f \

x [ 0 ] <= L1 out1a and \
x [ 0 ] >= L1 outa and \
x [ 1 ] <= L2 outb and \
x [ 1 ] >= L2 outa or \
x [ 0 ] <= L1 outb and \
x [ 0 ] >= L1 out1b and \
x [ 1 ] <= L2 outb and \
x [ 1 ] >= L2 outa or \
x [ 1 ] <= L2 out1a and \
x [ 1 ] >= L2 outa and \
x [ 0 ] <= L1 outb and \
x [ 0 ] >= L1 outa or \
x [ 1 ] <= L2 outb and \
x [ 1 ] >= L2 out1b and \
x [ 0 ] <= L1 outb and \
x [ 0 ] >= L1 outa e l s e \
False

e l i f d==1:
re turn True i f \

x [ 0 ] <= L1 out1a and \
x [ 0 ] >= L1 outa or \
x [ 0 ] <= L1 outb and \
x [ 0 ] >= L1 out1b e l s e \
False

#Casing , sep−l a y e r
# d==3,d==2,D==1
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c l a s s Gamma5(SubDomain ) :
de f i n s i d e ( s e l f , x , on boundary ) :

i f d==3:
re turn True i f \

x [ 0 ] <= L1 out2a and \
x [ 0 ] >= L1 out1a and \
x [ 1 ] <= L2 out1b and \
x [ 1 ] >= L2 out1a and \
x [ 2 ] <= L3 out1b and \
x [ 2 ] >= L3 out1a or \
x [ 0 ] <= L1 out1b and \
x [ 0 ] >= L1 out2b and \
x [ 1 ] <= L2 out1b and \
x [ 1 ] >= L2 out1a and \
x [ 2 ] <= L3 out1b and \
x [ 2 ] >= L3 out1a or \
x [ 1 ] <= L2 out2a and \
x [ 1 ] >= L2 out1a and \
x [ 0 ] <= L1 out1b and \
x [ 0 ] >= L1 out1a and \
x [ 2 ] <= L3 out1b and \
x [ 2 ] >= L3 out1a or \
x [ 1 ] <= L2 out1b and \
x [ 1 ] >= L2 out2b and \
x [ 0 ] <= L1 out1b and \
x [ 0 ] >= L1 out1a and \
x [ 2 ] <= L3 out1b and \
x [ 2 ] >= L3 out1a or \
x [ 2 ] <= L3 out1b and \
x [ 2 ] >= L3 out2b and \
x [ 0 ] <= L1 out1b and \
x [ 0 ] >= L1 out1a and \
x [ 1 ] <= L2 out1b and \
x [ 1 ] >= L2 out1a or \
x [ 2 ] <= L3 out2a and \
x [ 2 ] >= L3 out1a and \
x [ 0 ] <= L1 out1b and \
x [ 0 ] >= L1 out1a and \
x [ 1 ] <= L2 out1b and \
x [ 1 ] >= L2 out1a e l s e \
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Fal se
e l i f d==2:

re turn True i f \
x [ 0 ] <= L1 out2a and \

x [ 0 ] >= L1 out1a and \
x [ 1 ] <= L2 out1b and \
x [ 1 ] >= L2 out1a or \
x [ 0 ] <= L1 out1b and \
x [ 0 ] >= L1 out2b and \
x [ 1 ] <= L2 out1b and \
x [ 1 ] >= L2 out1a or \
x [ 1 ] <= L2 out2a and \
x [ 1 ] >= L2 out1a and \
x [ 0 ] <= L1 out1b and \
x [ 0 ] >= L1 out1a or \
x [ 1 ] <= L2 out1b and \
x [ 1 ] >= L2 out2b and \
x [ 0 ] <= L1 out1b and \
x [ 0 ] >= L1 out1a e l s e \
False

e l i f d==1:
re turn True i f \

x [ 0 ] <= L1 out2a and \
x [ 0 ] >= L1 out1a or \
x [ 0 ] <= L1 out1b and \
x [ 0 ] >= L1 out2b e l s e \
False

#Casing , h a l f Al . cc .− l ayer ,
#NB! Only r e l e v a n t f o r x−d i r e c t i o n

c l a s s Gamma6(SubDomain ) :
de f i n s i d e ( s e l f , x , on boundary ) :

i f d==3:
re turn True i f \

x [ 1 ] <= L2 out2b and \
x [ 1 ] >= L2 out2a and \
x [ 2 ] <= L3 out2b and \
x [ 2 ] >= L3 out2a and \
x [ 0 ] <= L1 out3a and \
x [ 0 ] >= L1 out2a or \
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x [ 0 ] <= L1 out2b and \
x [ 0 ] >= L1 out3b e l s e \
False

e l i f d==2:
re turn True i f \

x [ 1 ] <= L2 out2b and \
x [ 1 ] >= L2 out2a and \
x [ 0 ] <= L1 out3a and \
x [ 0 ] >= L1 out2a or \
x [ 0 ] <= L1 out2b and \
x [ 0 ] >= L1 out3b e l s e \
False

e l i f d==1:
re turn True i f \

x [ 0 ] <= L1 out3a and \
x [ 0 ] >= L1 out2a or \
x [ 0 ] <= L1 out2b and \
x [ 0 ] >= L1 out3b e l s e \
False

subdomains = MeshFunction ( ’ uint ’ , mesh , d)
#subdomains1 = MeshFunction ( ’ uint ’ , mesh , d)
subdomains . s e t a l l ( 0 ) # Set a l l as 0 f i r s t f o r s a f e t y

subdomain1 = Gamma1( )
subdomain1 . mark ( subdomains , 0)
#subdomain2 = Gamma2( )
#subdomain2 . mark ( subdomains , 1)
subdomain3 = Gamma3( )
subdomain3 . mark ( subdomains , 1)
subdomain4 = Gamma4( )
subdomain4 . mark ( subdomains , 2)
subdomain5 = Gamma5( )
subdomain5 . mark ( subdomains , 3)
subdomain6 = Gamma6( )
subdomain6 . mark ( subdomains , 4)

#Al l UFL code c o e f f . must be expres sed as cons tant s

G p l a s t i c = Gamma plastic
# P o s s i b l e to not use Const . i f only app . in matrix
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G Al cas = Gamma Al cas
G sep =Gamma sep
G h a l f a l = Gamma half al

G1 = Gamma hom 1*gamma1 2
G2 = G p l a s t i c *gamma1 2
G3 = G Al cas *gamma1 2
G4 = G sep*gamma1 2
G5 = G h a l f a l *gamma1 2

vo l = inne r x1 * i nne r x2 * i nne r x3
v o l t o t a l = L x1*L x2*L x3

pr in t ’ vo l = ’ , vo l
p r i n t ’ v o l t o t a l = ’ , v o l t o t a l
p r i n t ’ inner x1 , inner x2 , inner x3 ’ ,\

inner x1 , inner x2 , inne r x3

i f d==1:
A1 = Constant (G1)
A2 = Constant (G2)
A3 = Constant (G3)
A4 = Constant (G4)
A5 = Constant (G5)

e l i f d==2:
A1 = as matr ix ( [ [ Gamma hom 1*gamma1 2 , 0 . 0 ] , \

[ 0 . 0 , Gamma hom 2*gamma2 2 ] ] )
A2 = as matr ix ( [ [ G p l a s t i c *gamma1 2 , 0 . 0 ] , \

[ 0 . 0 , G p l a s t i c *gamma2 2 ] ] )
A3 = as matr ix ( [ [ G Al cas *gamma1 2 , 0 . 0 ] , \

[ 0 . 0 , G Al cas *gamma2 2 ] ] )
A4 = as matr ix ( [ [ G sep*gamma1 2 , 0 . 0 ] , \

[ 0 . 0 , G sep*gamma2 2 ] ] )
A5 = as matr ix ( [ [ G h a l f a l *gamma1 2 , 0 . 0 ] , \

[ 0 . 0 , G h a l f a l *gamma2 2 ] ] )
e l i f d==3:

A1 = as matr ix (\
[ [ Gamma hom 1*gamma1 2 , 0 . 0 , 0 . 0 ] , \
[ 0 . 0 , 0 . 0 , Gamma hom 2*gamma2 2 ] ,\
[ 0 . 0 , 0 . 0 , Gamma hom 3*gamma3 2 ] ] )
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A2 = as matr ix (\
[ [ G p l a s t i c *gamma1 2 , 0 . 0 , 0 . 0 ] , \
[ 0 . 0 , 0 . 0 , G p l a s t i c *gamma2 2 ] ,\
[ 0 . 0 , 0 . 0 , G p l a s t i c *gamma3 2 ] ] )

A3 = as matr ix (\
[ [ G Al cas *gamma1 2 , 0 . 0 , 0 . 0 ] , \
[ 0 . 0 , 0 . 0 , G Al cas *gamma2 2 ] ,\
[ 0 . 0 , 0 . 0 , G Al cas *gamma3 2 ] ] )

A4 = as matr ix (\
[ [ G sep*gamma1 2 , 0 . 0 , 0 . 0 ] , \
[ 0 . 0 , 0 . 0 , G sep*gamma2 2 ] ,\
[ 0 . 0 , 0 . 0 , G sep*gamma3 2 ] ] )

A5 = as matr ix (\
[ [ G h a l f a l *gamma1 2 , 0 . 0 , 0 . 0 ] , \
[ 0 . 0 , 0 . 0 , G h a l f a l *gamma2 2 ] ,\
[ 0 . 0 , 0 . 0 , G h a l f a l *gamma3 2 ] ] )

# I n i t i a l Condit ion
ToAB 1 = ( T 0−B)/( A s )
ToAB = Constant (ToAB 1)

#u prev = i n t e r p o l a t e (ToAB,V)
u prev = p r o j e c t (ToAB, V)

t = dt # staa som t a l l
t o l = 1E−05 # staa som t a l l

I = 17 .5

hat beta = −0.00027; L 1 = L 1
P = Express ion ( ’(− I *(pow( L 1 , 2 ) ) * hat beta )/ ( alpha * vo l ) ’ ,

{ ’ I=I ’ : I , ’ alpha ’ : alpha , ’ vol ’ : vol ,
’ L 1 ’ : L 1 , ’ hat beta ’ : hat beta })

O = Express ion ( ’ ( ( I *(pow( L 1 , 2 ) ) ) / ( A s* alpha * vo l ) )*\
( a r *pow( t , 3 ) + b r *pow( t , 2 ) + c r *( t ) + d r −B*\
hat beta ) ’ , { ’ I ’ : I , ’ L 1 ’ : L 1 , ’ A s ’ : A s ,\

’ alpha ’ : alpha ,\
’ vol ’ : vol , ’B ’ : B, ’ hat beta ’ : hat beta ,\
’ a r ’ : a r , ’ b r ’ : b r , ’ c r ’ : c r , ’ d r ’ : d r , ’ t ’ : t })
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P prev = Express ion ( ’(− I *(pow( L 1 , 2 ) ) * hat beta )/ ( alpha * vo l ) ’ ,
{ ’ I ’ : I , ’ alpha ’ : alpha , ’ vol ’ : vol ,\

’ L 1 ’ : L 1 , ’ hat beta ’ : hat beta })

O prev = Express ion ( ’ ( ( I *(pow( L 1 , 2 ) ) ) / ( A s* alpha * vo l ) )*\
( a r *pow ( ( t−dt ) , 3 ) + b r *pow ( ( t−dt ) , 2 ) + c r *( t−dt ) + \
d r −B* hat beta ) ’ ,

{ ’ I ’ : I , ’ L 1 ’ : L 1 , ’ A s ’ : A s ,\
’ alpha ’ : alpha ,

’ vol ’ : vol , ’B ’ : B,\
’ hat beta ’ : hat beta ,\
’ a r ’ : a r , ’ b r ’ : b r , ’ c r ’ : c r , ’ d r ’ : d r ,\
’ t ’ : t , ’ dt ’ : dt })

P. I = 17 .5
O. I = 17 .5
P prev . I = 17 .5
O prev . I = 17 .5

O. t = 0 .0

O prev . t = dt
O prev . dt = dt

#O plot = i n t e r p o l a t e (O,V)
#p lo t ( O plot ) # O g i r r e t t ve rd i i t = 0
#O2 plot = i n t e r p o l a t e ( O prev ,V)
#p lo t ( O2 plot ) # O prev g i r r e t t ve rd i i t = 0
#P plot = i n t e r p o l a t e (P,V)
#p lo t ( P plot ) # P g i r r e t t ve rd i f o r a l l e t
#P2 plot = i n t e r p o l a t e ( P prev ,V)
#p lo t ( P2 plot ) # P prev g i r r e t t ve rd i f o r a l l e t

# UFL−code f o r var . form . r e p r e s e n t a t i o n :
a = f hom* i nne r (u , v )*dx (0) + f 1 * i nne r (u , v )*dx (1) \
+ f 2 * i nne r (u , v )*dx (2) \
+ f 3 * i nne r (u , v )*dx (3) + f 4 * i nne r (u , v )*dx (4) \
+ theta *dt* i nne r (A1*grad (u ) , grad ( v ) )* dx (0) \
− theta *dt*P* i nne r (u , v )*dx (0) \
+ theta *dt* i nne r (A2*grad (u ) , grad ( v ) )* dx (1) \
+ theta *dt* i nne r (A3*grad (u ) , grad ( v ) )* dx (2) \
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+ theta *dt* i nne r (A4*grad (u ) , grad ( v ) )* dx (3) \
+ theta *dt* i nne r (A5*grad (u ) , grad ( v ) )* dx (4) \
+ broka*u*v*ds

L = f hom*u prev *v*dx (0) + f 1 *u prev *v*dx (1) \
+ f 2 *u prev *v*dx (2) + f 3 *u prev *v*dx (3)\
+ f 4 * i nne r ( u prev , v )*dx (4) − theta minus1 *dt\
* i nne r (A1*grad ( u prev ) , grad ( v ) )* dx (0) \
+ theta *dt*O*v*dx (0) + theta minus1 *dt*O prev*v*dx (0) \
+ theta minus1 *dt*P prev* i nne r ( u prev , v )*dx (0) \
− theta minus1 *dt* i nne r (A2*grad ( u prev ) , grad ( v ) )* dx (1) \
− theta minus1 *dt* i nne r (A3*grad ( u prev ) , grad ( v ) )* dx (2) \
− theta minus1 *dt* i nne r (A4*grad ( u prev ) , grad ( v ) )* dx (3) \
− theta minus1 *dt* i nne r (A5*grad ( u prev ) , grad ( v ) )* dx (4) \
+ brok 2 *v*ds − brok 3 * i nne r ( u prev , v )* ds \
+ brok 4 *v*ds

b = None

# Plot i n i t i a l c ond i t i on
X = 0 ; Y = 1 ; Z = 0
u2 = i n t e r p o l a t e ( u prev , FunctionSpace (mesh ,\

’ Lagrange ’ , 1 ) )
u box = s c i t o o l s . BoxField .\
d o l f i n f u n c t i o n 2 B o x F i e l d ( u2 ,\
mesh , (nx , ny ) , uniform mesh=True )

#ev . f i g u r e ( )
#ev . s u r f ( u box . g r i d . coorv [X] ,\
# u box . g r id . coorv [Y] , u box . values ,
#shading =’ inte rp ’ , x l a b e l =’{/Symbol x} {1} ’ ,\
# y l a b e l =’{/Symbol x} {2} ’ , c o l o rba r =’on ’ ,
#t i t l e = ’ ’ , hardcopy=’ u 2 d t 0 0 s u r f . eps ’ )

# Extract and p lo t u along the l i n e y=0.5
#s t a r t = ( 0 , 0 . 5 )
#x0 , uval0y , y f i x ed , snapped =\
# u box . g r i d l i n e ( s ta r t , d i r e c t i o n=X)
# Extract and p lo t u along the l i n e x=0.5
#s t a r t = ( 0 . 5 , 0 )
#y0 , uval0x , x f i x ed , snapped = \
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#u box . g r i d l i n e ( s ta r t , d i r e c t i o n=Y)

# p lo t mesh
#s = p lo t (mesh , t i t l e =’ F i n i t e element mesh ’ )
#s . wr i te png ( ’ mesh 2d . png ’ )

whi l e t <= T:
pr int ’ t = ’ , t
i f t<(T c−t o l ) :

P . I = 17 .5
O. I = 17 .5
P prev . I = 17 .5
O prev . I = 17 .5
O. t = t
O prev . t = t
#O plot = i n t e r p o l a t e (O,V)
#p lo t ( O plot )
#O plot = i n t e r p o l a t e ( O prev ,V)
#p lo t ( O plot )

e l i f t>(T c−t o l ) and t<(T c+t o l ) :
P . I = 0 .0
O. I = 0 .0
P prev . I = 17 .5
O prev . I = 17 .5
O prev . t = t

e l i f t>(T c+t o l ) :
P . I = 0 .0
O. I = 0 .0
P prev . I = 0 .0
O prev . I = 0 .0
#O plot = i n t e r p o l a t e (O,V)
#p lo t ( O plot )
#O plot = i n t e r p o l a t e ( O prev ,V)
#p lo t ( O plot )

# O plot = i n t e r p o l a t e (P,V)
# p lo t ( O plot )
# O plot = i n t e r p o l a t e ( P prev ,V)
# p lo t ( O plot )

A = assemble ( a , c e l l doma in s=subdomains )
b = assemble (L , c e l l doma in s=subdomains )

# b = assemble (L , c e l l doma in s=subdomains , t en so r=b)
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# Tensor seems to be remarkable s i m i l a r
# in computation time as without t enso r argument .

u = Function (V)
s o l v e (A, u . vec to r ( ) , b )

i f t>(0.735− t o l ) and t<(0.735+ t o l ) :
X = 0 ; Y = 1 ; Z = 0
u2 = u i f u . u f l e l e m e n t ( ) . degree ( )\

== 1 e l s e \
i n t e r p o l a t e (u , FunctionSpace (mesh ,\

’ Lagrange ’ , 1 ) )
u box = \

s c i t o o l s . BoxField . d o l f i n f u n c t i o n 2 B o x F i e l d ( u2 ,\
mesh , (nx , ny ) , uniform mesh=True )

# Extract and p lo t u along the l i n e y=0.5
s t a r t = ( 0 , 0 . 5 )
x0735 , uval0735y , y f i x ed ,\

snapped = u box . g r i d l i n e ( s ta r t , d i r e c t i o n=X)
# Extract and p lo t u along the l i n e x=0.5
s t a r t = ( 0 . 5 , 0 )
y0735 , uval0735x , x f i x ed ,\

snapped = u box . g r i d l i n e ( s ta r t , d i r e c t i o n=Y)

ev . f i g u r e ( )
ev . p l o t ( y0735 , uval0735x , t i t l e = ’ ’ ,
l egend =( ’{/Symbol t} = 0 . 735 ’ ) ,\

x l a b e l =’{/Symbol x} {2} ’ , l egend fancybox=True ,
hardcopy=’ t e s t t e s t . eps ’ )

t = t + dt
u prev . a s s i g n (u)

# Code end


