
Modeling of Extracellular Potentials Measured by
Microelectrode Arrays

Øystein Sørensen

DepartmentofMathematicalSciencesandTechnology
MasterThesis30credits2010





“We are at the very beginning of time for the human
race. It is not unreasonable that we grapple with

problems. But there are tens of thousands of years in
the future. Our responsibility is to do what we can,
learn what we can, improve the solutions, and pass

them on.”
–Richard P. Feynman





Preface

This thesis is the fulfillment of my Master’s degree at the Norwegian University of
Life Sciences.

On the occasion, I would like to thank my supervisors, Professor Gaute T.
Einevoll and Associate Professor Bjørn F. Nielsen, for inspiring weekly meetings
and firm guidance in scientific thinking. Special thanks go to Gaute for sharing his
vast knowledge of physics and neuroscience as well as including me in the com-
putational neuroscience group; it has given great motivation to pursue an academic
career.

My gratitude also goes to Dr. Johan Hake, for comprehensively answering
all my questions about FEniCS and Linux, and to Dr. Klas H. Pettersen, for
very instructive discussions about neural cable theory and useful comments on the
manuscript.

Cheers go to my student colleagues for their exquisite sense of humor, serving
to keep the spirit up during late hours in the office. I also want to thank my par-
ents for nature and nurture, the latter of which they have been great providers since
1985.

Ås, 10th December, 2010

Øystein Sørensen
oystein sorensen@hotmail.com



ii



Abstract

Microelectrode arrays (MEAs) offer a promising way to study single-cell and net-
work activity in cortical columns, with high spatial and temporal resolution. This
thesis investigates models relating the measured local field potential (LFP) to the
underlying neural activity. For the two-monopole approximation, a point-source
formula, derived on the assumption of an infinite and homogeneous medium, was
compared to the results of finite element simulations. The latter incorporated the
saline solution, surrounding chamber, and electrode plate used in real MEA exper-
iments. The impact of the electrical conductivity profile of tissue was also studied,
for a two-monopole and a ball-and-stick neuron. The experimental set-up was
seen to significantly affect the LFP measured by the MEA. Inhomogeneous and
anisotropic tissue conductivity also influenced the LFP, but to a smaller extent.
The results indicate that finite element methods improve modeling of MEA mea-
surements, and should be preferred to the simple point-source formula.



iv



Sammendrag

Mikroelektrodematriser muliggjør måling av både enkeltcelle- og nettverksaktivi-
tet i biter av hjernebarken, med høy oppløsning i tid og rom. Formålet med denne
masteroppgaven er å undersøke modeller som relaterer det elektriske potensialet
målt på matrisen, til den underliggende nevrale aktiviteten. En punktkildeformel
for et homogent og uendelig medium, ble sammenlignet med elementmetodesimul-
eringer som omfattet det virkelige fysiske oppsettet i slike eksperimenter. I tillegg
ble betydningen av anisotropi og inhomogenitet i vevets elektriske ledningsevne
undersøkt, både for en to-monopol og for et ball-og-pinne-nevron. De utførte simu-
leringene tyder på at det eksperimentelle oppsettet har en anselig påvirkning på
potensialene som måles. Inhomogenitet og anisotropi var også av betydning, dog i
mindre grad. Det konkluderes at elementmetoden er fordelaktig for modellering av
elektriske potensialer i mikroelektrodematrisemålinger, og bør foretrekkes framfor
den enkle punktkildeformelen.



vi



Contents

Preface i

Abstract iii

Sammendrag v

1 Introduction 1

2 Background 3
2.1 Bioelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Neural Electrical Activity . . . . . . . . . . . . . . . . . 3
2.1.2 One-Compartment Model . . . . . . . . . . . . . . . . . 6
2.1.3 Cable Equation . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Volume Conduction . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Extracellular Conductivity . . . . . . . . . . . . . . . . . 14

2.2 Neuron Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Two-Monopole Approximation . . . . . . . . . . . . . . 16
2.2.2 Ball-and-Stick Neuron . . . . . . . . . . . . . . . . . . . 17

2.3 Microelectrode Arrays . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Neural Activity Measurements . . . . . . . . . . . . . . . 20
2.3.2 Experimental Set-up . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Stimulation Electrodes . . . . . . . . . . . . . . . . . . . 22
2.3.4 Recording Electrodes . . . . . . . . . . . . . . . . . . . . 22

3 Finite Element Method 23
3.1 Weak Formulation of Boundary Value Problems . . . . . . . . . . 24
3.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Piecewise Polynomials . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 One Dimension . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Multiple Dimensions . . . . . . . . . . . . . . . . . . . . 31

4 FEniCS Implementations 35
4.1 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 37



viii Contents

4.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Conductivity Profile . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Homogeneous and Isotropic Tissue . . . . . . . . . . . . 45
4.4.2 Inhomogeneous and Anisotropic Tissue . . . . . . . . . . 46

4.5 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Membrane Currents . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Simple Kirchhoff-Fix . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Results 55
5.1 Numerical Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Large Inhomogeneity and Anisotropy . . . . . . . . . . . . . . . 60
5.3 Two-Monopole: Effect of BCs and Conductivity Profile . . . . . . 65
5.4 Ball-and-Stick: Effect of Stimulation and Conductivity Profile . . 67
5.5 Parameter-Fitted Ball-and-Stick Model . . . . . . . . . . . . . . . 96

6 Discussion 103

A Some Notes on Units 105

B Source Code 109



Chapter 1

Introduction

Microelectrode array (MEA) measurements are a promising way of recording neu-
ral activity. The method has traditionally been used to study cultured cells, but
succesful applications with brain slices have recently been reported [10, 20]. Con-
sidered here is single-cell stimulation, in which a current-supplying electrode pen-
etrates the soma of a neuron in the slice. Currents traversing the cell membrane are
generated as a response to the stimulus, changing the extracellular field potential
of surrounding tissue. The MEA readily measures electric potentials on the base
of the slice, with high spatial and temporal resolution.

In order to interprete the recordings, an important question is: What do the
measured potentials tell us about the underlying neural activity? This poses an
inverse problem; that of finding the transmembrane currents most likely to have set
up the potentials measured. Comparison with MEA potentials obtained in silico
by forward modeling can be useful to obtain such insight. This requires a good
neuron model for calculating transmembrane currents, from which the extracellular
potentials are predicted by means of a volume conduction model [60].

A simple analytic expression for the extracellular potentials arising from mem-
brane currents can be used, when the tissue is assumed to be an infinite medium of
isotropic and homogeneous electrical conductivity. The reference potential is set
to zero infinitely far away from the sources, similar to the approach used to calcu-
late the potential field set up by charge distributions in electrostatics. The current
source is divided into N discrete point sources, giving the formula

φ(r) =
1

4πσ

N∑
n=1

In
rn

, (1.1)

where φ(r) is the electric potential at a point r, rn is the distance from source n to
the field point r, In is the current entering the volume conductor at source n, and
σ is the electrical conductivity of the medium. A similar line-source formula can
also be derived [41, 44].

In real MEA measurements, the infinite medium assumption is not immedi-
ately justified. A brain slice, of extent on the order of cubic millimeters, is im-



2 Introduction

mersed in artificial cerebrospinal fluid (ACSF) [9, 10]. This saline solution is
again surrounded by the electrically insulating walls of an experimental chamber,
and air1 [19]. Hence, the conductivity is practically zero a few millimeters from
the current sources, contrary to the assumption of an infinite and homogeneous
medium. Mathematically, the air interface is modeled by a homogeneous Neumann
boundary condition. In addition, a reference electrode is typically present, giving a
Dirichlet condition to take into account [10,19,20]. Furthermore, saline has higher
conductivity than tissue, and the conductivity of the slice may be depending both
on position and direction [22, 44, 51].

Analytic expressions incorporating boundary conditions, saline, and conductiv-
ity profile, are, if they exist, very complicated. Numerical computation of the ex-
tracellular potential may thus be a good alternative. With the finite element method
(FEM), the whole experimental set-up can be modeled with a high level of detail.
FEM implementations are relatively laborious, so it is of interest to probe how
much of an improvement they offer compared to using analytic formulae based on
simplifying assumptions.

This study investigates the impact of the experimental set-up and tissue con-
ductivity profile on MEA potentials. The goal is to gain insight into the level of
detail needed for accurate modeling of MEA measurements. The two-monopole
approximation and the ball-and-stick neuron are used to generate transmembrane
currents [35, 43, 44]. A finite element formulation of the boundary value problem
for volume conduction has been implemented using FEniCS [2]. An additional
goal of the work has been to investigate how FEniCS can be employed to simulate
extracellular potentials, and to serve as a starting point for more sophisticated use
of the tool.

The next chapter surveys necessary biophysical background, and the typical
experimental set-up used in MEA mesurements is described. Chapter 3 gives an
introduction to the use of finite element methods for solving boundary value prob-
lems, and chapter 4 describes how the models derived were implemented in FEn-
iCS. Simulation results are presented in chapter 5 and discussed further in chapter
6.

1Cf. figure 2.10 on page 21



Chapter 2

Background

2.1 Bioelectricity

2.1.1 Neural Electrical Activity

This section is partly based on the book by Nelson [39].
The human brain consists of about 1012 cells, that can be divided into neu-

rons and glia. The glial cells are more numerous than neurons, of which there are
about 1011. However, the information processing done by the brain is presumably
performed mainly by neurons. Figure 2.1 shows a sketch of a cortical pyramidal
neuron [11, 15, 29].

Hierarchical response to stimuli is a hallmark of the nervous system. Neocor-
tex, often simply called cortex, can be thought of as the highest level, in which
specific representations are made [11, 29]. It consists of highly specialized do-
mains. For example, area V1 represents visual orientation, and the columns of the
rat barrel cortex respond specifically to stimulation of a particular whisker [17].
Figure 2.2 shows an illustration of a column from the rat cortex. Note that this
figure only sketches the cell types present. In reality, nervous tissue is densely
packed, with an extracellular volume fraction of less than 20 % [26, 33].

The soma is the main body of the neuron and contains the same organelles
as are found in other mammalian cells. Functions like transcription, translation,
protein synthesis, and energy-releasing conversion of ATP to ADP, take place in
the soma [11]. What mainly distinguishes neurons from other cells is their axons
and dendrites. The numerous dendrites receive input from other neurons, and the
axons send output on to yet others. This information processing takes place in the
form of electric currents, so much of the function of neurons can be understood by
their electrical properties.

The intracellular and extracellular fluids differ significantly in their concen-
trations of different ion species. Table 2.1 gives some illustrative values. The large
molecules inside the cell, like DNA, are acidic, carrying a net negative charge.
Their concentration is equivalent to that of 125 mM electrons. The lipid bilayer cell
membrane is practically impermeable, but embedded in it are specialized channels



4 Background

Figure 2.1: Sketch of a pyramidal neuron. The soma is the main body of the cell, from
which axons and dendrites protrude. For pyramidal neurons, the numerous dendrites both
make up a basal bush close to the soma and extend apically. Output is sent through the
axon and its collaterals. Taken from Dayan and Abbott [15].

Figure 2.2: Illustration of a cortical column. Columns are divided into 6 characteristic
layers, numbered from I to VI. A pyramidal cell (figure 2.1) is situated in layer V, with
dendrites extending through the whole column. Taken from Bear et al. [11].



Bioelectricity 5

Ion ce ci VNernst

K+ 5 100 -80 mV
Na+ 150 15 62 mV
Ca2+ 2 2e-4 123 mV
Cl− 150 13 -65 mV
Macromolecules (-) 0 125 -

Table 2.1: Typical ionic concentration values. ce and ci are the extracellular and intra-
cellular concentrations, respectively, and their values are given in millimolar (mM). The
interior of the cells contain acidic macromolecules which make up an equivalent of 125
mM electrons. The rightmost column shows the Nernst potential of the ions (equation 2.4).
Data from Bear et al. [11] and Nelson [39].

through which ions can cross. Macromolecules, on the other hand, are not able to
escape. Some channels show a strong selectivity to particular ion species, and their
permeability may depend on environmental variables like ionic concentrations or
the electric potential across it. Overall, the net effect of ion channels is to give the
membrane some electrical conductivity, gn, and permeability, Pn, to ion species n.

In electrostatic equilibrium the bulk interior and exterior have to be electrically
neutral; due to mutual repulsion, charges of the same type minimize their poten-
tial energy by being as far away from each other as possible. But the membrane
stops them, and a layer of net charge establishes on its intracellular side, attracting
charges of opposite type from the extracellular medium. Neither these are able to
cross the lipid bilayer. Thus, an electric potential gradient is established between
the the two sides, and the cell membrane acts as a parallel-plate capacitor.

The concentration differences are maintained by ion pumps embedded in the
membrane. An example is the sodium-potassium pump. It uses ATP to transport
3 Na+ ions out of the cell per 2 K+ ions pushed in. Hence, both a concentration
gradient is set up and a net outward current of one electron per cycle is maintained.
The calcium pump transports Ca2+ ions out of the cell, thereby being responsible
for the very low intracellular calcium concentration. These pumps oppose passive
current flow and keep the concentrations relatively constant. Thus, in the rest of
the section we consider the values in table 2.1 as given and neglect the particular
currents set up by ion pumps. A justification for this approach is given in section
12.1.2 of reference [39].

The connections between neurons are called synapses and may be character-
ized as either chemical or electrical. In mammals, the chemical synapses by far
outnumber their electrical counterparts [11]. Stereotypically, input from presynap-
tic cells is received at the synapses of the dendrites and soma, whereas output to
postsynaptic cells is transmitted through the axons [15].

Electrical synapses are gap junctions, channels through which ions may di-
rectly travel from one neuron to another. An action potential in a presynaptic cell
then causes a rapid increase in the postsynaptic potential of the cells to which it
is connected via electrical synapses. If a neuron receives sufficient input to raise



6 Background

Figure 2.3: Compartmental modeling. The figure illustrates how a pyramidal neuron may
be divided into compartments, each assumed to have a constant potential gradient across
its membrane. Taken from Dayan and Abbott [15].

its membrane potential above threshold, an action potential will be fired. Hence,
electrical synapses connecting groups of neurons mediate fast synchronization of
firing [11].

Chemical synapses work in a more indirect way. An action potential arriving
at a terminal causes release of neurotransmitters into the synaptic cleft. The neu-
rotransmitters then diffuse over to the postsynaptic side, where they influence the
behavior of active channels. If the synapse is excitatory, the net effect of the neuro-
transmitter release is to open channels, causing a positive current into the cell. This
contributes to the depolarization of the postsynaptic neuron. Inhibitory synapses
work in the opposite way, i.e., by closing channels, causing negative current flow
into the postsynaptic cell hyperpolarizing the neuron [11].

2.1.2 One-Compartment Model

This section is partly based on the book by Nelson [39].
Neurons have a complex morphology, and input and output are constantly

transmitted at numerous parts of their membrane through synaptic connections.
Hence, the transmembrane potential is varying throughout the cell body. If the
neuron is divided into many small parts, we can assume each such compartment
to be at approximately constant potential, as illustrated by figure 2.3. This section
will present the electrical properties of a single compartment, and section 2.1.3 will
explain how they are connected. Eventually we will let their length go to zero, in
order to obtain the cable equation.

Consider a membrane only permeable to potassium. With the values of table
2.1, Fick’s first law predicts an outward diffusive flux,

jdiff,K = −PK(ce,K − ci,K). (2.1)



Bioelectricity 7

Due to the membrane potential,

∆V = Vi − Ve, (2.2)

there will also be an electrical flux, with positive direction towards the extracellular
medium,

jel,K = gK∆V, (2.3)

where the conductance gK in principle may be any function. Therefore, in the case
of potassium, an entropic force is pushing ions out of the cell, driving the flux in
equation (2.1), whereas an electric force is pulling current in, when Vi < Ve in
equation (2.2).

An equilibrium is reached when the net flux is zero. This happens at the Nernst
potential, in general given by

V Nernst
n = −kBT

ze
ln(ce,n/ci,n), (2.4)

where z is the valency of ion species n, kB is the Boltzmann constant, T is the
temperature, and ce,n and ci,n are the extracellular and intracellular concentration
of n, respectively. Accordingly, the net current is

In = (∆V − V Nernst
n )gnS,

where S is the membrane surface area. When the actual membrane potential is
higher than the Nernst potential, there will be a net outward current, and when it is
lower, there will be a net inward current.

Because the membrane is permeable to several ion species, whose Nernst po-
tentials differ, currents are in general always present. A situation of interest is the
steady state, at which the net charge transport across the membrane is zero. This
happens when

I =
∑
n

(∆V − V Nernst
n )gnS = 0,

and the sum goes over all relevant ions. A little algebraic manipulation shows that
the steady state is obtained when ∆V equals the resting potential,

V 0 =

∑
n V

Nernst
n gn∑
n gn

. (2.5)

The numerator is a sum of individual Nernst potentials weighted by their respective
conductivities. Hence, V 0 tends to be closer to the equilibrium potential of ions
which more easily traverse the membrane. At rest,

gK ≈ 25gNa ≈ 2gCl,

seemingly in accordance with the actual value around−65 mV, close to the Nernst
potential of K+ and Cl−, but far from that of Na+.



8 Background

Changes in ionic concentrations or membrane potential may cause abrupt alter-
ations of particular conductivity values. This nonlinear behavior of gating variables
is what generates action potentials and can be described by Hodgkin-Huxley-like
models [15]. Izhikevich [28] gives a good introduction to the nonlinear dynamics
of spiking neurons. Since the main focus of this thesis is on subthreshold phenom-
ena, we will not go into the details of the action potential. Membrane conductivities
are rather assumed to be constant. This approach can be justified as a first order
approximation close to the resting potential.

Using ideas from basic circuit theory, the membrane can be pictured as contain-
ing conductors and capacitors coupled in parallel. The total conductance is then a
linear sum over the individual conductivity values [57],

gtot =
∑
n

gn.

Hence, the conductive current crossing the membrane area is

I = gtotS(∆V − V 0).

This equation clearly shows that if the membrane potential exceeds the resting po-
tential net current will flow outward, which by convention is the positive direction.
If ∆V < V 0, current will go into the cell.

The amount of charge on either side of the membrane is

q = cmS∆V,

where cm is the capacitance per unit surface area. The capacitive current is the
temporal derivative of the net charge,

iC =
∂q

∂t
= cmS

∂

∂t
(∆V ) .

The corresponding circuit diagram is shown in figure 2.4, where

Rm = 1/(gtotS)

is the resistance, and
Cm = cmS

is the capacitance of the membrane area considered [15].

2.1.3 Cable Equation

This section is partly based on chapter 6 in the book by Dayan and Abbott [15].
Excitatory input causes a localized membrane potential increase close to the

synapse. Hence, the equivalent circuit model assuming a uniform intracellular
potential cannot be used for the whole neuron. As mentioned at the beginning of
the last section, compartmental modeling provides a fix. For example, assuming a



Bioelectricity 9

Figure 2.4: Equivalent circuit of a cell membrane. A patch of cell membrane can be
modeled by a parallel connection of a resistor and a capacitor. The difference between the
membrane potential and the Nernst potential (V 0) drives the resistive (conductive) current.
Modified from Nelson [39].

Figure 2.5: Magnified view of a compartment. A small dendritic section can be modeled
as a cylindrical cable at constant potential. The equivalent circuit is illustrated. The
membrane current density, im, and the resistance per unit length, rL, correspond to jm and
ri in section 2.1.3, respectively. ie denotes electrode current applied across the dendritic
membrane, and will not be considered here. Taken from Dayan and Abbott [15].



10 Background

uniform potential inside soma, this can be one compartment. The dendrites can be
split in their longitudinal direction into thin parts at a uniform potential. Figure 2.5
illustrates one compartment on a distal dendrite.

As explained, the axons and dendrites are partitioned into cable segments. For
a cylindrical segment of surface area S = 2πa∆x, where a is its radius and ∆x
the length, the capacitive current across its membrane is given by

iC = 2πa∆xcm
∂V

∂t
,

where V is the potential difference between the inside and outside (∆V of equation
(2.2)). The ∆ has been dropped for notational convenience.

By Ohm’s law, the volume current inside the cell is

ji = −
1

ri
∇V,

where ri is the intracellular resistance times unit length. Its longitudinal component
is

ji(x) = −
1

ri

∂V

∂x
, (2.6)

where the x-direction is taken to be along a compartment. Assuming the potential
to be radially uniform, we obtain the total current by multiplying ji(x) with the
cross sectional area πa2. Then, the current entering the segment in the end closer
to the soma is

ii(x) = −
πa2

ri

∂V

∂x

∣∣∣
x
,

and the current leaving through the end of the segment is

ii(x+∆x) = −πa2

ri

∂V

∂x

∣∣∣
x+∆x

.

Since the net current into a compartment, by Kirchhoff’s current law, has to be
zero, the conductive transmembrane current (positive outwards) is given by

ig = ii(x)− ii(x+∆x)− iC.

Written in terms of the current density crossing the membrane, jg, it becomes

ig = 2πa∆xjg.

Kirchhoff’s current law can now be stated as

2πa∆xcm
∂V

∂t
= −

(
πa2

ri

∂V

∂x

) ∣∣∣
x
+

(
πa2

ri

∂V

∂x

) ∣∣∣
x+∆x

− 2πa∆xjg.

Letting the length of each compartment tend to zero1 while assuming the seg-
ments to have constant radii between junctions, the linear cable equation becomes

τm
∂V

∂t
= λ2∂

2V

∂x2
− V, (2.7)

1For a finite stick length, this is equivalent to letting the number of compartments tend to infinity.



Bioelectricity 11

where
jg =

V

rm

has been used. The membrane time constant, τm, is given by

τm = rmcm,

and

λ =

√
arm
2ri

is the electrotonic length. Equation (2.7) describes a leaky cable. For each in-
finitesimal segment, some current will pass out though the membrane while the
remainder goes on to the next segment. By extending the general principles con-
sidered here, active conductances as well as synapses along the cable can be incor-
porated [34, 40].

The total membrane current is the sum of the conductive and capacitive contri-
bution,

jm = cm
∂V

∂t
+

V

rm
,

which by reorganization of terms in the cable equation can be shown to equal

jm =
λ2

rm

∂2V

∂x2
.

This is the current entering the extracellular space, generating the electric potentials
measured on the MEA.

For any compartment, V = Vi − Ve is the difference between the potential
inside and just outside the membrane. However, the fluctuations of the extracellular
potential typically are small compared to the intracellular variations. Hence, when
calculating the transmembrane currents, V is just set to the difference between
the intracellular potential and ground, i.e., the extracellular potential is assumed
constant [35, 44]. Since the membrane currents are subsequently used to compute
extracellular potentials, this introduces an inconsistency. By explicit modeling of
both the intracellular and extracellular space, this simplification would be avoided
[21]. However, for the subthreshold phenomena considered here it seems well
justified [27].

2.1.4 Volume Conduction

Up to now, membrane currents have been discussed. This section goes on to de-
scribe how they set up an extracellular electric potential and is partly based on the
book by Nunez and Srinivasan [41].

A volume V of charge density ρ confines a total charge

Q =

∫∫∫
V
ρdV .



12 Background

By charge conservation, the negative rate of change of Q equals the net current
passing out through ∂V , the surface enclosing the volume. The latter is given by
the surface integral of the current density2, J, over ∂V , so

−∂Q

∂t
=

∫∫
∂V

(J · n) dA,

where n is an outward unit normal. Combining these two equations gives

− ∂

∂t

∫∫∫
V
ρdV =

∫∫
∂V

(J · n) dA.

The temporal derivative on the left-hand side can be put inside the integral, assum-
ing the volume does not change with time. The right-hand side can be rewritten
using the divergence theorem. This yields

−
∫∫∫

V

∂ρ

∂t
dV =

∫∫∫
V
(∇ · J) dV .

Since the integrals on both sides are over V , also the arguments have to equal. This
gives the continuity equation [23],

∇ · J = −∂ρ

∂t
. (2.8)

Assuming an Ohmic medium3, the volume current can be expressed as

J = σE, (2.9)

where E is the electric field and σ the electrical conductivity of the medium. In
biological tissue, the time-derivative of the magnetic field induced by the currents
is negligible, so Faraday’s law of induction,

∇× E = −∂B
∂t

,

can be simplified to
∇× E = 0.

Using the mathematical identity

∇× (∇f) = 0

for any scalar f , it is clear that the electric field can be expressed as the gradient of
φ, a scalar potential field,

E = −∇φ. (2.10)

The minus sign is by convention [23, 44].
2Boldface is here used to represent vector quantities.
3Explained in section 1.2.1 of reference [44].



Bioelectricity 13

Figure 2.6: Neuron membrane modeled as inner boundary. The outward unit vector
points into the hole, which is not part of the computational domain, Ω. Jm is the current
density on the boundary and represents current crossing the cell membrane.

It follows from insertion of equation (2.10) into (2.9) that the volume current
can be expressed as

J = −σ∇φ.

Plugging this into the continuity equation (2.8) we get Poisson’s equation,

∇ · (σ∇φ) = ∂ρ

∂t
. (2.11)

The conductivity σ may in general be a 3 × 3 matrix. In the case of an isotropic
medium, it is a scalar.

In experiments it is possible to stimulate one or a few neurons. Upon repeated
trials, the background noise of all other cells is averaged out, thereby making it
possible to model the electrical behavior of a few neurons in the tissue [15]. In the
following, only one stimulated neuron will be considered. All others are part of the
passive volume conductor and their presence only expressed indirectly through the
tissue conductivity. Instead of specifying a source function for the stimulated neu-
ron, its membrane can represented by an inner boundary [21]. Transmembrane cur-
rents enter the volume conductor through Neumann boundary conditions. With no
current sources in the extracellular space, Poisson’s equation reduces to Laplace’s
equation,

∇ · (σ∇φ) = 0. (2.12)

Now consider an inner hole in a three-dimensional domain, as illustrated by
figure 2.6. On the membrane, the scalar radial outward current is

−Jm · n,

where Jm is the current density across the surface and n is the outward unit normal
of the extracellular space. The extracellular current is given by

Je = −σ∇φ.



14 Background

Because of continuity the volume current perpendicular to the membrane, very
close to its surface, has to equal the current density crossing the membrane [23],
i.e.,

−Je · n = −Jm · n.

This gives

−Je · n = − (−σ∇φ · n) = σ
∂φ

∂n
.

In the case of a long, thin cable, figure 2.6 can be thought to show a cross
section through which the intracellular potential is constant. For a single compart-
ment, e.g., the soma, the potential is constant by definition. Hence, the current
density will at any time have the same value throughout the surface and be directed
normal to the membrane, i.e.,

−Jm · n = Jm,

where Jm is the scalar membrane current density, positive outwards. The bound-
ary condition for the extracellular potential on the membrane of the active neuron
hence becomes

σ
∂φ

∂n
= Jm. (2.13)

An approach similar to the one described in the last paragraphs, i.e., model-
ing the membrane of the active neuron as an inner boundary, was also used by
references [21, 27, 51].

2.1.5 Extracellular Conductivity

The electrolytic extracellular medium makes up less than 20 % of cortical tissue.
However, since its conductivity is much higher, volume currents tend to flow ex-
tracellularly rather than through the hardly penetrable cell membranes. Hence, a
piece of passive tissue can be imagined as packed with almost impenetrable neu-
rons immersed in a conductive fluid [11, 22, 26].

Despite this, the tissue conductivity, σ, is often assumed to be a constant scalar
[35, 43, 44]. The assumption is that microscale-fluctuations average out, giving
macroscale homogeneity. A justification of this homogenization approximation
can be found in appendix A of G. Holt’s PhD thesis [26]. In that work, an array of
axons, i.e., nonconductive membranes, were explicitly modeled. The extracellular
potentials were compared with those obtained by assuming the whole domain to
be extracellular, containing volume current sources. The results showed that the
two approaches were practically equivalent. In this thesis, a current source in an
extracellular domain has been modeled, equivalent to the last approach done by
Holt [26].

Goto et al. [22] measured the conductivity profile of rat barrel cortex. Statis-
tically siginficant anisotropy was measured in layers II/III and V, although with
the conductivity parallel to the column not larger than 1.5 times the value in the



Neuron Models 15

perpendicular direction. Inhomogeneities and anisotropies were found throughout
the column but not pronounced enough to reject the null hypothesis. The modeling
study by Holt [26] reported an anisotropy ratio of about 5-6.

With a proper choice of coordinate system, anisotropy may in general be mod-
eled by representing the bulk conductivity as a second order diagonal tensor,

σ =

 σxx 0 0
0 σyy 0
0 0 σzz

 ,

where σii is the conductivity along the i direction in the coordinate system chosen
[56]. In the case of modeling a cortical column, cylindrical symmetry is assumed,
and the principal directions are perpendicular to the column (y and z) and parallel
to it (x). In accordance with Goto et al. [22], it can then be written

σ =

 σ‖ 0 0

0 σ⊥ 0
0 0 σ⊥

 . (2.14)

The condictivities parallel and perpendicular to the column are represented by σ‖
and σ⊥, respectively. It should also be pointed out that in the case of anisotropy,
σ∇φ becomes a matrix-vector product, so the electric field will still be a three-
dimensional vector.

Possible frequency-dependence of extracellular conductivity, as suggested by,
e.g., Bedard et al. [12], will not be modeled in this work.

2.2 Neuron Models

Realistic calculations of transmembrane currents in morphologically reconstructed
neurons require a simulation environment like NEURON [4]. However, when the
passive electrical properties of cells are studied, more simplified models can be
utilized.

In slice experiments, the MEA is typically situated a few hundred microns
below the active neuron. Hence, the top priority of both the cell model and the
volume conduction model should be that they sufficiently reproduce potentials on
the electrodes this distance away. Good simplified models may allow analytical
solutions, which are important in order to investigate, e.g., parameter dependences
and power laws [43]. In this work, where the main scope is to study the impact of
boundary conditions and conductivity profile, the details of the neuron model are
presumably not critical for the results obtained.

Two quite simple models will be used. The following sections present these,
along with the assumptions on which they rest. To obtain a coherent explanation,
the derivation of particular expressions used in this work will also be shown. The
dipole approximation, typically valid for distances more than 1 mm away from the



16 Background

Figure 2.7: Two-monopole model. The arrows show the direction of the current; the left
monopole is a source, and the right is a sink.

neuron, has not been used, since the far-field limit is never reached in MEA slice
measurements4.

2.2.1 Two-Monopole Approximation

Excitatory synaptic stimulation results in an inward current. Hence, net positive
charge leaves the extracellular space, for example by Na+ entering the cell or Cl−

leaving it. According to Kirchhoff’s current law, the net current into the cell must
be zero at any time. This means that a return current of equal size as the synaptic
input current must instantaneously leave the neuron. For synaptic stimulation at
the dendrites, the return current typically has its weighted mean position close to
the soma, especially frequency components of the input current below about 10
Hz [35,44]. This lets us model the neuron by two monopoles, a sink situated at the
site of synaptic stimulation and a source at the soma [35].

Laplace’s equation (2.12) determines the potential in the passive extracellular
medium, and the two monopoles are modeled as spherical inner boundaries. Ω
denotes the whole extracellular space, while ∂Ω7 and ∂Ω8 are the boundaries sur-
rounding each of the two monopoles5. Assume further that ∂Ω8 represents a point
on a dendrite receiving excitatory synaptic stimulus. Then, by Kirchhoff’s current
law, the boundary conditions on the two monopoles become

σ
∂φ

∂n
= Jm(t) on ∂Ω7

and

σ
∂φ

∂n
= −Jm(t) on ∂Ω8.

Figure 2.7 illustrates the model.
Lindén et al. [35] set the source and sink current to give the same dipole mo-

ment as found by compartmental modeling. Here, the two-monpole will be used
for:

4See e.g., figure 6 in reference [35].
5The reason for this numbering will become clear in section 4.3.



Neuron Models 17

Figure 2.8: Ball-and-stick model. Schematic illustration of a ball-and-stick neuron with
current stimulation, Ie, in the soma. L, the cable length, is denoted by l in section 2.2.2.
Taken from Dayan and Abbott [15].

• Testing the numerical accuracy.

• Comparison of the FEM solution, explicitly modeling the experimental set-
up, to the analytical solution, which assumes an infinite and homogeneous
medium.

• Studying the impact of anisotropic and inhomogeneous tissue conductivity.

Hence, the monopole currents will be somewhat arbitrarily chosen because their
amplitude and power law behavior are not essential for the problems to be investi-
gated.

2.2.2 Ball-and-Stick Neuron

The ball-and-stick model is based on work by Wilfrid Rall from the late 1950’s
through the 60’s [48]. It models the soma as one spherical compartment and maps
the entire dendritic tree into an equivalent cylinder. The somatic transmembrane
currents are straightforwardly calculated from the soma potential by modeling the
membrane as containing a resistor and a capacitor in parallel. The stick is a cylin-
der, and both its membrane potential and the resulting currents are given by the
cable equation (2.7) with appropriate boundary conditions. Figure 2.8 shows an
illustration of the model.

We will here consider a ball-and-stick model with a sinusoidal current stimulus,

Ie = I0 cos(2πft) = I0 cos(ωt), (2.15)

in the soma. The injected current faces a parallel connection of the ball and the
stick, whose complex6 admittances are Yball and Ystick, respectively [42]. From

6Boldface here symbolizes complex variables. In the rest of this thesis, the exact usage will be
apparent from the setting.



18 Background

Figure 2.9: Equivalent circuit for the ball-and-stick model receiving somatic current
stimulus. The sinusoidal stimulation current yields a sinusoidal soma potential, Vball(t),
which is modeled as an alternating voltage source. The stimulation current leaves the
neuron either through the soma membrane or the stick membrane, making it a parallel
connection with the complex admittances Yball and Ystick.

electric circuit theory, the equivalent admittance is just the sum of these. By the
complex form of Ohm’s law, the soma (ball) potential becomes [54]

Vball =
Ie

Yball + Ystick
.

The somatic return current is given by

Iball = YballVball,

or equivalently,

Iball =
Yball

Yball + Ystick
Ie.

The electrode current can be split into a complex amplitude Î0, also containing
the phase, and a complex exponential, i.e.,

Ie = Î0ejωt. (2.16)

The current density out of the ball membrane hence becomes

Jball =
1

S

Yball

Yball + Ystick
Î0ejωt, (2.17)

where S is its surface area. In the implementations, S will be found numerically
from the mesh being used.

Equation (2.16) lets us write the soma potential as

Vball =
Î0ejωt

Yball + Ystick
.



Neuron Models 19

By introducing the amplitude

V̂0 =
Î0

Yball + Ystick
,

we can write
Vball = V̂0e

jωt. (2.18)

We assume that the potential at the point of connection between the ball and
the stick is Vball. Figure 2.9 shows the equivalent circuit. Note that the mem-
brane currents of the stick have not been explicitly modeled. Ystick represents the
admittance to longitudinal current inside the stick at the point where it meets the
ball.

Pettersen and Einevoll [43] assumed that the distal end of the stick was insu-
lating. By using the expression (2.6) for longitudinal current density in a cable,

ji(x, t) = −
1

ri

∂V (x, t)

∂x
,

insulation is imposed by the boundary condition

ji(l, t) = −
1

ri

∂V (l, t)

∂x
= 0,

where l is the stick length, denoted L in figure 2.8. From the equivalent circuit
model, the soma end of the stick is at the potential given by equation (2.18). This
gives the Dirichlet boundary condition

V(0, t) = V̂0e
jωt. (2.19)

Since the BC consists of a single frequency, the potential will also be sinusoidal
due to the linearity of the cable equation. A solution of the form

V = V̂ejωt

can be assumed, and inserted into the cable equation. This was done by Pettersen
and Einevoll [43], who found the expression

istick(x, t) = H(x)V̂0e
jωt

for the current per unit length along the stick, where H is the stick transfer function.
For a stick of diameter d, the current per unit area crossing the membrane becomes

Jstick(x, t) =
1

πd
H(x)V̂0e

jωt. (2.20)

The real part of this expression gives the physical transmembrane current.
The soma admittance is [34]

Yball =
4πd2s2

Rm
.



20 Background

Stick admittance,

Ystick =
πd3/2s

2
√
RiRm

[
1

1 + exp(2sl/λ)
− 1

1 + exp(−2sl/λ)

]
,

and stick transfer function,

H(x) =
πs2d
Rm

[
exp(sx/λ)

1 + exp(2sx/λ)
+

exp(−sx/λ)
1 + exp(−2sx/λ)

]
,

were derived by [43]. The frequency-dependence arises through the term

s =
√
1 + jωτm.

Letting ∂Ω7 and ∂Ω8 denote the ball and the stick membrane, respectively, the
boundary conditions on their surfaces become

σ
∂φ

∂n
= Jball(t) on ∂Ω7

and
σ
∂φ

∂n
= Jstick(x, t) on ∂Ω8,

where x is the distance from the point of connection between the two.

2.3 Microelectrode Arrays

2.3.1 Neural Activity Measurements

Recordings of neural electrical activity may be performed in several ways. A first
distinction is between extracellular and intracellular measurements. In the latter,
the cell membrane is penetrated with an electrode. From the measured potentials
it is straightforward to read out the firing of action potentials in the cell being
considered and also to study subthreshold fluctuations. Intracellular recordings,
however, are hard to perform in vivo. Also, they usually have to be done in the
soma due to the difficulty of inserting an electrode into the very thin axons and
dendrites. By placing an electrode just outside the soma, spikes can be counted
without breaking the membrane and in a way that is technically easier [11, 44].

Extracellular recordings are performed at a variety of spatial scales, from single
neuron measurements to the electroencephalogram (EEG) which measures electric
potentials on top of the skull arising from activity in millions or billions of neu-
rons. The EEG hence pictures the overall electrical activity in the brain, though
on a coarse scale [41]. The recorded extracellular potentials can be filtered, giv-
ing the multi-unit activity (MUA) which consists of frequency components above
about 500 Hz and the local field potential (LFP) containing frequencies less than
about 500 Hz [44]. The MUA gives a picture of the action potential firing in the
population being recorded.



Microelectrode Arrays 21

Figure 2.10: Experimental set-up of MEA measurements. A tissue slice immersed in
saline is placed on top of a glass substrate containing a dense array of electrodes. In the
experiments considered in this thesis, the stimulation electrodes on the array have not been
used. The reference electrode is embedded in the surrounding saline solution. Taken from
Fejtl et al. [19].

Measured extracellular potentials may have contributions from many neurons
in the vicinity of the electrode. In order to follow the firing activity of a single cell,
the electrode needs to be placed very close to its soma. For devices with multiple
electrodes, the temporal shape of a spike from a particular cell varies between
recording sites. This can be used to identify neurons contributing to the measured
potential [13, 17].

Microelectrode chips have been able to record extracellular potentials from
brain slices at hundreds of electrodes. Frey et al. [20] reported simultaneous record-
ings from 126 sites using a 7.5×6.1 mm chip. This large number provides a means
of detecting the network acitivity of the neurons in the sample [10, 20]. The MUA
part of the signal can be used to study firing rates of the different neurons. The
LFP, on the other hand, is harder to interpret directly [16]. It is not as strongly
attenuated with distance as MUA, so the LFP at a recording site contains signals
from neurons in a relatively large volume [44]. Synaptic activity in the dendrites
seems to be the main source of the LFP [17].

2.3.2 Experimental Set-up

MEA measurements are performed using either cell cultures are acute slices. Cul-
tured neurons are typically taken out from fetuses. Under the right conditions their
development continues and the growth of axons and dendrites may be followed.
An example of a microelectrode array specially produced for this purpose is the
neurocage [18]. With this, a single neuron is trapped on top of an electrode, so its
development can be studied both optically and via electric potentials [14, 45, 46].

Recent MEA recordings from acute slices of rat cerebellum have revealed a
very clear sink/source pattern [20]. In recordings from several slices, a challenge



22 Background

is to position the different samples similarly on the MEA, so that a comparison
can be made. Bakker et al. [10] reported doing this succesfully, and the spread of
action potentials in the slice, with current sinks and sources, was measured.

An introduction to microelectrode arrays written by developers at Multi Chan-
nel Systems [3] is given by Fejtl et al. [19]. Figure 2.10 sketches the set-up modeled
in this thesis, i.e., a tissue slice embedded in saline (ACSF) etched on top of an ar-
ray of electrodes. The slice thickness is typically somewhere between 300 and 400
µm [10, 20].

2.3.3 Stimulation Electrodes

The stimulation considered in this thesis is performed by injecting an electrode
into the soma of a particular neuron in the tissue. The resulting extracellular
potential arising from the induced transmembrane currents are measured on the
MEA [10, 21]. One or two of the electrodes on the array may also be used for
stimulation, giving a current into the bulk tissue. From the measured potentials
it may be hard to distinguish between the response of the neurons and the stim-
ulation itself. However, this type of stimulation can be used to measure tissue
impedance [22].

2.3.4 Recording Electrodes

By proper adjustment of the measurement apparatus, the recording electrodes on
the MEA can be modeled as electrical insulators [21]. This means that the electrode
impedance is high enough to let practically no current pass through it. When this
simplification is used, there is no need to distinguish the electrodes from the rest of
the array in the FEM model [51]. Instead, the potentials at the electrode positions
can be extracted from the data after simulation.

In this work, ideal electrodes have been assumed, and the whole microelectrode
array has been model as an electrical insulator. The Neumann boundary condition
at its surface thus is

σ
∂φ

∂n
= 0 for x ∈ ∂Ω6,

where ∂Ω6 is the bottom boundary, cf. section 4.3.



Chapter 3

Finite Element Method

The theory in this chapter is largely based on the book by Langtangen [30], the
FEniCS tutorial by Langtangen [32], and the book by Strang [55].

Finite element discretization has been used in this work. It provides flexible
simulation of partial differential equations (PDEs). Compared to the finite dif-
ference method, the FEM is particularly advantageous when it comes to handling
domains of complicated geometry [30, 55], exemplified here by various boundary
conditions (cell membranes, air, reference electrode, MEA), media with different
electrical properties (tissue, saline), as well as the geometry of the neuron model
employed.

The following chapter presents, somewhat heuristically, the mathematical basis
of the FEM. The integral notation differs from that of chapter 2. In particular,

∫
Ω
fdx

denotes the integral of a function f over the whole domain Ω, independent of Ω’s
dimension. E.g., if Ω is the unit cube, then

∫
Ω
fdx =

∫ x=1

x=0

∫ y=1

y=0

∫ z=1

z=0
f(x, y, z)dzdydx.

Also, ∫
∂Ω

fds

denotes the surface integral of f over the boundary ∂Ω of Ω. In the case of the unit
cube, ds hence is an infinitesimal area element.



24 Finite Element Method

3.1 Weak Formulation of Boundary Value Problems

Consider the elliptic [47] boundary value problem

−∇ · (σ∇u) = f x ∈ Ω (3.1)

u = g x ∈ ∂ΩD (3.2)

σ
∂u

∂n
= h x ∈ ∂ΩN, (3.3)

in which Ω is the domain, u is the primary unknown, and ∂ΩD and ∂ΩN are the
boundary parts with Dirichlet and Neumann boundary conditions, respectively. f ,
g, and h are scalar functions, possibly time-dependent, and x ∈ Rd, where d is
the dimension of the space considered (typically, d = 1, 2, or 3). The coeffi-
cient σ can in general be a d × d matrix (tensor of order 2). With the appropriate
choice of functions and boundaries, this boundary value problem could describe
volume conduction around a neuron, with transmembrane current density specified
by h(x, t).

The solution to (3.1)-(3.3) must have finite second derivatives because the
source function f on the right-hand side of (3.1) has to be finite; an infinitely large
source makes no sense physically. This means that both u and σ∇u must be con-
tinuous in Ω, since discontinuous functions have infinite derivatives at their points
of discontinuity. When σ contains step discontinuities, e.g., between the saline and
tissue, σ∇u is still a continuous function representing the volume current across
the interface [23]. To simplify the discussion, σ is now assumed to be continuous,
making ∇u continuous whenever σ∇u is. For discontinuous σ, the same results
would be obtained by replacing ∇u with σ∇u. Mathematically, u is an element
of the Hilbert space H2(Ω), containing all functions whose second derivatives are
square integrable on Ω. That is,∫

Ω
‖∇2u‖2dΩ <∞ ∀u ∈ H2(Ω).

Now, both sides of equation (3.1) are multiplied with a scalar valued test func-
tion, v, and the product is integrated over Ω, giving

−
∫
Ω
∇ · (σ∇u)vdx =

∫
Ω
fvdx. (3.4)

The left-hand side is integrated by parts,

−
∫
Ω
∇ · (σ∇u)vdx =

∫
Ω
σ∇u · ∇vdx−

∫
∂Ω

vσ
∂u

∂n
ds. (3.5)

Insertion of (3.5) into (3.4) yields∫
Ω
σ∇u · ∇vdx =

∫
Ω
fvdx+

∫
∂Ω

vσ
∂u

∂n
ds.



Weak Formulation of Boundary Value Problems 25

We require
v = 0 on ∂ΩD,

i.e., equation (3.4) is satisfied on ∂ΩD for any u. Essential (Dirichlet) boundary
conditions can thus be imposed directly on the solution u. This implies∫

∂Ω
vσ

∂u

∂n
ds =

∫
∂ΩN

vσ
∂u

∂n
ds,

which gives ∫
Ω
σ∇u · ∇vdx =

∫
Ω
fvdx+

∫
∂ΩN

vσ
∂u

∂n
ds.

Inserting the Neumann boundary condition (3.3) yields∫
Ω
σ∇u · ∇vdx =

∫
Ω
fvdx+

∫
∂ΩN

vhds. (3.6)

Integration by parts removed the second derivatives of the original boundary
value problem. To ensure finiteness, u and v must be continuous, but their first
derivatives may have step discontinuities. Hence, the test function and the solu-
tion must be elements of H1(Ω). Since H2(Ω) ⊂ H1(Ω), more functions satisfy
the integrated form than the original formulation involving second derivatives. Be-
cause of this weaker condition on u, equation (3.6) is called a weak formulation of
the boundary value problem.

We now introduce the notation

a(u, v) =

∫
Ω
σ∇u · ∇vdx (3.7)

and
L(v) =

∫
Ω
fvdx+

∫
∂ΩN

vhds, (3.8)

where a(u, v) and L(v) are called the bilinear form and the linear form, respec-
tively. In general, the bilinear form is the term involving both u and v, whereas the
linear form involves v only.

The weak formulation of the boundary value problem (3.1)-(3.3) is: Find u ∈
V such that

a(u, v) = L(v) ∀v ∈ V̂ , (3.9)

where

V = {v ∈ H1(Ω) : v = g on ∂ΩD} (3.10)

V̂ = {v ∈ H1(Ω) : v = 0 on ∂ΩD}. (3.11)

This is referred to as a variational problem, and u is called the trial function.
Dirichlet boundary conditions enter in the definition of the trial space, V , whereas
Neumann boundary conditions are expressed in the linear form, L(v). Under cer-
tain conditions, which are always met here, the Lax-Milgram theorem ensures ex-
istence and uniqueness of the solution u.



26 Finite Element Method

3.2 Discretization

The trial space (equation (3.10)) and the test space (equation (3.11)) from the weak
formulation in the last section were infinite dimensional. In order to calculate an
approximation, uh, to the true solution, u, the variational problem must be required
to hold for only a finite number of test functions. It is standard notation to let a
subscript h denote a discretization.

Let φ1, . . . , φn be linearly independent test functions. They form the basis of
an n-dimensional test space,

V̂h = {v ∈ span(φ1, . . . , φn) : v = 0 on ∂ΩD}.

With Galerkin’s method, uh is sought as a linear combination of the test functions,

u ≈ uh =

n∑
i=1

Uiφi, (3.12)

where U1, . . . , Un are scalar coefficients. Hence, the numerical approximation is a
projection of the true solution onto V̂h. Dirichlet boundary conditions are kept out
of the discussion and will be handled later.

The bilinear and linear form possess the property of linearity, i.e.,

a(u1 + u2, v1 + v2) = a(u1, v1) + a(u2, v1) + a(u1, v2) + a(u2, v2)

and
L(v1 + v2) = L(v1) + L(v2).

This can be seen from their definitions, equations (3.7) and (3.8), since the integral
of a sum equals the sum of the integrals over each term. Exploiting linearity we
can write the bilinear form of the discretized problem as

a(uh, φi) = a(

n∑
j=1

Ujφj , φi) =

n∑
j=1

a(φj , φi)Uj , i = 1, . . . , n.

Symmetry of the bilinear form,

a(u, v) = a(v, u), (3.13)

is always satisfied in the cases considered here, giving

a(uh, φi) =

n∑
j=1

a(φi, φj)Uj , i = 1, . . . , n.

The linear form is just
L(φi), i = 1, . . . , n.



Piecewise Polynomials 27

Figure 3.1: Mesh example. The figure shows a cross section of the three-dimensional
mesh representing a ball-and-stick neuron. Each triangle is part of a tetrahedron, making
up an element Ωi.

The discretized version of the variational problem now is: Find U1, . . . , Un

such that
n∑

j=1

a(φi, φj)Uj = L(φi), i = 1, . . . , n.

where φi ∈ V̂h. This amounts to requiring that the numerical solution exactly satis-
fies the continuous weak problem (equation (3.9)) for n independent test functions.

If A is a matrix with entries

Aij = a(φi, φj),

the coefficient vector is defined as

U = (U1, . . . , Un)
T ,

and the right-hand side is

b = (L(φ1), . . . , L(φn))
T ,

we get
AU = b. (3.14)

The solution vector, U , gives the weights in the series expansion for the numerical
approximation, uh. The Dirichlet boundary conditions are directly imposed on the
linear system, to be demonstrated in the next section.

3.3 Piecewise Polynomials

In the discretization procedure the domain is divided into nonoverlapping elements.
Figure 3.1 illustrates this by a close-up of a mesh used to represent the space sur-
rounding a ball-and-stick neuron. A cross section of a three-dimensional mesh is



28 Finite Element Method

shown. Each triangle is part of a tetrahedron making up an element. In three di-
mensions the altogether m elements consist of points, lines, and planes, in FEniCS
terminology called vertices, edges, and faces, respectively. Two-dimensional ele-
ments are made up of vertices and edges only, and in one dimension they consist
of vertices [8, 55].

One test function is assigned to each vertex, and we require test function num-
ber i to equal unity on vertex i and zero on all other vertices. This is formulated
mathematically as

φi(xj) = δij , (3.15)

where δij is the Kronecker delta and xj the position of vertex j. The approximate
solution at vertex i thus is

uh(xi) =
n∑

j=1

Ujφj(xi) =
n∑

j=1

Ujδij = Ui. (3.16)

Hence, the value at each vertex is just the value of the corresponding vector element
in U , obtained from solution of the linear system (3.14). The approximated value
between the vertices will be a series expansion over the test functions whose value
at the point considered is nonzero.

3.3.1 One Dimension

The basic ideas are easier to explain in one dimension and readily extend to a
d-dimensional domain. Consider the following boundary value problem on Ω =
[0, 1],

d2u

dx2
= 1 (3.17)

u(0) = 1 (3.18)

u(1) = 0. (3.19)

Here, ∂ΩD = {0, 1} and ∂ΩN = ∅. The analytical solution is

u(x) =
x2

2
− 3x

2
+ 1.

Multiplying both sides with a test function and integrating over Ω, we get∫ 1

0
u′′vdx =

∫ 1

0
vdx.

Next, we require v = 0 on ∂ΩD, i.e., v(0) = v(1) = 0. Integration by parts of the
left-hand side thus gives∫ 1

0
u′′vdx = u′v

∣∣∣1
0
−
∫ 1

0
u′v′dx = −

∫ 1

0
u′v′dx,



Piecewise Polynomials 29

Figure 3.2: Piecewise linear test function on a discretized unit interval. The interval
[0, 1] is partitioned into 6 elements and 7 edges. Also shown is the piecewise linear test
function φ4. Taken from Strang [55].

so the weak formulation of the boundary value problem becomes

−
∫ 1

0
u′v′dx =

∫ 1

0
vdx. (3.20)

Now, the unit interval is uniformly partitioned into n+2 nodes with coordinates
xi = ih, where i = 0, . . . , n+ 1 and

h =
1

n+ 1
.

Each subinterval, [xi, xi+1], makes up an element. In figure 3.2 there are 7 nodes,
so the number of elements is m = 6.

This leads to the definition of the test functions. Piecewise linear functions are
most common, and were used for all computations in this thesis. In one dimension
they are defined by

φi =


(x− xi−1)/h if x ∈ [xi−1, xi]
(xi+1 − x)/h if x ∈ [xi, xi+1]
0 else

(3.21)

Figure 3.2 shows the graph of φ4. Note that for nonuniform partitioning the h in
the denominator will become a variable. The functions considered are φ1, . . . , φn,
since x0 and xn+1 are subject to essential boundary conditions. Their derivatives
are

φ′
i =


1/h if x ∈ [xi−1, xi]
−1/h if x ∈ [xi, xi+1]
0 else

(3.22)

This implies that∫
Ω
‖∇φi‖2dx =

∫ 1

0

(
φ′)2 dx <∞, i = 1, . . . , n,



30 Finite Element Method

so
φi ∈ H1(Ω) for i = 1, . . . , n,

and the piecewise linear test functions obey the requirements stated in section 3.1.
Equation (3.20) gives the continuous weak form. With Galerkin’s method, the

discretized version is

−
n∑

j=1

(∫ 1

0
φ′
iφ

′
jdx

)
Uj =

∫ 1

0
φidx, i = 1, . . . , n. (3.23)

The integrals in the sum on the left-hand side follow from equation (3.22):∫ 1

0
φ′
iφ

′
jdx =

∫ 1

0
φ′
i0dx = 0 if j /∈ {i− 1, i, i+ 1}∫ 1

0
φ′
iφ

′
jdx =

∫ xi

xi−1

(
1

h

)(
−1
h

)
dx = −1

h if j = i− 1∫ 1

0
φ′
iφ

′
jdx =

∫ xi

xi−1

1

h

1

h
dx+

∫ xi+1

xi

−1
h

−1
h

dx = 2
h if j = i∫ 1

0
φ′
iφ

′
jdx =

∫ xi+1

xi

(
−1
h

)(
1

h

)
dx = −1

h if j = i+ 1

Here,
h = xi − xi−1 = xi+1 − xi

has been used. Defining the coefficients of the stiffness matrix, A, as

Ai,j =

∫ 1

0
φ′
iφ

′
jdx,

we see that Ai,i−1 = −1/h, Ai,i = 2/h, and Ai,i+1 = −1/h, while all other
entries are zero.

The right-hand side can also be evaluated analytically in this case:∫ 1

0
φidx =

∫ xi

xi−1

(x− xi−1)

h
dx+

∫ xi+1

xi

(xi+1 − x)

h
dx

=
1

h

∫ xi

xi−1

xdx− xi−1

h

∫ xi

xi−1

dx+
xi+1

h

∫ xi+1

xi

dx− 1

h

∫ xi+1

xi

xdx

=
1

2h
x2
∣∣∣xi

xi−1

− xi−1 + (xi−1 + 2h)− 1

2h
x2
∣∣∣xi+1

xi

=
1

2h

(
x2i − x2i−1 − x2i+1 + x2i

)
+ 2h

=
1

2h

(
x2i − (xi − h)2 − (xi + h)2 + x2i

)
+ 2h

=
−2h2

2h
+ 2h

=h



Piecewise Polynomials 31

An alternative to the calculations above is to observe that the value of the integral
equals the area under the curve of the function, cf. figure 3.2. In general, though,
it has to be computed using some numerical integration scheme.

The linear system (3.23) can now be written as

−1
h

(−Ui−1 + 2Ui − Ui+1) = h, i = 1, . . . , n

This is exactly the same tridiagonal system as would be obtained by a second order
accurate finite difference discretization of the problem. Dividing both sides by h
makes this even more clear. The advantage of the finite element method is that it
easily extends to problems of higher dimensions and irregular domains. With the
division shown in figure 3.2, i.e., 7 equally spaced edges, the linear system is

−1
h



1 0 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 0 1





U0

U1

U2

U3

U4

U5

U6


=



−1/h
h
h
h
h
h
0


(3.24)

The first and the last equation, U0 = 1 and U6 = 0, directly impose the essential
boundary conditions, u(0) = 1 and u(1) = 0. In practice a few more manipula-
tions would be done in order to create a symmetric coefficient matrix. This enables
fast algorithms for solving the linear system.

Given the vector U in equation (3.24), the finite element solution of the bound-
ary value problem (3.17)-(3.19) using the test functions of equation (3.21) is

uh(x) =

6∑
j=0

φj(x)Uj .

Figure 3.3 shows a plot of uh. Note that because piecewise linear test functions
are used, uh consists of straight lines between the nodes, as opposed to the exact
solution which is a second order polynomial [58].

3.3.2 Multiple Dimensions

The piecewise linear test functions described in the last section generalize straight-
forwardly to multiple dimensions. Figure 3.4 shows a sketch of a tetrahedron,
which is the type of element used in this work. The typically irregular shape of
the tetrahedra depends on the local geometry and fineness of the mesh. A transfor-
mation needs to be done between the physical coordinates, (x, y, z), and a regular
reference tetrahedron with local coordinates (α, β, γ). FEniCS performs this auto-
matically.



32 Finite Element Method

xx
0.00  0.00  0.200 0.200 0.400 0.400 0.600 0.600 0.800 0.800 1.00  1.00  

u(x)u(x)

1.00  1.00  

0.800 0.800 

0.600 0.600 

0.400 0.400 

0.200 0.200 

0.00  0.00  

Figure 3.3: FEM solution in one dimension. The curve shows the discretized solution of
the boundary value problem (3.17)-(3.19) with the partitioning of figure 3.2. FEniCS was
used to perform the computations and generate the plot.

Figure 3.4: Tetrahedron used in a three-dimensional finite element mesh. The figure
shows a regular reference tetrahedron with local coordinates α, β, and γ. Taken from
Scholz et al. [50].



Piecewise Polynomials 33

In figure 3.4, this means that the local coordinates of the points are A: (1, 0, 0),
B: (0, 1, 0), C: (0, 0, 1), and D: (0, 0, 0). Still using piecewise linear polynomials,
the test functions for a particular cell defined in local coordinates become

φA(α, β, γ) = α

φB(α, β, γ) = β

φC(α, β, γ) = γ

φD(α, β, γ) = 1− α− β − γ

Just as in the one-dimensional case, the discretized solution is a series expansion
over these functions on the mesh. Local coordinates could equally well have been
used in the simple one-dimensional case of the last section, but on a uniformly
partitioned interval the integrals can easily be evaluated directly in the global coor-
dinate system.



34 Finite Element Method



Chapter 4

FEniCS Implementations

FEniCS is a collection of software tools specialized for solving differential equa-
tions [2]. For the partial differential equations considered here, the important com-
ponent is DOLFIN, which can be accessed through C++ or Python code [36]. In
this work, Python [6] has been the language of choice. The following sections will
emphasize important steps necessary for the simulation of MEA measurements,
and present the computer implementations of the simulations performed. Com-
plete source code can be found on the attached CD, cf. appendix B.

This chapter is partly based on the texts by Langtangen [30–32] and the demos
and documentation available on the FEniCS website [2].

4.1 Weak Form

The DOLFIN package contains the components necessary for simulating PDEs
with FEniCS. The statement

from dolfin import *

makes them accessible from a Python script.
The next step is to specify the domain in which the simulations will be per-

formed. DOLFIN comes with meshes of some basic shapes in 1D, 2D, and 3D.
For example, a three-dimensional unit cube with 10+1 vertices in each direction is
generated by the command

mesh = UnitCube(10,10,10)

The mesh variable now holds a reference to the DOLFIN UnitCube object. Note
that discretization of the domain Ω is done automatically, with parameters speci-
fied as attributes upon declaration. This cube can later be transformed to a more
complicated region.

The mesh generated is a simplex mesh. A simplex is a line segment in 1D,
a triangle in 2D, and a tetrahedron in 3D [47, 59]. In other words, the elements
making up the mesh have 2, 3, or 4, vertices in 1D, 2D, or 3D, respectively.



36 FEniCS Implementations

Trial functions, test functions, and test space will be named u, v, and V, re-
spectively. The necessary declarations are done with the lines:

V = FunctionSpace(mesh, ’CG’, 1)
u = TrialFunction(V)
v = TestFunction(V)

The first attribute to FunctionSpace specifies the mesh on which the functions
are defined. CG stands for Continuous Galerkin, which are simply piecewise poly-
nomials, and the last attribute tells that they are first-order, i.e., linear. The next
two lines define the trial function and test functions as instances of the respective
DOLFIN classes. Since Galerkin’s method is used, u and v are elements of the
same function space.

Other functions in the problem need to be specified as instances of the Expression
class. For example, an electrode current I = I0 cos(ωt) is defined by1

I_0 = 250 # value of current amplitude
omega = 1 # value of angular frequency

# Declare the current I
# I_0 and omega are handed over to I in a dictionary
I = Expression(’xI_0*cos(xomega*t)’, {’xI_0’ : I_0, ’

xomega’ : omega})
# Update the time
I.t = t

The first two lines declare the amplitude and angular frequency. They can be
handed over to the Expression instance I in a dictionary on declaration. When
parameters need to be updated, e.g., in a time loop, the assignment shown in the
last line is more convenient.

Weak forms are implemented in FEniCS using the Unified Form Language
(UFL), which provides a syntax close to mathematical formulation [8]. Consider
the general bilinear and linear form arising from the Poisson problem of section
3.1,

a(u, v) =

∫
Ω
σ∇u · ∇vdx

and

L(v) =

∫
Ω
fvdx+

∫
∂ΩN

vhds.

Translated into UFL, they become

a = sigma*inner(grad(u),grad(v))*dx
L = f*v*dx + sigma*v*h*ds(1)

Multiplication by dx implies an integral over the whole domain. Multiplica-
tion by ds means that an integral over a region of one topological dimension less

1The somewhat peculiar variable names starting with an x are used to distinguish variables inside
the expression from those holding parameter values in the Python script.



Mesh Generation 37

than the original domain is evaluated, a surface integral in this case. However, the
surface integral should only be calculated on the part of the boundary with Neu-
mann conditions. Here it is assumed that ∂ΩN is marked with the value 1, which
is given as an attribute in the statement ds(1). This ensures that the integral is
evaluated over the right surface. An instance of the MeshFunction class, named
boundaries, holds the information about the boundary markers, cf. section 4.3.

The terms in the forms need to be properly defined. E.g., if σ is a constant, it
can be declared by

sigma = Constant(3.0) # Example value 3.0 S/m

or as an Expression instance.
The example problem in section 3.1 also was subject to a Dirichlet boundary

condition. Assuming that boundaries has the value 2 on ∂ΩD, an instance of
DirichletBC is declared with the line

bc = DirichletBC(V, g, boundaries, 2)

Here, g is assumed to be an instance of the Expression or Constant class.
Now, the problem is solved by:

problem = VariationalProblem(a, L, bc,
exterior_facet_domains=boundaries)

phi = problem.solve()

The first line declares a VariationalProblem instance. The bilinear form
and the linear form are given as the first two attributes. The Dirichlet boundary
condition, represented by bc, also needs to be specified. The last attribute states
that the information about boundary markers is contained in the boundaries
instance. The second line of the snippet solves the discrete variational problem,
returning its solution to the variable phi as an instance of the DOLFIN Function
class. It can be plotted using the built-in tool Viper, exported to file formats suitable
for data analysis and visualization, and it can be used to compute functionals, e.g.,
the volume current, −σ∇φ.

4.2 Mesh Generation

DOLFIN’s native mesh generator, which was used in this work, is sufficient for
relatively simple geometries. Here, the generation of a mesh for simulation of
a ball-and-stick neuron in a MEA experiment will be explained in detail. The
same principles apply for a two-monopole, but in that case the steps are somewhat
simpler. For larger and more complex problems the FEniCS package contains
TriTetMesh [36], a Python wrapper for the preprocessors Triangle (2D) [52] and
Tetgen (3D) [53]. Meshes generated with other packages can also be converted to
a format compatible with FEniCS. The article by Means et al. [37] demonstrates
mesh generation reproducing the complex geometry of a single cell, based on elec-
tron tomography imaging.



38 FEniCS Implementations

The coordinate axes in FEniCS are numbered from 0, so (x, y, z) translates to
(x[0],x[1],x[2]). The neuron is centered at y = 0, with its stick and the
x-axis aligned. Its height above the MEA is varied. In this example, the ball radius
has been set to 10 µm and the stick radius and length to 1 µm and 1 mm, respec-
tively. Other values were also used in the simulations, cf. section 5.5 [43]. The
length unit in all scripts is the millimeter. Thus, the relevant code for generating an
outer box, i.e., the domain Ω, is

box_x_dim=4; box_y_dim=4; box_z_dim=1
mesh = Box(-box_x_dim/2.,-box_y_dim/2.,-box_z_dim/2.,

box_x_dim/2.,box_y_dim/2.,box_z_dim/2.,nx,ny,nz)

nx, ny, and nz are the number of cells in each direction.
The tissue is defined in the code as a subclass of the DOLFIN SubDomain

class

tissue_x_dim=2; tissue_y_dim=2; tissue_z_dim=0.3
class Tissue(SubDomain):

def inside(self, x, on_boundary):
return -tissue_x_dim/2.<= x[0] <= tissue_x_dim/2.

and -tissue_y_dim/2. <= x[1] <= tissue_y_dim/2.
and -box_z_dim/2.<= x[2] <= -box_z_dim/2. +

tissue_z_dim

The inside method returns True if a point x is situated within the tissue bound-
aries and False otherwise.

The potential is not expected to vary vigorously in the saline, a homogeneous
medium far from the current source. Hence, the piecewise polynomials need not
be very close in order to approximate the true solution well, and a coarse mesh
is used for computational efficiency. Inside the tissue, and close to the neuron in
particular, both potentials and currents are expected to vary significantly within a
small spatial range. A finer mesh is therefore needed.

Even without concern for numerical accuracy, the mesh has to be fine around
the neuron. In order to make holes representing the ball and the stick, the vertices
must be separated by distances significantly smaller than their radii, 10 µm and
1 µm, at the respective positions. However, if a partitioning of, say, 0.2 µm was
applied throughout the whole domain, the number of vertices would be on the order
of

(4 mm)

(0.2× 10−3 mm)
× (4 mm)

(0.2× 10−3 mm)
× (0.3 mm)

(0.2× 10−3 mm)
= 6× 1011,

resulting in a
(6× 1011)× (6× 1011)

linear system to be solved! Such a computational bottleneck is avoided by local
mesh refinement, to be explained later.

The geometry of the holes also has to be provided. This is done by defining
two subclasses of the DOLFIN SubDomain class, here named Ball and Stick.



Mesh Generation 39

These are used to mark the parts of the mesh containing the ball and the stick, just as
a subclass for the tissue was defined earlier in this section. Ball and Stick will
later be removed, creating an inner boundary through which the transmembrane
currents will enter.

The ball-and-stick cell, centered at (x, y, z) = (0, 0, z0), has length

2rball + l,

where rball is the ball radius and l the stick length. Since the stick is oriented in the
x-direction, the neuron will be confined within(

−2rball + l

2
≤ x ≤ 2rball + l

2

)
along the x-axis. With the soma on the negative x-axis, the center of the ball will
be situated at (x, y, z) = (−l/2, 0, z0). This means that the radial distance from
the center point of the ball to a point (x, y, z) ∈ Ω is

r =
√

(x+ l/2)2 + y2 + (z − z0)2.

The point is inside the ball if r < rball, in case of which it should be removed from
the mesh in order to create a hole.

The code defining the subclass representing the ball becomes2

class Ball(SubDomain):
def inside(self, x, on_boundary):

# Distance from center of ball to x
r = sqrt((x[0]-ball_x_coor)**2 + (x[1]-ball_y_coor)

**2 + (x[2]-ball_z_coor)**2)
return r<1.5*radius # slightly larger than ball

def snap(self, x):
r = sqrt((x[0]-ball_x_coor)**2 + (x[1]-ball_y_coor)

**2 + (x[2]-ball_z_coor)**2)
if r < 1.5*radius:

x[0] = ball_x_coor + (radius/r)*(x[0]-
ball_x_coor)

x[1] = ball_y_coor + (radius/r)*(x[1]-
ball_y_coor)

x[2] = ball_z_coor + (radius/r)*(x[2]-
ball_z_coor)

The inside method returns True if a point in the mesh is within 3rball/2 from
the center of the ball, to make sure that the boundary points are all included. Instead
using the statement

return r <= radius

2Note that in the scripts, x is a point, whereas x in mathematical formulation denotes position
along the first coordinate axis.



40 FEniCS Implementations

would make the code very sensitive to roundoff error, possibly leading to points
lying inside the ball, close to the boundary, not being properly marked as parts of
it. As will be explained later, the snap method sets the radius of the ball back to
rball again.

The stick is confined within(
− l

2
+ rball ≤ x ≤ l

2
+ rball

)
along the x-axis, and its symmetry line lies at y = 0 and z = z0. The radial
distance from its axis to an arbitrary point is

r =
√

y2 + (z − z0)2.

Accordingly, the subclass Stick is defined with the code

class Stick(SubDomain):
def inside(self, x, on_boundary):

# Radial distance from stick to x
r = sqrt((x[1]-stick_y)**2 + (x[2]-stick_z)**2)

# Return True for slightly larger region
return r<1.5*stick_radius and stick_x_left-.5*

radius <= x[0] <= stick_x_right+.5*radius
def snap(self, x):

r = sqrt((x[1]-stick_y)**2 + (x[2]-stick_z)**2)
if r<1.5*stick_radius and stick_x_left <= x[0] <=

stick_x_right+.5*radius:
x[1] = stick_y+(stick_radius/r)*(x[1]-stick_y)
x[2] = stick_z+(stick_radius/r)*(x[2]-stick_z)

As for the ball, slightly larger radius and length are actually used and subsequently
corrected by the snap method.

Having defined the appropriate subclasses, the next step is mesh refinement
around the ball and the stick. The method used here was to start out with a rather
coarse mesh for the whole domain, with a uniform resolution of 0.1 mm. An outer
loop iterating over the predefined number of refinements contained the subclass
Refinement, which marked the cells to be refined. Refinement was updated
in each iteration, marking a successively smaller volume for refinement. The most
important parts of the code are shown here.

for i in range(num_refinements):
class Refinement(SubDomain):

def inside(self, x, on_boundary):
... # boolean tests, returns True if x is in the

region to be refined

ref_region = MeshFunction(’uint’, mesh, mesh.topology()
.dim())

ref_region.set_all(0)
# Mark region to be refined



Mesh Generation 41

Refinement().mark(ref_region,1)

# Boolean mesh function
markers = MeshFunction(’bool’, mesh, mesh.topology().

dim())
markers.set_all(False)
# Transfer ref_region information to markers
for cell in cells(mesh):

if ref_region[cell.index()] == 1:
markers[cell.index()] = True

# Return new mesh to variable
mesh = refine(mesh, markers)

The mid section declares a MeshFunction instance, ref_region, whose value
is 1 in the cells to be refined and 0 elsewhere. This is used to define the boolean
mesh function, markers. The code has to go the way through the ref_region
function before declaring markers because the set_all and mark methods do
not work for a boolean mesh function instance at the time of this writing. In the
last line of the snippet, the refined mesh is used to declare a new mesh variable.

When proper refinement is done, the ball and stick can be extracted from the
mesh. Using the subclasses defined above, this is easily done by

subdomains = MeshFunction(’uint’, mesh, mesh.topology().
dim())

subdomains.set_all(0)
Ball().mark(subdomains,1)
Stick().mark(subdomains,2)
mesh = SubMesh(mesh, subdomains, 0)

SubMesh returns the parts of the mesh not marked as ball or stick, i.e., it only
keeps the cells in which subdomains has the value 0.

Submesh extraction removes the cells contained in the ball and stick but does
not define a smooth inner boundary. In order to obtain this, the edges close to the
boundary have to be reorganized. This is performed by the snapmethods of Ball
and Stick, automatically called with

mesh.snap_boundary(Ball())
mesh.snap_boundary(Stick())

For an illustration of the algorithm, assume in general that the ball is situated at
(x0, y0, z0). The snap method of Ball first calculates the distance to its center,

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2,

for each mesh point. When r < 3rball/2 is satisfied, the following snapping is
performed:

x← x0 +
rball
r

(x− x0),

y ← y0 +
rball
r

(y − y0),



42 FEniCS Implementations

Figure 4.1: Snapping smooths the boundary. In the mesh to the left, a submesh is ex-
tracted, creating a hole in the domain. To the right, a snap method has been called, moving
the edges in order to give a smooth boundary.

and
z ← z0 +

rball
r

(z − z0).

The same procedure applies to the two radial axes of the stick. Figure 4.1 shows
snapping of a circular hole.

4.3 Boundary Conditions

Electric potentials are determined up to some constant and only have a physical
interpretation when measured between two points in space. As shown in figure
2.10 on page 21, in MEA experiments, a reference electrode is normally immersed
in the saline. The recordings express the difference between the potentials on the
array electrodes and that of the reference electrode. Bakker et al. [10] report on
having such an electrode immersed in the saline during measurements. Frey et
al. [20] did a finite element simulation of the extracellular potentials arising from
transmembrane currents calculated in NEURON [4]. A cylindrical outer geometry
was used and the MEA assumed to be an electrical insulator, while all the other
walls were grounded. The same outer boundary conditions were used in a modeling
study by Joucla and Yvert [51].

The concept of boundary markers provides a flexible way of handling multiple
boundary conditions. This is done by declaring a MeshFunction instance over
cell facets, whose topological dimension is one lower than the cells. In 3D, the
facets are cell surfaces, e.g., the ABC-plane of the tetrahedron in figure 3.4 on
page 32. As far as boundary conditions are concerned, markers on exterior facets
are of interest.



Boundary Conditions 43

Boundary Marker
Side with n = î 1
Side with n = ĵ 2
Side with n = k̂ 3
Side with n = −î 4
Side with n = −ĵ 5
Side with n = −k̂ 6
Ball surface 7
Stick surface 8
Source monopole 7
Sink monopole 8
Reference electrode 9

Table 4.1: Summary of boundary markers. The table shows the boundary markers used
in the implementations. The sides of the outer box are labeled from 1-6, the membranes
with 7 and 8, and the reference electrode with a 9. n denotes an outward unit normal.

Table 4.1 summarizes the markers used. The mathematical notation is kept
consistent with the markers defined in the scripts, so, e.g., ∂Ω5 is the outer plane
whose normal points in the negative y-direction. Figure 3.10 (b) on page 311 in
the book by Langtangen [30] sketches a box whose sides are labeled in the same
way as here. Since the whole outer boundary, including the MEA, is assumed to
be insulating, boundaries 1-6 could as well have been given a single marker. In
any case, the boundary conditions on these sides do not show up in the variational
forms, so the particular marking has no impact on the computational efficiency
after the mesh has been generated.

Since the set-up is surrounded by air and glass, practically insulating mate-
rials [57], the following homogeneous Neumann condition has been used for the
surrounding walls in all the simulations reported in this thesis:

σ
∂φ

∂n
= 0, x ∈ (∂Ω1 ∪ . . . ∪ ∂Ω6) .

I.e., the net current across the interface is zero. The reference electrode has been
modeled as a square plane situated in an upper corner of the fluid,

∂Ω9 ={(x, y, z) : (1.9 mm ≤ x ≤ 2.0 mm)

∩ (1.9 mm ≤ 2.0 mm) ∩ (z = 0.5 mm)}.

An alternative would be to model it explicitly in three dimensions, but since the
electrode in any case is far away, its exact placement and geometry is not expected
to play an important role. The relevant boundary condition becomes

φ = 0, (x, y, z) ∈ ∂Ω9.

A particular boundary is represented by a subclass of SubDomain. E.g.,
boundary 1 is declared with the code



44 FEniCS Implementations

class Boundary1(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[0]-box_x_dim/2.)<=
DOLFIN_EPS

The return statement first tests whether a point actually is on the boundary and
then whether its x-value equals 2.0 mm to machine precision. Similar subclasses
are defined for all the other boundaries considered. The ball and stick boundaries
are of particular interest. Their declarations are

class BallBoundary(SubDomain):
def inside(self, x, on_boundary):

r = sqrt((x[0]-ball_x_coor)**2 + (x[1]-ball_y_coor)

**2 + (x[2]-ball_z_coor)**2)
return on_boundary and r < 1.1*radius

class StickBoundary(SubDomain):
def inside(self, x, on_boundary):

r = sqrt((x[1]-stick_y)**2 + (x[2]-stick_z)**2)
return on_boundary and r<1.5*stick_radius and

stick_x_left <= x[0] <= stick_x_right+radius

Because the ball and the stick are connected to each other, the boundary mark-
ers will be somewhat inaccurate close to their junction. Again, the boolean tests
use slightly larger radii. If the ball boundary is marked first, points on the stick
boundary closer than or at 11rball/10 from the center of the ball will be marked
as parts of the ball boundary. Next, these values are overwritten by the method
marking the stick boundary. Since most parts of the stick are far from any other
boundary, 3/2 times the stick radius can safely be used in the test as well as an
extra term on the right-hand side of the last inequality in the return statement.
The on_boundary method will in any case return False for interior points.
However, stick_x_left has been used as the lower limit along the x-axis in
order to accurately mark the junction between the ball and stick.

Finally, a MeshFunction instance is declared and set to appropriate values
on the different boundary parts:

boundaries = MeshFunction(’uint’, mesh, mesh.topology().
dim()-1)

Boundary1().mark(boundaries,1)
... # boundaries 2-6
ReferenceElectrode().mark(boundaries,9)
mesh.snap_boundary(Ball())
BallBoundary().mark(boundaries,7)
mesh.snap_boundary(Stick())
StickBoundary().mark(boundaries,8)

Note that snapping is performed just before the boundary is marked. This turned
out to be necessary for correct marking. The Dirichlet condition on the reference
electrode is now declared by



Conductivity Profile 45

bc = DirichletBC(V, Constant(0), boundaries, 9)

The homogenous Neumann conditions for the insulating outer boundary do not
enter the variational form and will therefore not be of concern. The transmembrane
currents for the ball and stick give rise to the linear form

L(v) =

∫
∂Ω7

Jballvds+

∫
∂Ω8

Jstickvds.

Translated into unifified form language it becomes

L = J_ball*v*ds(7) + J_stick*v*ds(8)

4.4 Conductivity Profile

In this work, only the saline and tissue have been explicitly modeled. The whole
apparatus has been given the dimensions

(4 mm)× (4 mm)× (1 mm) .

The slice dimensions were assumed to be

(2 mm)× (2 mm)× (0.3 mm) .

A Cartesian coordinate system is placed in the center of the domain, meaning that
the tissue can be represented by the set

Ωtissue ={(x, y, z) : (−1 mm ≤ x ≤ 1 mm)

∩ (−1 mm ≤ y ≤ 1 mm) ∩ (−0.5 mm ≤ z ≤ −0.2 mm)}

and the whole domain by

Ω ={(x, y, z) : (−2 mm ≤ x ≤ 2 mm)

∩ (−2 mm ≤ y ≤ 2 mm) ∩ (−0.5 mm ≤ z ≤ 0.5 mm)}.

Hence, saline is represented by

Ωsaline = Ω \ Ωtissue.

4.4.1 Homogeneous and Isotropic Tissue

The media are distinguished by their conductivities. When σ is a constant scalar in
each domain, it is defined by

σ =

{
σsaline if x ∈ Ωsaline

σtissue if x ∈ Ωtissue

Assuming a Tissue() subclass is properly defined, the following lines now
mark the saline with a 0 and the tissue with a 1:



46 FEniCS Implementations

Layer σ‖ (S/m) σ⊥ (S/m) Extent (mm)
II/III 0.319 0.231 0.6 < x < 1.0
IV 0.325 0.24 0.2 < x < 0.6
V 0.353 0.228 −0.2 < x < 0.2
IV 0.294 0.268 −1.0 < x < −0.2

Table 4.2: Anisotropic and inhomogeneous conductivity profile. The table summarizes
the values used in the conductivity tensors implemented. σ‖ and σ⊥ are the conductivity
values parallel and perpendicular to the respective columns. The rightmost column shows
the assumed spatial extent of the layers. Based on data from Goto et al. [22].

subdomains = MeshFunction(’uint’, mesh, mesh.topology().
dim())

subdomains.set_all(0)
Tissue().mark(subdomains,1)

Using the ideas presented in section 6.2 of the FEniCS tutorial [32], an Expression
instance named sigma representing the piecewise constant conductivity is defined
by
V0 = FunctionSpace(mesh, ’DG’, 0)
sigma_saline = 3.0 # S/m
sigma_tissue = 0.3 # S/m
sigma = Function(V0)
sigma_values = [sigma_saline, sigma_tissue]
help = numpy.asarray(subdomains.values(), dtype = numpy.

int32)
sigma.vector()[:] = numpy.choose(help, sigma_values)

Note that a space of constant functions, polynomials of degree zero, is used for the
piecewise constant sigma. The bilinear form is now declared with
a = sigma*inner(grad(u),grad(v))*dx

4.4.2 Inhomogeneous and Anisotropic Tissue

Inhomogeneous and anisotropic tissue conductivity may quite easily be imple-
mented in FEniCS. Goto et al. [22] measured the conductivity in the barrel cortex
of Wistar rats. The conductivity tensor was estimated in each of the layers II/III, IV,
V, and VI, and the mean values found will be used in the present implementation
( [22], table V). To compare the potentials calculated assuming such a conductivity
profile to those with σ = 0.3 S/m throughout, the slices need to be of the same size.
Thus, the extent of the layers measured by Goto et al. were adjusted somewhat and
is presented in the rightmost column of table 4.2.

Layers II/III, IV, and V have been given the height 0.4 mm, while layer VI is
twice as tall. Since the soma is placed on the negative part of the x-axis in the
ball-and-stick model, layer VI is confined longitudinally by

−1 mm < x < −0.2 mm,



Conductivity Profile 47

and layers II/III are within

0.6 mm < x < 1 mm.

Accordingly, the soma is placed somewhere in layer VI, with dendrites (stick) ex-
tending to layer IV. The modeling of anisotropy and inhomogeneity described here
is done for testing its possible impact on the resulting MEA potentials and to illus-
trate how a conductivity tensor can be implemented in FEniCS. Hence, the accurate
extent of the layers and the particular conductivity values are not critical.

In mesh generation with inhomogeneous conductivity, the Tissue needs to
be replaced by one subclass for each layer. E.g., for layer V:

class LayerV(SubDomain):
def inside(self, x, on_boundary):

return -tissue_x_dim/2.+layer_VI_length<= x[0] <=
-tissue_x_dim/2.+layer_VI_length+layer_V_length
and -tissue_y_dim/2. <= x[1] <= tissue_y_dim

/2. and -box_z_dim/2.<= x[2] <= -box_z_dim/2. +
tissue_z_dim

Marking is done with

LayerVI().mark(subdomains,1)
LayerV().mark(subdomains,2)
LayerIV().mark(subdomains,3)
LayerII_III().mark(subdomains,4)

As the code snippet shows, the layers are marked from 1 to 4 in the positive direc-
tion along the x-axis. Saline gets a 0.

The conductivity function in Ω can be defined by

σ(x) =



σsaline if x ∈ Ω0

σVI if x ∈ Ω1

σV if x ∈ Ω2

σIV if x ∈ Ω3

σII/III if x ∈ Ω4

(4.1)

where Ωi denotes the subdomain marked with i. In this case, σsaline is a scalar,
whereas the other four are second order tensors. Having partitioned Ω into subdo-
mains, the bilinear form3,

a(u, v) =

∫
Ω
(σ(x)∇u) · ∇vdx,

can be written as a sum of the integrals over each subdomain,

a(u, v) =

4∑
i=0

∫
Ωi

(σ(x)∇u) · ∇vdx. (4.2)

3The parentheses are included to specify that the matrix-vector product must be evaluated before
the inner product.



48 FEniCS Implementations

The conductivity tensors were programed as matrices. The following code
shows the declaration of σV .

# Define the matrix elements
s11 = Expression(’s’, {’s’: sigma_V_parallel})
s12 = Constant(0.0); s13 = Constant(0.0); s21 = Constant

(0.0)
s22 = Expression(’s’, {’s’:sigma_V_perpendicular})
s23 = Constant(0.0); s31 = Constant(0.0); s32 = Constant

(0.0)
s33 = Expression(’s’, {’s’:sigma_V_perpendicular})

# Declare the matrix
layer_V_conductivity = as_matrix(((s11,s12,s13),(s21,s22,

s23),(s31,s32,s33)))

The bilinear form is declared by writing out the whole sum of equation (4.2):

a = saline_conductivity*inner(grad(u),grad(v))*dx(0) +
inner(layer_VI_conductivity*grad(u),grad(v))*dx(1) +
inner(layer_V_conductivity*grad(u),grad(v))*dx(2) +
inner(layer_IV_conductivity*grad(u),grad(v))*dx(3) +
inner(layer_II_III_conductivity*grad(u),grad(v))*dx(4)

Just as surface integrals over parts of the boundary were performed by handing
a marker to ds, the argument given to dx defines the subdomain over which to
calculate the integral. The variational problem is now solved with

phi = VariationalProblem(a, L, bc, cell_domains=subdomains
, exterior_facet_domains=boundaries).solve()

Information about the subdomain markers used in the weak form is passed to the
cell_domains attribute.

4.5 Visualization

FEniCS comes with the plotting tool Viper. It is based on the Visualization Toolkit
(VTK) [7]. A solution, u, is plotted by the statement

plot(u)
interactive()

Viper is intended for quick-and-easy visualization while working with the code.
More sophisticated software is needed for data analysis or to create figures for use
in papers and presentations.

The grids of finite element computations are often highly irregular. For a 3D
tetrahedral mesh, whose vertices are spread in a nonuniform way, an array of data
values for all points does not contain sufficient information for plotting. The con-
nectivity pattern between vertices must also be provided. In contrast, the grids
used in finite difference methods are regular, so the connectivity follows straight-
forwardly from the location of nodes along the axes of the coordinate system used.



Membrane Currents 49

Description Symbol Value
Membrane resistance rm 3.0× 104 Ωcm2

Dendrite resistance ri 150 Ωcm
Membrane capacitance cm 1 µF/cm2

Stick length l 1 mm
Stick diameter d 2 µm (3 µm)
Ball radius rball 10 µm (42.5 µm)
Stimulus amplitude I0 250 pA
Membrane time constant τm = rmcm 3 µs
Electrotonic length λ =

√
drm/4ri 10−3 m

Height above the MEA z0 100 µm (200 µm)

Table 4.3: Ball-and-stick parameters. The table summarizes the parameter values used
in the ball-and-stick model. The values in parentheses are used in the adjusted model of
section 5.5.

VTK-based plotting tools are very good for irregular grids. One such, Par-
aView [5], is freely available and has been used for the generation of figures in this
thesis. In the case of a timeloop, the following code is needed to export a finite
element field, u, for use with ParaView:

file = File(’u.pvd’)
while t < T:

... # code
file << u

In each iteration, a file u#.vtu is created4, containing the data at the current time
in VTK format. The file u.pvd is a list keeping track of the data files. The
ParaView tutorial [38] gives a good introduction to the software. ParaView also
has support for automatic plot generation with Python scripts, which is convenient
when creating a large number of figures, e.g., for different parameter values.

4.6 Membrane Currents

Table 4.3 shows the parameters used in the implementations described in this sec-
tion.

The weak form of Laplace’s equation for volume conduction around a ball-
and-stick neuron is given by∫

Ω
σ∇u · ∇vdx =

∫
∂Ω7

Jballvds+

∫
∂Ω8

Jstickvds.

When the soma receives an electrode current, Ie(t), the resulting membrane cur-
rents are Jball(t) and Jstick(x, t). As far as stimulation of a single frequency is

4# is replaced by a sequence of numbers starting with 000000 at the first time step.



50 FEniCS Implementations

concerned, the currents are given by the real parts of equation (2.17) on page 18
and (2.20) on page 19. Finding the real parts analytically leads to very complicated
expressions, so the approach used here is to rather evaluate the complex expres-
sions numerically and then use the real part. The code defining the Expression
instances representing the membrane currents now become more involved than for
the two-monopole model. Two ways of defining them were tested, both of which
will be described in the following.

The first approach consists of creating a subclass of Expression, overload-
ing its eval method. The essential parts of the code are described by:

class MembraneCurrent(Expression):
def eval(self,value,x):

J_m = ... # Expression for stick current
value[0] = J_m.real # return real part

class SomaCurrent(Expression):
def eval(self, value, x):

Y = ... # Expression for admittance
J_s = Y*... # Expression for soma current
value[0] = J_s.real # return real part

J_s = SomaCurrent()
J_m = MembraneCurrent()

In addition to these lines, the necessary parameters need to be supplied.
Defining complex expressions in this way produces accurate results, but each

time they are evaluated a callback from C++ to Python is involved, leading to slow
code [36]. On the other hand, when the Expression instances are defined with
a C++ string, the formula is precompiled [25]. This is sketched in the following
snippet:

# String with C++ code for soma current
soma_code = """
class SomeExpr : public Expression
{
public:

SomeExpr() : Expression(),... {}
// variable declarations
void eval(Array<double>& values, const Data& data)

const
{
... // code defining current

values[0] = J_soma.real();
}

};
"""
# String with C++ code for stick current
stick_code = """
class SomeExpr : public Expression



Simple Kirchhoff-Fix 51

{
public:
SomeExpr() : Expression(), ... {}
// variable declarations
void eval(Array<double>& values, const Data& data) const
{

... // code defining current
values[0] = J_m.real();

}
};
"""
J_ball = Expression(soma_code)
J_stick = Expression(stick_code)

A test for only one time step with the ball-and-stick neuron on a mesh of 41342
vertices took 126 seconds for subclassed expressions and 26 seconds with precom-
piled expressions. Running a time loop on the same mesh, the difference was even
more pronounced. Hence, precompiled expression have been used for the simula-
tions presented in this thesis.

4.7 Simple Kirchhoff-Fix

The analytic expressions for the membrane currents resulting from a current injec-
tion in the soma obey Kirchhoff’s current law. I.e., the following equation holds at
any time:

Ie(t) = Iball(t) +

∫ l

0
istick(x, t)dx.

Iball(t) is the total current leaving the soma, and istick(x, t) is the outward mem-
brane current per unit length of the stick, whose soma end is situated at x = 0. In
the implementations, the current density is used. For the soma, this is simply

Jball(t) =
Iball
S

,

where S is its surface area. Since the soma and stick are connected, the actual value
of S computed by FEniCS depends sensitively on the boundary marking close to
their junction. By using this computed S in the definition of the soma current
density, numerical evaluation of ∫

∂Ω7

Jballds,

in any case reproduces Iball to machine precision.
The errors are larger for the stick because its membrane current depends on

longitudinal position. The expression for the stick current is declared in the code



52 FEniCS Implementations

as a function of distance from the soma end. But this is also where there are
significant inaccuracies. The current density is defined as

istick(x, t)

πd
,

but close to the ball the points at the distance x marked as being on the membrane
do not exactly correspond to a circumference πd. Also, the very thin distal end of
the stick is not marked separately from the curved surface, so the Neumann con-
dition for the stick current is also applied there. This means that the membrane
current at its end, istick(l, t), will be smeared over a larger surface area than in-
tended. Since the end area of the long and thin stick is very small compared to the
rest of its surface, this error is not expected to play a significant role.

In any case, some error will arise, i.e., numerical evaluation of∫
∂Ω8

Jstickds

does not reproduce ∫ l

0
istick(x, t)dx

to machine precision (table 4.4). A simple fix was created, to be explained in
the following. The goal is to make the membrane satisfy Kirchhoff’s current law,
expressed in terms of current densities as,

Ie =

∫
∂Ω7

Jballds+

∫
∂Ω8

Jstickds. (4.3)

For sinusoidal stimulus, the rightmost term can be written as5

∫
∂Ω8

Jstickds = Re

(∫
∂Ω8

H
πd

Î0ejωt

Yball + Ystick
ds

)
.

The phase-dependent current amplitude, Î0, is just a real number and can be pulled
out of the integral. This gives∫

∂Ω8

Jstickds = Istick0 · Re
(∫

∂Ω8

H
πd

ejωt

Yball + Ystick
ds

)
,

where the amplitude has been named Istick0 , to specify that it is used in the stick
current formula. Equation (4.3) can now be written as

Istick0 =
Ie −

∫
∂Ω7

Jballds

Re
(∫

∂Ω8

H
πd

ejωt

Yball+Ystick
ds
) . (4.4)

5Cf. equation (2.20) on page 19.



Simple Kirchhoff-Fix 53

Istick0 is a constant multiplier to the stick current and will be adjusted to make equa-
tion (4.3) hold. The amplitude used to calculated the somatic membrane current
will be fixed at I0. By changing, e.g., the membrane resistance instead, its shape
could also have been altered6.

Multiplying both the numerator and denominator of equation (4.4) by I0, we
get

Istick0 =
I0

(
Ie −

∫
∂Ω7

Jball(t)ds
)

Re
(∫

∂Ω8

H
πd

Î0ejωt

Yball+Ystick
ds
) ,

which is the same as

Istick0 =
I0

(
Ie −

∫
∂Ω7

Jball(t)ds
)

∫
∂Ω8

Jstick(t)ds
.

The denominator is the stick current originally computed, i.e., the one causing
trouble with Kirchhoff’s current law. Now, re-calculating the stick current using
Istick0 , the net current entering the neuron will be zero, to machine precision, at any
time.

The essential parts of the code are reproduced here.

# Adjust stick current to obey Kirchhoff’s current law
while t < T:

# Update time
J_soma.t = t
J_stick.t = t

# Soma current and preliminary stick current
soma_current = assemble(J_soma*ds(7), mesh=mesh,

exterior_facet_domains=boundaries)
stick_current = assemble(J_stick*ds(8), mesh=mesh,

exterior_facet_domains=boundaries)

# Calculate electrode current
I_e = I_0*cos(omega*t) # [mA], electrode current

# Calculate correction current
I_0_corr = (I_e-soma_current)*I_0/stick_current

# Update the value used in J_stick
J_stick.I_0 = I_0_corr

... # Code for solving variational problem

# Update time
t += dt

6See, e.g., fig. 6 in reference [34].



54 FEniCS Implementations

t/T ∆Ibefore ∆Iafter Istick0

0 8.22× 10−9 6.12× 10−22 2.59× 10−7

1/8 5.77× 10−9 1.92× 10−22 2.59× 10−7

2/8 −6.71× 10−11 9.28× 10−24 1.55× 10−7

3/8 −5.86× 10−9 3.06× 10−21 2.59× 10−7

4/8 −8.22× 10−9 −6.12× 10−22 2.59× 10−7

5/8 −5.77× 10−9 1.94× 10−21 2.59× 10−7

6/8 6.71× 10−11 7.16× 10−24 1.55× 10−7

7/8 5.86× 10−9 2.98× 10−21 2.59× 10−7

Table 4.4: Current correction for 1 Hz stimulation. The table shows the effect of the
Kirchhoff-fix-algorithm. 8 time steps of the period, T = 1/f = 1 s, are shown. ∆Ibefore
and ∆Iafter are the differences between the electrode current and the return current before
and after the current is adjusted, respectively (equation (4.5)). Istick0 is the adjusted current
amplitude, and the original value was I0 = 250× 10−9 mA. All units are in mA.

# Reset electrode current before next time step
J_stick.I_0 = I_0

Table 4.4 shows corrections for a ball-and-stick neuron receiving somatic elec-
trode current, Ie(t) = (250 pA) cos(2π(1 Hz)t). The period of Ie is divided into 8
equally spaced time steps. The deviation from Kirchhoff’s current law is calculated
as

∆I = Ie −
(∫

∂Ω7

Jball(t)ds+

∫
∂Ω8

Jstick(t)ds

)
. (4.5)

For nonzero phases of the stimulus, a 3.5 % correction of I0 was the result. In
the zero phases (t = 2T/8 and t = 6T/8), the original error is more pronounced.
The adjusted amplitude for the stick current expression, Istick0 = 155 pA, repre-
sents a 38 % change of the original value. The third column of table 4.4 shows
that, in any case, zero net current into the membrane was achieved to very high
precision after the adjustment. This consistent pattern in the values of Istick0 was
not found for all frequencies. With f = 100 Hz, for example, Istick0 for nonzero Ie
varied between 257 and 266 pA and for zero electrode currents it was found to be
152 pA.

The large error in the zero phase of the electrode current shows that the sim-
ulation results at these times should be interpreted carefully. On a more powerful
computer than the laptop used in this work, a finer mesh around the ball-and-stick
could have the potential to improve the accuracy.



Chapter 5

Results

5.1 Numerical Accuracy

For a homogeneous, isotropic, and infinite medium containing N point current
sources, the electric potential at some point r is given by equation (1.1),

φ(r) =
1

4πσ

N∑
n=1

In
rn

.

In order to test the numerical accuracy, an infinite medium containing two cur-
rent monopoles was simulated and the computed potentials compared to the exact
solution given by the above equation. Since a computer cannot handle an infinite
domain, infinity was mimicked by imposing φ(r) as the outer boundary condition.
The deviation between the numerical and the exact solution in the inner domain
then indicates the size of the discretization error. In the FEM implementation, the
point current sources have been converted to inner boundaries, through which the
currents enter. According to Gauss’ law, this has no physical effect on the potential
outside of the boundaries, as long as the current leaves the monopoles in a radially
symmetric way.

The two monopoles were placed at

(x1, y1, z1) = (−0.5 mm, 0.0 mm, 0.0 mm)

and
(x2, y2, z2) = (0.5 mm, 0.0 mm, 0.0 mm).

The tissue was assumed to be a box of size

(8 mm)× (8 mm)× (8 mm) ,

which is 256 times the slice volume used in the other simulations. The monopole
at x = −0.5 mm was set as a current source and the one at x = 0.5 mm a current
sink1, so the net current entering the domain was zero.



56 Results

Figure 5.1: Verification of numerical accuracy. Line plots parallel to the two-monopole
axis are shown. Blue line: FEM solution. Red line: infinite medium solution. In the upper
figure, the potential along a line crossing through the monopoles is shown, i.e., along the
x-axis at y = 0 and z = 0. In the lower figure, the potential is shown along a line 0.1 mm
below the two-monopole, i.e., along the x-axis at y = 0 and z = −0.1 mm. The curves in
the upper figure are nearly identical. Also in the lower figure they are very close, except
just below the monopoles, i.e., around 3.5 mm and 4.5 mm along the horizontal axis. This
suggests that the numerical accuracy is good. See section 5.1 for details.



Numerical Accuracy 57

Figure 5.2: Verification of numerical accuracy. Line plots parallel to the two-monopole
axis are shown. Blue line: FEM solution. Red line: infinite medium solution. In the upper
figure, the potential along a line 0.5 mm below the monopoles is shown, i.e., along the
x-axis at y = 0 and z = −0.5 mm. In the lower figure, the potential is shown along a line
1 mm below the monopoles, i.e., along the x-axis at y = 0 and z = −1 mm. Both curves
are nearly identical, confirming that the numerical solution is correctly implemented. See
section 5.1 for details.



58 Results

Figure 5.3: Verification of numerical accuracy. Line plots perpendicular to the two-
monopole axis are shown. Blue line: FEM solution. Red line: infinite medium solution. In
the upper figure, the potential is plotted along a line crossing through the current source,
i.e., along the y-axis at x = −0.5 mm and z = 0 mm. In the lower figure, the potential
is shown along a line 0.1 mm below the source, i.e., along the y-axis at x = −0.5 mm
and z = −0.1 mm. The lower curve shows that the analytical solution predicts a higher
potential just below the monopole (at 2 mm on the axis), but otherwise the agreement is
excellent. The discrepancy very close to the current source is also present in the lower
image of figure 5.1. See section 5.1 for details.



Numerical Accuracy 59

Using the labels from section 4.3, the boundary value problem to be compared
with the analytical solution is

∇ · (σ∇φ) = 0 x ∈ Ω

φ = 1
4πσ

(
I
r1
− I

r2

)
x ∈ ∂Ω1 ∪ . . . ∪ ∂Ω6

σ
∂φ

∂n
= I

S7
x ∈ ∂Ω7

σ
∂φ

∂n
= −I

S8
x ∈ ∂Ω8

The current was set to I = 1 nA. The monopoles in the mesh were of radius

rm = 10 µm,

and Si (i = 7, 8) represents their surface area.
In this comparison, it is important that the point current I of the analytical so-

lution exactly equals the current density times surface area, JS, used in the FEM
discretization. Otherwise, the sources get different strengths in the two methods,
and a comparison makes no sense. Since the vertices on the surface of the ball
are connected by straight lines, the numerically computed area, Si, in general dif-
fers from 4πr2m. Hence, the surface area of each ball was found by numerically
evaluating

Si =

∫
∂Ωi

ds for i = 7, 8.

An example illustrates this procedure for the current source:

# Calculate surface area
area7 = assemble(Constant(1)*ds(7), mesh=mesh,

exterior_facet_domains=boundaries)
# Find current density across membrane
J_membrane7 = Expression(’xI/(area)’, {’xI’:I, ’area’:

area7})

Similar code applies for the sink. In the mesh used, numerical experiments showed
that the areas differed from 4πr2m by no more than 1 %.

The analytical solution was projected onto the mesh by using the same space
of linear functions as for the variational problem. This means that it is exact at all
vertices but approximated by straight lines between. To check for errors arising
because of this, the solution was also projected onto the mesh using a function
space of second order piecewise polynomials. The resulting plots were practically
indistinguishable, so piecewise linear functions were chosen in the implentations,
for computational efficiency.

In figures 5.1 and 5.2, the potential is plotted along lines parallel with the axis
connecting the two monopoles. It is clear that the FEM solution reproduces the

1Cf. figure 2.7 on page 16



60 Results

Figure 5.4: Ball-and-stick neuron in an inhomogeneous tissue. The tissue is split into
4 equally sized chunks, and each is assigned a conductivity value. The surrounding saline
solution has the conductivity 3.0 S/m. The position of the ball-and-stick neuron is also
illustrated. This model is used for the simulations in section 5.2. The red line sketches the
axis along which the plots of figure 5.9 were taken for conductivity values varying between
0.03 S/m and 0.3 S/m.

analytical solution in a good way. Figure 5.3 shows the potential along a line
perpendicular to the two-monopole axis. The upper image plots the potential along
the line crossing through the source, and here the agreement is very good except
for some boundary effects just on the surface of the ball. The second row shows
the corresponding line plot at z = −0.1 mm, which is 0.09 mm below the surface
of the ball. The analytical solution is seen to give a higher value just below the
monopole, but they quickly become essentially equal.

These figures, together with surface plots not shown here, confirm that the
simulations were very precise. Since similar implementations are used for the rest
of the problems considered, the high numerical accuracy is presumed to apply to
these cases as well.

5.2 Large Inhomogeneity and Anisotropy

To obtain insight into how anisotropic and inhomogeneous conductivity affects
the extracellular potentials, exaggerated and probably unrealistic values were used.
First, the tissue was split into 4 equally sized pieces, each having isotropic conduc-
tivities either 0.3 S/m or 0.03 S/m. By comparing the extracellular potentials found
with this conductivity profile to those calculated for a homogeneous tissue with
σ = 0.3 S/m, the impact of inhomogeneity can be highlighted. Figure 5.4 shows
a sketch of the conductivity profile used in the simulations. Next, the impact of
anisotropy was investigated by simulating tissue with conductivity σ‖ = 0.3 S/m
parallel to the column and σ⊥ = 0.03 S/m perpendicular to the column. This is
illustrated by figure 5.5.



Large Inhomogeneity and Anisotropy 61

Figure 5.5: Anisotropic tissue. Illustration of the conductivity profile used to test the
impact of anisotropic conductivity. The direction along the axons has a conductivity of 0.3
S/m and the perpendicular direction 0.03 S/m. The surrounding saline solution has the
conductivity 3.0 S/m. The position of the ball-and-stick (not shown) is the same as in figure
5.4.

All cases were run with a ball-and-stick model receiving somatic electrode
current,

Ie = (250 pA) sin(2π(10 Hz)t).

The following plots illustrate the simulation results:

• Figure 5.6: Homogeneous and isotropic tissue

• Figure 5.7: Inhomogeneous and isotropic tissue

• Figure 5.8: Homogeneous and anisotropic tissue

The cuts shown in the figures are parallel to the ball-and-stick neuron and as wide
as the tissue. Their height is 0.5 mm, i.e., the lower 3/5 of each plot in the figures
shows the potential in the tissue, while the upper 2/5 is saline.

Comparison of figures 5.6 and 5.7 reveals that large inhomogeneities in the
conductivity create substantial deviations between the calculated extracellular po-
tentials. This is readily explained by Ohm’s law, J = −σ∇φ. For a given current
leaving the membrane, the potential gradient is inversely proportional to conduc-
tivity. The effect of anisotropy is shown by figure 5.8. In the case of higher con-
ductivity along the stick, the potential is seen to have a steeper decay perpendicular
to it, explained by just the same Ohmic argument. A qualitative feature to notice is
that the potential is more confined along the stick in the anisotropic case.

Parameter dependence was also investigated by plotting the extracellular po-
tential perpendicularly upward from the stick, illustrated by the red line in figure
5.4. The conductivity in the regions labeled with 0.03 S/m in figure 5.4 was gradu-
ally increased, with all other values kept constant. The curves in figure 5.9 clearly
show that the rate of change of the extracellular potential away from the stick is
larger for low conductivity values and smaller for high conductivity values.



62 Results

Figure 5.6: Ball-and-stick neuron in homogeneous and isotropic tissue. The lower 3/5 of
each image shows a ball-and-stick neuron in a tissue with conductivity 0.3 S/m, and the up-
per 2/5 is saline with conductivity 3.0 S/m. An electrode current, Ie = (250 pA) cos(2πft),
is injected in the soma, producing transmembrane return currents. The four rows show
t = 0, t = T/8, t = T/4, and t = 3T/8 for f = 10 Hz, i.e., T = 1/f = 0.1 s.



Large Inhomogeneity and Anisotropy 63

Figure 5.7: Ball-and-stick neuron in inhomogeneous and isotropic tissue. The lower 3/5
of each image shows a ball-and-stick neuron in a tissue with conductivity stepwise varying
between 0.3 S/m and 0.03 S/m (figure 5.4). The upper 2/5 is saline with conductivity 3.0
S/m. An electrode current, Ie = 250 pA cos(2πft), is injected in the soma, producing
transmembrane return currents. The four rows show t = 0, t = T/8, t = T/4, and
t = 3T/8 for f = 10 Hz, i.e., T = 1/f = 0.1 s. The impact of the inhomogeneity is
clearly visible. In the part along the stick with σ = 0.03 S/m, the extracellular potential is
varying much more than in the part with σ = 0.3 S/m. See section 5.2 for a discussion.



64 Results

Figure 5.8: Ball-and-stick neuron in homogeneous and anisotropic tissue. The lower
3/5 of each image shows a ball-and-stick neuron in a tissue with conductivity 0.3 S/m in
the horizontal direction and 0.03 S/m in the directions perpendicular to the stick, as shown
in figure 5.5. The upper 2/5 is saline with conductivity 3.0 S/m. An electrode current, Ie =
250 pA cos(2πft), is injected in the soma, producing transmembrane return currents. The
four rows show t = 0, t = T/8, t = T/4, and t = 3T/8 for f = 10 Hz, i.e., T = 1/f =
0.1 s. The impact of the conductivity profile can be seen by a comparison to figure 5.6.
With anisotropic tissue, whose perpendicular conductivity is lower, the potential gradient
away from the neuron is steeper. The maximum magnitude of the potential with respect to
the reference electrode is also about 5 orders of magnitude larger than for homogeneous
and isotropic tissue. See section 5.2 for a discussion.



Two-Monopole: Effect of BCs and Conductivity Profile 65

Figure 5.9: Extracellular potential for various conductivity values. The curves show line
plots of the extracellular potential perpendicularly upward from the stick, along the red
line sketched in figure 5.4. The conductivity in the parts labeled by 0.03 S/m in figure 5.4
was gradually increased, in order to investigate the dependence of the potential on the
conductivity, while the conductivity of the other areas was fixed. Red solid line: 0.03 S/m.
Green solid line: 0.06 S/m. Red dashed line: 0.12 S/m. Blue dashed line: 0.2 S/m. Blue
solid line: 0.3 S/m. The last case corresponds to a homogeneous tissue. It is clear from
the curves that the rate of change of the extracellular potential decreases with increasing
conductivity, as expected from Ohm’s law.

5.3 Two-Monopole: Effect of Boundary Conditions and
Conductivity Profile

The impact of the experimental set-up and tissue conductivity profile on the MEA
potentials was investigated, using a two-monopole model to represent the neuron.
The solution for an infinite medium of constant conductivity, σ, will in this section
be referred to as φ∞. In the case of balanced monopolar sources, it becomes

φ∞(r) =
1

4πσtissue

(
I

r1
− I

r2

)
, (5.1)

where r1 and r2 are the distance from the field point r to the source and the sink, re-
spectively. Similar expressions, involving sums over point sources or line sources,
have been used to evaluate the extracellular potential from transmembrane currents
in many previous studies [20, 27, 35, 43].

The weak form for the extracellular potential around a two-monopole model is∫
Ω
σ∇u · ∇vdx =

∫
∂Ω7

Jmvds−
∫
Ω8

Jmvds.

The monopoles were modeled as spheres of diameter 10 µm, and the straight line
between the source and the sink was aligned with the x-axis and centered on the
y-axis.



66 Results

Since the model is frequency-independent for a given monopole separation,
direct current was assumed, i.e., Jm is a constant. The current value used was
I = 1 nA.

The parameter-dependence of the MEA potentials was investigated in a step-
wise manner. First, in order to study the impact of a finite medium, i.e., the insulat-
ing boundary conditions and reference electrode, φ∞(r) was compared to the FEM
model. The latter incorporated the finite medium but neglected saline by assuming
the whole interior domain to consist of tissue, characterized by σtissue. The result-
ing potentials on a (2 mm) × (2 mm) square centered on the glass substrate are
shown in figure 5.10. This corresponds to the area covered by the tissue in the later
simulation where saline is taken into account. Comparison of the finite medium po-
tentials (upper plot) to the infinite medium potentials (middle row) shows that the
boundary conditions result in more than a doubling of the potentials on the MEA.
The absolute values around the current sink (blue area in upper plot) are lower than
those surrounding the source. This may be caused by the reference electrode being
closer to the sink.

Next, the impact of saline surrounding the tissue was investigated by comparing
the finite medium solution described in the last paragraph to the solution for a slice
with conductivity 0.3 S/m surrounded by saline of conductivity 3.0 S/m. Figure
5.11 shows the resulting plots. Interestingly, the presence of saline reduces the
potentials back towards φ∞, as seen by comparing the top image of figure 5.11 to
the middle image of figure 5.10. There are two opposite effects: The insulating
boundary conditions draw the potential on the MEA up, whereas the presence of
saline decreases it again. Since the conductivity of saline is 10 times that of tissue,
and volume current is conserved, the potential is almost constant in saline. Hence,
it serves like a grounded medium surrounding the slice, thereby causing a steeper
potential reduction from the neuron out to the interface.

Finally, the impact of moderate inhomogeneities and anisotropies, with the val-
ues given in table 4.2 on page 46, was investigated. The potentials calculated were
compared to those described in the last paragraph, which assumed a constant tissue
conductivity 0.3 S/m in all directions. Saline (σsaline = 3.0 S/m) was taken into
account in both models. A comparison hence indicates how the exact conductiv-
ity profile influences the potentials recorded on the MEA. The top image of figure
5.12 shows the plot for an inhomogeneous and anisotropic tissue, while the middle
image is identical to the upper row of figure 5.11, i.e., σtissue = 0.3 S/m. It is
evident that the moderate differences between the conductivity profiles do not have
a large impact on the potentials. The bottom plot in figure 5.12 shows the differ-
ence between the solutions. It confirms that the effect of anisotropy is to make the
potentials more aligned with the two-monopole axis, a feature which is hard to see
from the top plot.

To better display the shape of the potentials, line plots were taken along the
glass substrate (MEA). Figure 5.13 shows the potential along a line parallel to and
lying directly underneath the two-monopole axis. The insulating boundaries are
again seen to cause a great increase of both the crest and trough of the numerically



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 67

simulated potential (red curve), compared to φ∞ (blue curve). As indicated in
figure 5.12, the exact conductivity profile of the tissue has a very moderate impact
(green and purple curves). When the saline is modeled, the slice is situated between
1 mm and 3 mm along the axis. This is seen to produce a nearly constant potential
underneath the saline, as shown by the green and purple curve being nearly flat in
this region. In the absence of saline, the potential is smoothly changing along the
whole axis.

Figure 5.14 shows a similar plot along a line on the glass substrate, parallel to
the two-monopole axis but shifted aside by 0.4 mm. Here, the inhomogeneities and
anisotropies found by Goto et al. [22] are seen to have no impact on the potential:
The green and the purple curve overlap. Interesting to notice is the finite medium
solution (red curve), whose crest has a much large magnitude than its trough. This
is likely due to the presence of the reference electrode, which is closer to the sink
than to the source. Figures 5.15 and 5.16 show line plots perpendicular to the
two-monopole axis, still on the glass substrate and crossing underneath the current
source and the current sink, respectively. The impression given by the other plots
in this section is confirmed.

5.4 Ball-and-Stick: Effect of Stimulation and Conductiv-
ity Profile

This section describes investigations into how the conductivity profile of the tissue
affects the resulting potentials on the MEA. A ball-and-stick neuron with somatic
current stimulus was modeled. Subthreshold phenomena are still considered, so a
passive membrane has been assumed. The model has an intrinsic frequency filter-
ing through the complex root,

s =
√

1 + jωτm,

arising in the expressions for the membrane currents of the ball and the stick. It is
of interest to see how this effect shows up in the MEA potentials. By comparison
with experimental data from somatically stimulated cells, the correctness of the
model can be tested. The ball-and-stick parameters of table 4.3 on page 49 have
been used, and the electrode current was

Ie(t) = (250 pA) cos(2πft).

Figures 5.17-5.20 show cross sections of the tissue and saline, with a ball-and-
stick neuron situated close to the bottom. The soma (ball) is on the left end of
the stick. In these plots, the tissue is assumed to have a constant conductivity,
σtissue = 0.3 S/m. As usual, the conductivity of saline is set to σsaline = 3.0 S/m.



68 Results

Figure 5.10: Impact of boundary conditions. Potentials are shown on a (2 mm)× (2 mm)
square at the center bottom of the domain, i.e., where the MEA recordings from the tissue
are done. The figure in the upper row shows the FEM-computed MEA potentials assuming
the whole medium to have conductivity σ = 0.3 S/m. In the second row, the potentials are
calculated analytically assuming an infinite medium also with σ = 0.3 S/m. The figure
in the bottom row shows the difference, i.e., the FEM potentials minus the analytically
calculated potentials. Comparing the top and middle images reveals that the potentials
obtained by the different assumptions differ by more than a factor two. This suggests that
the boundary conditions of the experimental set-up, i.e., the surrounding glass, air, and
MEA plate, have a significant impact on the extracellular potentials. See section 5.3 for a
discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 69

Figure 5.11: Impact of saline. Potentials are shown on a (2 mm) × (2 mm) square at
the center bottom of the domain, i.e., where the MEA recordings from the tissue are done.
The figure in the upper row shows the FEM-computed MEA potentials assuming a slice of
extent (2 mm) × (2 mm) × (0.3 mm) is placed upon the MEA and surrounded by saline.
The tissue is assumed to have conductivity σ = 0.3 S/m, while the saline has σ = 3.0
S/m. The image in the second row is identical to the upper row of figure 5.10. It shows
the potentials calculated with the FEM, assuming the whole domain to consist of tissue of
conductivity σ = 0.3 S/m. The bottom image shows the difference between the two. It is
clear from the plots that the presence of saline around the tissue significantly reduces the
potentials on the MEA. See section 5.3 for a discussion.



70 Results

Figure 5.12: Impact of anisotropic and inhomogeneous conductivity profile. Potentials
are shown on a (2 mm)× (2 mm) square at the center bottom of the domain, i.e., where the
MEA recordings from the tissue are done. The image in the upper row shows the potentials
calculated by assuming an inhomogenous and anisotropic tissue with conductivity tensors
given by the values in table 4.2 on page 46. The middle row is identical to the top image
of figure 5.11. It shows the potentials calculated assuming a homogeneous tissue with
conductivity σ = 0.3 S/m. For both simulations, the surrounding saline was assumed
to have a constant conductivity σ = 3.0 S/m. The bottom image shows the difference
between the two. It is clear that any errors arising from modest degrees of anisotropy and
inhomogeneity in the tissue are small. See section 5.3 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 71

Figure 5.13: Impact of boundaries and conductivity. Line plots along the bottom plate,
parallel to and right below the two-monopole axis. The potential along the whole glass
substrate is shown (figure 2.10), and the tissue lies between 1 mm and 3 mm on the hori-
zontal axis. Blue line: potential, assuming an infinite medium with conductivity 0.3 S/m,
i.e., equation 5.1 on page 65. Red line: potential computed, assuming a finite medium
consisting only of tissue with conductivity 0.3 S/m. Green line: potential computed, as-
suming a tissue slice of conductivity 0.3 S/m is embedded in saline of conductivity 3.0 S/m,
i.e., similar to the real experimental set-up. Purple line: potential computed, assuming a
tissue slice with anisotropic and inhomogeneous conductivity values given by table 4.2 on
page 46 surrounded by saline of conductivity 3.0 S/m. The curves reveal that the insulating
boundary conditions greatly increase the potential. Taking the presence of saline into ac-
count, then reduces it again. Small inhomogeneities and anisotropies do not seem to have
a strong impact. See section 5.3 for a discussion.



72 Results

Figure 5.14: Impact of boundaries and conductivity. Line plots along the bottom plate,
parallel to the two-monopole axis but 0.4 mm aside from it. The potential along the whole
glass substrate is shown (figure 2.10), and the tissue lies between 1 mm and 3 mm on the
horizontal axis. Blue line: potential, assuming an infinite medium with conductivity 0.3
S/m, i.e., equation 5.1 on page 65. Red line: potential computed, assuming a finite medium
consisting only of tissue with conductivity 0.3 S/m. Green line: potential computed, assum-
ing a tissue slice of conductivity 0.3 S/m is embedded in saline of conductivity 3.0 S/m, i.e.,
similar to the real experimental set-up. Purple line: potential computed, assuming a tissue
slice with anisotropic and inhomogeneous conductivity values given by table 4.2 on page
46 surrounded by saline of conductivity 3.0 S/m. The curves reveal that the finiteness of
the medium and the insulating boundary conditions greatly increase the potential, whereas
taking the presence of saline into account then reduces it again. Small inhomogeneities and
anisotropies do not seem to have a strong impact on the potentials. Interestingly, in this
figure, for the potential with a finite medium consisting only of tissue (red curve), the crest
under the source-monopole has a magnitude more than twice as big as the trough under
the sink. This is supposedly due to the sink being closer to the reference electrode. See
section 5.3 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 73

Figure 5.15: Impact of boundaries and conductivity. Line plots along the bottom plate,
perpendicular to the two-monopole axis and crossing underneath the current source. The
potential along the whole glass substrate is shown (figure 2.10), and the tissue lies between
1 mm and 3 mm. Blue line: potential, assuming an infinite medium with conductivity 0.3
S/m, i.e., equation 5.1 on page 65. Red line: potential computed, assuming a finite medium
consisting only of tissue with conductivity 0.3 S/m. Green line: potential computed, as-
suming a tissue slice of conductivity 0.3 S/m is embedded in saline of conductivity 3.0 S/m,
i.e., similar to the real experimental set-up. Purple line: potential computed, assuming a
tissue slice with anisotropic and inhomogeneous conductivity values given by table 4.2 on
page 46 surrounded by saline of conductivity 3.0 S/m. Again, the insulating boundary con-
ditions greatly increase the potential (red line) compared to the infinite medium solution
(blue line). Taking the presence of saline into account reduces the potentials again. See
section 5.3 for a discussion.



74 Results

Figure 5.16: Impact of boundaries and conductivity. Line plots along the bottom plate,
perpendicular to the two-monopole axis and crossing underneath the current sink. The po-
tential along the whole glass substrate is shown (figure 2.10), and the tissue lies between
1 mm and 3 mm. Blue line: potential, assuming an infinite medium with conductivity 0.3
S/m, i.e., equation 5.1 on page 65. Red line: potential computed, assuming a finite medium
consisting only of tissue with conductivity 0.3 S/m. Green line: potential computed, as-
suming a tissue slice of conductivity 0.3 S/m is embedded in saline of conductivity 3.0 S/m,
i.e., similar to the real experimental set-up. Purple line: potential computed, assuming a
tissue slice with anisotropic and inhomogeneous conductivity values given by table 4.2 on
page 46 surrounded by saline of conductivity 3.0 S/m. Again, the insulating boundary con-
ditions greatly increase the potential (red line) compared to the infinite medium solution
(blue line). Taking the presence of saline into account reduces the potentials again. See
section 5.3 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 75

In figure 5.17 the stimulus frequency is 1 Hz. Here, the membrane currents
resulting from the stimulus, manifested through the extracellular potential gradient
alongside of the stick, are seen to leave close to uniformly. The exceptions are the
zero phase moments of the electrode current, i.e., at t = T/4 and t = 3T/4. In
these cases, the membrane currents must sum to zero. At t = T/4, this is seen by
membrane current entering the ball and the proximal end of the stick, while current
is leaving the distal end of the stick. At t = 3T/4, the currents have the opposite
direction.

The extracellular potentials arising from stimulus current of frequency 10 Hz
are shown in figure 5.18. No clear difference from the 1 Hz case displays. How-
ever, at t = 3T/8 and t = 7T/8 a slight low-pass filtering effect is seen in compar-
ison with figure 5.17. Here, the rate of change of the potential along the distal end
of the stick is smaller. Since the volume current is J = −σ∇φ, a smaller potential
gradient means less current in the tissue. Since this current has to come from the
membrane, a lower rate of change of the potential close to the stick indicates that its
membrane currents are reduced. Figure 5.19 shows the potentials for 100 Hz stim-
ulus, revealing a distribution of membrane currents clearly different from those of
the two lower frequencies considered. The currents leave the cell much closer to
the soma at all time steps. At the zero phase of the stimulus, still t = T/4 and
t = 3T/4, the bulk of the stick currents crosses the membrane closer to the soma
than for 1 Hz and 10 Hz.

Since there is no net current at the zero phase, the monopole moment of the
ball-and-stick model is zero. The first nonzero multipole moment generated by
the membrane currents is a dipole [23]. When the currents crossing the stick are
drawn towards soma for increasing frequency, the dipole length decreases. The
trend continues in figure 5.20, which shows the same plots for f = 1 kHz. Here,
the membrane currents are centered close to the soma. The zero phase currents are
also seen to get even closer.

These figure verify that the ball-and-stick model implemented here reproduces
the low-pass filtering properties shown by, e.g., references [35, 43]. This serves to
confirm that the FEniCS programs work correctly, while also being an instructive
way to see how the MEA potentials are generated. Special care should be taken
when interpreting the potentials at the zero phase of the electrode current. Although
it behaves as expected in figures 5.17-5.20, large corrections of the stick current
were needed to obey Kirchhoff’s current law2. More detailed simulations with
a finer mesh are needed before making any quantitative predictions of the dipole
length.

The low-pass filtering effect is also seen in figures 5.21-5.24, which show the
simulated potential on the MEA for stimulation frequencies f = 1 Hz, f = 10 Hz,
f = 100 Hz, and f = 1 kHz. Both for 1 Hz and 10 Hz, the potential is spread out
along the length of the stick. For the two higher frequencies it is more confined to
the region of the MEA underneath the soma. The color scale of each plot is adjusted

2Cf. section 4.7 and table 4.4 on page 54.



76 Results

to be between the minimum and maximum value in the view shown. Hence, it
is apparent that the maximum potential in the 1 Hz case is 8.9 × 10−7 V while
reaching 5/3 times that value for 1 kHz, i.e., 1.5× 10−6 V. A physical explanation
for this is simply that at any time, independent of frequency, a net current of the
same amount as supplied by the electrode has to leave the cell. For a patch of
membrane close to the soma, the amount of current across it in general increases
with frequency, thereby creating a larger potential difference.

Figures 5.25-5.28 provide the same view as just discussed but with inhomo-
geneous and anisotropic tissue conductivity. The conductivity profile, taken from
the recent work by Goto et al. [22], is shown in table 4.2 on page 46. For each
frequency, the overall shapes of the potentials are very similar to those calculated
for isotropic and homogeneous tissue conductivity 0.3 S/m. Similar to the po-
tentials for a two-monopole (figure 5.12), the minima and maxima3 are seen to
slightly increase with the inhomogeneous and anisotropic conductivity. However,
the deviation is less than 10 % in all cases. Again, it does not seem like the exact
conductivity profile is critical for the MEA potentials, as long as the values are
close to the one assumed for the homogeneous and isotropic tissue, cf. the extreme
cases of section 5.2.

By comparing the potentials along a line on the MEA for the two conductiv-
ity profiles considered, it is easier to get an impression of their impact. Figures
5.29-5.32 show plots on the glass substrate, saline part not included, along an axis
straight below the ball-and-stick neuron. The wiggly appearance of some curves is
just a numerical artifact.

In the low frequency case, current leaves the stick quite uniformly along its
whole length. Away from the ends, the volume current then has a direction perpen-
dicular to the stick axis; the directional derivative of the extracellular potential is
close to zero along the stick and maximum radially outwards. The conductivity in
the latter direction is between 0.228 S/m and 0.268 S/m, as opposed to 0.3 S/m in
the homogeneous and isotropic tissue. Accordingly, the potential at a distance 0.1
mm from the neuron is expected to be higher, as confirmed by the plots.

With respect to the horizontal axes of the graphs, the ball is situated at x = 0.49
mm, and the stick ends at x = 1.51 mm. As figure 5.29 clearly shows, the potential
for the inhomogeneous and anisotropic tissue (red line) is pronouncedly higher
between around 0.6 mm and 1.4 mm. The exception is in the zero phase of Ie,
when the two curves follow each other closely. A very similar picture is given by
figure 5.30 for f = 10 Hz. For 100 Hz stimulation, shown in figure 5.31, the two
solutions are closer to each other in the second and the last row. With f = 1 kHz
(figure 5.32) they are very close except for a small part where the return current is
concentrated.

3When discussing “magnitudes” of potentials, what is actually meant is of course the absolute
value of the potential difference between the point considered and the reference electrode.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 77

Figure 5.17: Ball-and-stick neuron with 1 Hz electrode current in the soma. In the
cross section shown, the upper 2/5 is saline, while the lower part is tissue. The figures
show t = 0, . . . , 7T/8, for a somatic electrode current, Ie = (250 pA) cos(2πft), where
T = 1/f = 1 s. The extracellular potential reveals that the current leaves the stick quite
uniformly at this frequency. See section 5.4 for a discussion.



78 Results

Figure 5.18: Ball-and-stick neuron with 10 Hz electrode current in the soma. In the
cross section shown, the upper 2/5 is saline, while the lower part is tissue. The figures
show t = 0, . . . , 7T/8, for a somatic electrode current, Ie = (250 pA) cos(2πft), where
T = 1/f = 0.1 s. It is hard to notice any consistent low-pass filtering compared to figure
5.17, although at t = 3T/8 and t = 7T/8, the potential seems to decays faster along the
stick in the 10 Hz case. See section 5.4 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 79

Figure 5.19: Ball-and-stick neuron with 100 Hz electrode current in the soma. In the
cross section shown, the upper 2/5 is saline, while the lower part is tissue. The figures
show t = 0, . . . , 7T/8, for a somatic electrode current, Ie = (250 pA) cos(2πft), where
T = 1/f = 10 ms. Comparison to the cases with 1 Hz and 10 Hz stimulus frequency
(figures 5.17 and 5.18, respectively), clearly shows a low-pass filtering effect. The rate of
change of the potential, i.e., the volume current, is much larger close to the soma than on
the distal parts of the stick. See section 5.4 for a discussion.



80 Results

Figure 5.20: Ball-and-stick neuron with 1 kHz electrode current in the soma. In the
cross section shown, the upper 2/5 is saline, while the lower part is tissue. The figures
show t = 0, . . . , 7T/8, for a somatic electrode current, Ie = (250 pA) cos(2πft), where
T = 1/f = 1 ms. A pronounced low-pass filtering effect is seen. The membrane currents
are large at the soma and on the proximal parts of the stick, whereas the potential is close
to constant along its proximal parts, indicating very weak membrane currents. See section
5.4 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 81

Figure 5.21: MEA potentials for ball-and-stick neuron with 1 Hz stimulus in homoge-
neous and isotropic tissue. The potential on the glass substrate underneath the tissue slice
is shown, i.e., a (2 mm)× (2 mm) square. The figures show t = 0, . . . , 7T/8, for a somatic
electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 1 s. The potentials are
spread out along the length of the stick, as in figure 5.17. See section 5.4 for a discussion.



82 Results

Figure 5.22: MEA potentials for ball-and-stick neuron with 10 Hz stimulus in homoge-
neous and isotropic tissue. The potential on the glass substrate underneath the tissue slice
is shown, i.e., a (2 mm)× (2 mm) square. The figures show t = 0, . . . , 7T/8, for a somatic
electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 0.1 s. The potentials are
very similar to those for f = 1 Hz, but at t = 3T/8 and t = 7T/8, the potentials are
more concentrated below the soma in this case when compared to the corresponding plots
in figure 5.21. This is a manifestation of the same effect seen in the ball-and-stick view of
figures 5.17 and 5.18. See section 5.4 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 83

Figure 5.23: MEA potentials for ball-and-stick neuron with 100 Hz stimulus in homoge-
neous and isotropic tissue. The potential on the glass substrate underneath the tissue slice
is shown, i.e., a (2 mm)× (2 mm) square. The figures show t = 0, . . . , 7T/8, for a somatic
electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 10 ms. The potentials are
much more concentrated here than for the two lower frequencies considered. A decrease
in the dipole length for the zero phase of the stimulus current (t = T/4 and t = 3T/4) can
also be seen by comparison with the corresponding plots of figures 5.21 and 5.22, but the
effect is quite modest. See section 5.4 for a discussion.



84 Results

Figure 5.24: MEA potentials for ball-and-stick neuron with 1 kHz stimulus in homoge-
neous and isotropic tissue. The potential on the glass substrate underneath the tissue slice
is shown, i.e., a (2 mm)× (2 mm) square. The figures show t = 0, . . . , 7T/8, for a somatic
electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 1 ms. The potentials are
very concentrated, as would be expected from figure 5.20, which shows that the bulk mem-
brane current leaves near the soma. The dipole potentials in the zero phase, at t = T/4
and t = 3T/4, are also very close compared to the three lower frequencies considered.
See section 5.4 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 85

Figure 5.25: MEA potentials for ball-and-stick neuron with 1 Hz stimulus in inhomo-
geneous and anisotropic tissue. The potential on the glass substrate underneath the tissue
slice is shown, i.e., a (2 mm) × (2 mm) square. The figures show t = 0, . . . , 7T/8, for a
somatic electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 1 s. See section
5.4 for a discussion.



86 Results

Figure 5.26: MEA potentials for ball-and-stick neuron with 10 Hz stimulus in inhomo-
geneous and anisotropic tissue. The potential on the glass substrate underneath the tissue
slice is shown, i.e., a (2 mm) × (2 mm) square. The figures show t = 0, . . . , 7T/8, for a
somatic electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 0.1 s. See section
5.4 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 87

Figure 5.27: MEA potentials for ball-and-stick neuron with 100 Hz stimulus in inho-
mogeneous and anisotropic tissue. The potential on the glass substrate underneath the
tissue slice is shown, i.e., a (2 mm) × (2 mm) square. The figures show t = 0, . . . , 7T/8,
for a somatic electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 10 ms. See
section 5.4 for a discussion.



88 Results

Figure 5.28: MEA potentials for ball-and-stick neuron with 1 kHz stimulus in inhomo-
geneous and anisotropic tissue. The potential on the glass substrate underneath the tissue
slice is shown, i.e., a (2 mm) × (2 mm) square. The figures show t = 0, . . . , 7T/8, for a
somatic electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 1 ms. See section
5.4 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 89

Figure 5.29: Impact of conductivity for ball-and-stick neuron with 1 Hz stimulus. Line
plots on the MEA along an axis parallel to the stick. The figures show t = 0, . . . , 7T/8,
for a somatic electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 1 s. Blue
line: MEA potential for homogeneous and isotropic tissue with conductivity σtissue = 0.3
S/m. Red line: MEA potential for inhomogeneous and anisotropic tissue with conductivity
values given in table 4.2 on page 46. Except for the zero phase of the stimulus, the poten-
tials are seen to have a similiar shape, with an upward shift in the the case of anisotropic
and inhomogeneous conductivity. See section 5.4 for a discussion.



90 Results

Figure 5.30: Impact of conductivity for ball-and-stick neuron with 10 Hz stimulus. Line
plots on the MEA along an axis parallel to the stick. The figures show t = 0, . . . , 7T/8,
for a somatic electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 0.1 s. Blue
line: MEA potential for homogeneous and isotropic tissue with conductivity σtissue = 0.3
S/m. Red line: MEA potential for inhomogeneous and anisotropic tissue with conductivity
values given in table 4.2 on page 46. A very similar picture to that for 1 Hz stimulation
appears. An exception is the steeper decay of the potential at t = 3T/8 and t = 7T/8.
See section 5.4 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 91

Figure 5.31: Impact of conductivity for ball-and-stick neuron with 100 Hz stimulus. Line
plots on the MEA along an axis parallel to the stick. The figures show t = 0, . . . , 7T/8,
for a somatic electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 10 ms. Blue
line: MEA potential for homogeneous and isotropic tissue with conductivity σtissue = 0.3
S/m. Red line: MEA potential for inhomogeneous and anisotropic tissue with conductivity
values given in table 4.2 on page 46. Since the potential peaks become narrower with
higher frequency, the curves follow each other closely in a larger region compared to 1 Hz
and 10 Hz stimulation (figures 5.29 and 5.30). See section 5.4 for a discussion.



92 Results

Figure 5.32: Impact of conductivity for ball-and-stick neuron with 1 kHz stimulus. Line
plots on the MEA along an axis parallel to the stick. The figures show t = 0, . . . , 7T/8,
for a somatic electrode current, Ie = (250 pA) cos(2πft), where T = 1/f = 1 ms. Blue
line: MEA potential for homogeneous and isotropic tissue with conductivity σtissue = 0.3
S/m. Red line: MEA potential for inhomogeneous and anisotropic tissue with conductivity
values given in table 4.2 on page 46. The conductivity profile influences the height of the
potential peaks, whereas along most of the MEA the two curves follow each other closely.
See section 5.4 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 93

Figure 5.33: Impact of conductivity for ball-and-stick neuron with 1 Hz stimulus.
Line plots on the MEA along an axis perpendicular to the stick, crossing underneath
its center. The figures show t = 0, . . . , 7T/8, for a somatic electrode current, Ie =
(250 pA) cos(2πft), where T = 1/f = 1 s. Blue line: MEA potential for homogeneous
and isotropic tissue with conductivity σtissue = 0.3 S/m. Red line: MEA potential for inho-
mogeneous and anisotropic tissue with conductivity values given in table 4.2 on page 46.
See section 5.4 for a discussion.



94 Results

Figure 5.34: Impact of conductivity for ball-and-stick neuron with 100 Hz stimu-
lus. Line plots on the MEA along an axis perpendicular to the stick, crossing under-
neath its center. The figures show t = 0, . . . , 7T/8, for a somatic electrode current,
Ie = (250 pA) cos(2πft), where T = 1/f = 10 ms. Blue line: MEA potential for
homogeneous and isotropic tissue with conductivity σtissue = 0.3 S/m. Red line: MEA
potential for inhomogeneous and anisotropic tissue with conductivity values given in table
4.2 on page 46. See section 5.4 for a discussion.



Ball-and-Stick: Effect of Stimulation and Conductivity Profile 95

For the two lowest frequencies, it could be seen that the blue and the red line
were quite different between 0.6 and 1.4 mm in all nonzero phases. In figure 5.31
they converge somewhat earlier than 1.4 mm, but no clear picture emerges. With
f = 1 kHz, on the other hand, the difference between the two calculated potentials
is clearly seen between 0.5 and 0.6 mm, i.e., from the soma and 0.1 mm down the
stick. Outside of that region, they follow each other closely. This effect is caused
by the returns currents leaving close to the soma due to low-pass filtering.

The ratio between the peak of the curves at t = 0 is 1.09 for 1 Hz, 1.07 for
10 Hz, 1.06 for 100 Hz, and 1.05 for 1 kHz, i.e., slightly decreasing with fre-
quency. This can be interpreted as follows: For low frequencies, the current leaves
quite uniformly throughout the stick length. Thus, the directional derivative of the
potential along the stick axis is smaller than with higher f . Hence, more of the
volume current flows radially outward from the membrane. As a result, the net
perpendicular current between the ball-and-stick neuron and the MEA becomes
larger for lower frequencies. By Ohm’s law, for a given current, the potential dif-
ference in a direction of lower conductivity becomes larger. Thus, the potential
gradient radially outward from the stick is higher in the anisotropic case because
σ⊥ < 0.3 S/m. For higher frequencies, the membrane current will show a steeper
decay along the length of the stick, so the directional derivative of the potential
parallel to the stick has a larger magnitude. Hence, more volume current will turn
in the stick direction after leaving the membrane, and less will be forced against
the lower perpendicular conductivity.

Figures 5.33 and 5.34 show similar plots on the MEA along an axis perpendic-
ular to the stick, passing underneath its mid point. The frequencies are f = 1 Hz
and f = 100 Hz, respectively. In these two cases, the deviation between the red
and the blue line seems to be very similar. Frequencies 10 Hz and 1 kHz were
computed but not included here, since they showed practically the same as the
two figures presented. The curve shapes do not change with frequency in these
plots, since when a line perpendicular to its axis is traversed, the stick acts like a
point source. Also, the small increase of magnitude for the inhomogeneous and
anisotropic conductivity profile is seen here as well.



96 Results

5.5 Parameter-Fitted Ball-and-Stick Model

In the simulations presented thus far, the goal has been to investigate what impact
boundary conditions and conductivity profile have on MEA potentials. Now, an
example application will be considered, illustrating how FEM modeling can be
utilized in combination with real experiments.

When subthreshold phenomena are studied, the electrode current injected in the
soma must be small enough to avoid firing of action potentials. An amplitude as
low as 250 pA ensures this [9]. Further, neurons closer to the array than 200 µm are
hard to stimulate, and due to electrode sensitivity the frequency typically has to be
between between 5 Hz and 100 Hz [9]. Finally, when the soma of a particular cell
is localized, its geometry can also be obtained and reconstructed in a simulation
environment like NEURON.

Espen Hagen [24] performed a parameter-fitting of the ball-and-stick model, to
reproduce the same potentials on the MEA as would a layer V pyramidal cell. This
was done by adjusting the radii of the ball and the stick, and the potentials were
calculated with the infinite medium solution (equation (5.1)). The values found
were

rball = 42.5 µm

and
rstick = 1.5 µm.

All other parameters were as shown in table 4.3 on page 49. Since the exact con-
ductivity profile of the tissue for a given experiment is a priori unknown, it was
assumed homogeneous and isotropic, with σtissue = 0.3 S/m. Also note that the
cell in this case was placed 200 µm above the MEA, as opposed to 100 µm in the
previous cases.

The MEA potentials for the fitted ball-and-stick model are shown in figures
5.35 and 5.36, for the first and second half cycle of the stimulus current, respec-
tively. Three frequencies, 5 Hz, 40 Hz, and 100 Hz, are compared. For the nonzero
phases, the spatial spread of the potential is clearly seen to decrease with frequency.
In the zero phase, t = T/4 and t = 3T/4, no clear picture emerges.

Figures 5.37 and 5.38 show line plots of the potential along axes parallel to and
directly underneath the stick, for 5 different frequencies. These graphs illustrate
how the shape of the measured potential changes with frequency. For the nonzero
phases of the stimulus, the potential becomes steeper and narrower with increasing
frequency. Comparing, e.g., the solid blue line (5 Hz) and the dashed red line
(100 Hz) makes this very clear. Another very interesting result occurs when the
stimulation current is zero. Here, the lowest frequency is seen to produce a very
variations in the potential compared to the higher frequencies. This is because
the phase shift depends on frequency. With near-constant current, the shift will be
small, whereas for higher frequencies, a significant amount of current will cross the
membrane also at the zero phase. As also noted in the last section, these potentials



Parameter-Fitted Ball-and-Stick Model 97

should be interpreted with care, since at the zero phases, the stick current had to be
adjusted quite significantly for the neuron to obey Kirchhoff’s current law.

In future experiments, the ball-and-stick model can be fitted to match the par-
ticular cell that was stimulated to compute the resulting LFP. This paves the way
for experimental testing of the volume conduction model and the ball-and-stick
model. In principle, one could also measure the conductivity profile of the slices
used in the experiment, and implement it into the FEM model.



98 Results

Figure 5.35: MEA potentials for ball-and-stick model fitted to layer V pyramidal cell.
The first half cycle of the electrode current is shown for the three frequencies considered.
The time in terms of the period, T = 1/f , is shown for each plot. For the nonzero phases
of the stimulus, the region with shifted potential is clearly seen to shrink with increasing
frequency.



Parameter-Fitted Ball-and-Stick Model 99

Figure 5.36: MEA potentials for ball-and-stick model fitted to layer V pyramidal cell.
The second half cycle of the electrode current is shown for the three frequencies considered.
The time in terms of the period, T = 1/f , is shown for each plot. For the nonzero phases
of the stimulus, the region with shifted potential is clearly seen to shrink with increasing
frequency.



100 Results

Figure 5.37: Line plot of MEA potential parallel to stick axis. The first half cycle of the
electrode current for the frequencies considered is shown. The time in terms of the period,
T = 1/f , is shown for each plot. Blue line: 5 Hz, red line: 20 Hz, green line: 40 Hz,
dashed blue line: 60 Hz, and dashed red line: 100 Hz.



Parameter-Fitted Ball-and-Stick Model 101

Figure 5.38: Line plot of MEA potential parallel to stick axis. The second half cycle
of the electrode current for the frequencies considered is shown. The time in terms of the
period, T = 1/f , is shown for each plot. Blue line: 5 Hz, red line: 20 Hz, green line:
40 Hz, dashed blue line: 60 Hz, and dashed red line: 100 Hz.



102 Results



Chapter 6

Discussion

A two-monopole model is the simplest representation of a neuron receiving synap-
tic input, which generates extracellular potentials [35, 44]. The formula for the
extracellular potential of two monopoles in an infinite medium, was seen to give
other results than a more detailed numerical model. The latter took the insulating
boundary conditions of MEA measurements into account (figure 5.10). Explicitly
introducing the surrounding saline into the FEM implementation, gave potentials
much closer to those predicted by the point source formula. However, the peaks
still differed by about 20 % (middle plot of figure 5.10 and upper plot of 5.11).
For the two-monopole approximation, biologically realistic variations of extracel-
lular conductivity did not produce large changes in the calculated MEA potentials,
compared to tissue with constant conductivity 0.3 S/m (figure 5.12).

The effects of large, and probably unrealistic, variations of the extracellular
conductivity were investigated with a ball-and-stick model. Reduced conductivity
resulted in a larger rate of change of the potential away from the neuron, and hence
a rise of the MEA potentials (figures 5.6 and 5.7). This effect, predicted by Ohm’s
law, is illustrated by the line plots of figure 5.9.

The intrinsic low-pass filtering of the ball-and-stick model expressed itself in
the potentials calculated on the microelectrode array (figures 5.21-5.24). Since the
neuron receives a current stimulus, the net current crossing its membrane equals
what the electrode supplies. The neuron will thus have a nonzero monopole mo-
ment, as opposed to the in vivo situation, in which the membrane currents always
cancel. In any case, a low-pass filtering effect can be observed by the narrowing of
the MEA potential peak, with increasing frequency. The maximum potential, with
respect to the reference electrode, also increased with frequency.

As for two monopoles, the exact nature of the tissue conductivity was not seen
to be a critical variable for the the MEA potentials of a ball-and-stick model. With
the biologically plausible conductivity profile obtained by Goto et al. [22], a change
of less than 8 % was observed, when compared to an identical cell situated in tissue
of constant conductivity 0.3 S/m. Since there may be significant a variation of
conductivity from one slice to another [22], and because the ball-and-stick model is



104 Discussion

a coarse simplification of a real neuron, the possible error introduced by assuming
constant tissue conductivity seems relatively small. The impact of anisotropy and
inhomogeneity also slightly decreased with frequency (figures 5.29-5.34).

The ball-and-stick model, with radii adjusted to reproduce the LFP of a pyra-
midal neuron receiving the same electrode current, can be compared to real exper-
iments with such a cell. Although exact match is not expected, qualitative similar-
ities in the shape of the MEA potentials would suggest that the ball-and-stick and
volume conduction model used here are catching some of the biologically impor-
tant features.

A conclusion to draw from the work, is that the simple analytical solution, for
an infinite and homogeneous medium containing point sources, does not reproduce
the MEA potentials of more detailed numerical simulations. In future studies, re-
constructed cells, with transmembrane currents calculated in a simulation environ-
ment like NEURON [4], can hopefully be imported into FEniCS. This would allow
the extracellular potentials to be computed with a finite element model, taking the
actual experimental set-up into account. The accuracy of the point source formula
was only investigated for a two-monopole model. For the future, it would be inter-
esting to see how the point- and line-source formulae [26, 43] for a ball-and-stick
neuron, as well as more complex cells, compare to FEM computations.

As long as the exact nature of the conductivity profile of cortical tissue is un-
certain, it seems like a good compromise to assume some constant value, e.g., 0.3
S/m. Small fluctuations from this, either spatial variations or directional depen-
dence, do not produce large differences in the MEA potentials. Considering stimu-
lation frequencies separately, a possible frequency-dependent conductivity can also
be modeled, as pointed out by Pettersen et al. [44]. Due to linearity, the extracellu-
lar potential is oscillating with the same frequency as the stimulus current, although
phase shifts in general occur. Hence, by assigning a particular conductivity tensor
for each frequency, MEA potentials could be calculated within the framework of
the FEM simulations presented here.

An additional goal of this work was to evaluate the suitability of FEniCS, both
for simulation of MEA measurements and for computation of extracellular po-
tentials in general. As should be clear, FEniCS requires a basic understanding
of FEM, mesh generation, and Python scripting or C++ programing. More ad-
vanced use, e.g., meshing reconstructed neurons, requires additional packages, like
TriTetMesh [36]. A timely question is whether the graphical environment of com-
mercial packages, like COMSOL [1], may provide more user-friendliness to the
non-expert. COMSOL was used by, e.g., references [20,21] for modeling of MEA
potentials. The Python interface of FEniCS, however, was found by the author to
be very easy to adapt to. One particular advantage of scripting is the ease with wich
more complicated models can be implemented. The potential user is therefore rec-
ommended to try the source code accompanying this thesis, before deciding on
whether or not to use FEniCS.



Appendix A

Some Notes on Units

The expressions for the ball-and-stick membrane currents contain a variety of pa-
rameters with different dimensions and units, so careful calculations are needed to
get the desired output. The primary unknown in the simulations was the extracel-
lular potential, and units of volts were preferred. Table A.1 shows the parameters
used, together with their units.

Now, consider the weak form for the extracellular potential generated by a ball-
and-stick model with somatic current stimulus,∫

Ω
σ∇u · ∇vdx =

∫
∂Ω7

Jballvds+

∫
∂Ω8

Jstickvds. (A.1)

The soma current is the real part of

Jball(t) =
1

S

Yball

Yball + Ystick
Î0ejωt, (A.2)

and the stick current is the real part of

Jstick(x, t) =
1

πd

H(x)

Yball + Ystick
Î0ejωt. (A.3)

The complex variable s is given by

s =
√

1 + jωτm,

where [ωτm]= [10−3] from table A.1. Thus, in order to get the units right, the time
constant is multiplied by 10−3 upon definition. The following snippet illustrates:

# Membrane time constant:
tau = R_m*C_m*1e-3 # [ms]

The soma admittance,

Yball =
4πd2s2

rm
,



106 Some Notes on Units

Symbol Unit Description
l [mm] Stick length
d [mm] Stick diameter
rm [Ω cm2] Membrane resistivity
ri [Ω cm] Intracellular resistance
cm [µF /cm2] Membrane capacitance
σ [S/m] Volume conductivity
f [kHz] Stimulus frequency
I0 [mA] Stimulus amplitude
t [ms] Time
S [mm2] Membrane surface area
ω = 2πf [(ms)−1] Angular frequency
τm = rmcm [µs] Membrane time constant
λ =

√
drm/4ri [10−5/2 m] Electrotonic length

Table A.1: Parameter names and units. Parameters used for the membrane currents of
the ball-and-stick model.

has units [
mm2

Ωcm2

]
=
[
10−2 S

]
.

For the stick admittance,

Ystick =
πd3/2s
2
√
rirm

[
1

1 + exp(2sl/λ)
− 1

1 + exp(−2sl/λ)

]
,

the factor in the exponential has units[
sl
λ

]
=

mm
10−5/2 m

=
√
10.

Thus, λ is be multiplied by
√
10 when defined, i.e.,

# Electrotonic length
lbda = sqrt(stick_diameter*R_m/4/R_i)*sqrt(10) # [mm]

After this correction, the stick admittance has units

[Ystick] =

[
mm3/2

√
Ω2 cm3

]
=
[
10−3/2 S

]
.

The stick transfer function,

H(x) =
πs2d
Rm

[
exp(sx/λ)

1 + exp(2sx/λ)
+

exp(−sx/λ)
1 + exp(−2sx/λ)

]
,

has units
[H] =

[ mm
Ω cm2

]
= [10 S/m] .



107

In the denominator of equations (A.2) and (A.3),

Yball + Ystick,

Yball has to be multiplied with 10−2 and Ystick with 10−3/2, in order to get units
of siemens in both terms. It follows that

[Jball] =
[

mA
mm2

]
.

The following lines, C++ code defining the membrane current of the stick, illus-
trates:

std::complex<double> Y_soma = (4.0*pi*pow(d,2)/R_m)*
s_squared*pow(10,-2);

std::complex<double> Y_stick = (pi*pow(d,1.5)/2.0*pow(R_i*
R_m,-.5))*s*std::tanh(s*l/lbda)*pow(10,-1.5);

For the stick current, the units become

[Jstick] =
[
(10 S/m) mA

S mm2

]
=

[
10−2 mA

mm2

]
.

Hence, the numerical value for Jstick in the code must be multiplied by 10−2 to
give units [mA/mm2]. This is illustrated by the snippet below.

std::complex<double> J_m = s_squared/R_m*(std::exp(s*
distance/lbda)/(1.0+std::exp((2.0*l/lbda)*s))+std::exp
(-s*distance/lbda)/(1.0+std::exp(-(2.0*l/lbda)*s)))*(
V_soma*pow(10,-2));

With these multiplying factors, all membrane currents get units [mA/mm2].
Now consider the weak form for the ball-and-stick model, equation (A.1). The
length unit used in the mesh is [mm]. Thus,

[dx] =
[
mm3

]
[ds] =

[
mm2

]
[∇] =

[
mm−1

]
Denoting the units of the extracellular potential by X, we get1[∫

Ω
σ∇u · ∇vdx

]
=

[
(S/m) X mm3

mm2

]
and [∫

∂Ω7

Jballvds+

∫
∂Ω8

Jstickvds

]
=

[
mA
mm2

mm2

]
.

Equating the right-hand sides of these expressions and solving in terms of X gives

[X] = [V ] .

Accordingly, the extracellular potential has units of volts (V).
1The test function v is neglected. It appears in every term, so its units cancel.



108 Some Notes on Units



Appendix B

Source Code

Figure B.1 demonstrates the general organization of the code. For each of the
simulations performed, a file, create_mesh.py, has been used to generate the
mesh, subdomain markers, and boundary markers. These are saved to mesh.xml,
subdomains.xml1, and boundaries.xml. The *.xml files are subsequently
used by simulation.py, which runs the simulations. Its results are again ex-
ported to *.pvd and *.vtu files for post-processing [49], e.g., with ParaView [5].
Figure B.1 illustrates this.

The attached CD contains the complete source code. It is organized in folders
as shown in table B.1. Each contains the files create_mesh.py and
simulation.py, for the particular implementation. On a Linux computer with
FEniCS properly installed, mesh generation is now just a matter of typing

python create_mesh.py

in the shell. The simulation runs with the command

python simulation.py

The code for a ball-and-stick neuron in an anisotropic and inhomogeneous
tissue (BS_Anis_Inhom in table B.1) is included here. The code for a two-
monopole approximation, testing the impact of saline (TM_Impact_of_Saline
in table B.1), is also included.

1The test of the numerical accuracy (section 5.1) did not use different subdomains, and hence no
subdomain file was generated.



110 Source Code

Figure B.1: Organization of the code. A script, create_mesh.py, generates the mesh,
together with subdomain and boundary markers. These are saved on *.xml files, subse-
quently taken as input to simulation.py, which runs the simulations. Final results are
output in files suitable for visualization in ParaView [5].



111

Folder Name Content
TM_Numerical_Accuracy Verification of numerical accuracy

(section 5.1)
BS_Large_Inhomogeneity Large inhomogeneities (section 5.2)
BS_Large_Anisotropy Large anisotropy (section 5.2)
TM_Impact_of_BSs Comparison, finite vs. infinite medium

(section 5.3)
TM_Impact_of_Saline Comparison, taking only boundary

conditions into account vs. also mod-
eling saline (section 5.3)

TM_Impact_of_Conductivity Comparison, homogeneous and
isotropic tissue vs. inhomogeneous
and anisotropic tissue (section 5.3)

BS_Isotropic_Homogeneous Ball-and-stick in an isotropic and ho-
mogeneous tissue (section 5.4)

BS_Anis_Inhom Ball-and-stick in an anisotropic and in-
homogeneous tissue (section 5.4)

BS_Fitted Parameter-fitted ball-and-stick model
(section 5.5)

Table B.1: Organization of source code. Folders in the source code containing scripts for
the different simulations performed. In the folder names, TM stands for two-monopole and
BS for ball-and-stick.



112 Source Code

Ball-and-Stick Neuron

Mesh Generation

The file create_mesh.py from BS_Anis_Inhom is shown below.

#!/usr/bin/env python
"""
create_mesh.py
BS_Anis_Inhom
This script generates the mesh to be used in the ball and stick

simulation with an inhomogeneous and anisotropic tissue
conductivity.

"""

from dolfin import *

# Outer box dimensions (millimeters are used as units for all
length variables in the script!)

box_x_dim = 4; box_y_dim = 4; box_z_dim = 1

# Initial number of cells in each spatial direction (0.1 mm
resolution)

nx = 40; ny = 40; nz = 10

# Tissue slice dimensions
tissue_x_dim = 2; tissue_y_dim = 2; tissue_z_dim = 0.3

# Ball and stick dimension
radius = 0.01 # radius of ball
stick_radius = 0.001 # radius of stick
stick_diameter = stick_radius*2
stick_length = 1.
ball_z_height = 0.1 # the height of the center of the ball (as

well as the stick) above the electrode array

# Coordinates:
# Center of the ball:
ball_x_coor = -stick_length/2.
ball_y_coor = 0.
ball_z_coor = -box_z_dim/2. + ball_z_height
# Point representing the ball origin:
ball_coor = Point(ball_x_coor, ball_y_coor, ball_z_coor)
# Stick coordinates:
stick_x_left = -stick_length/2.+radius # the left end, attached to

the ball
stick_x_right = stick_length/2.+radius # the right end
stick_y = 0 # the center in the y-direction
stick_z = -box_z_dim/2. + ball_z_height # the center in the z-

direction

# Extent of the layers with different conductivities
layer_VI_length = .8
layer_V_length = .4



113

layer_IV_length = .4
layer_II_III_length = .4

# One class for each cortical layer
class LayerVI(SubDomain):

def inside(self, x, on_boundary):
return -tissue_x_dim/2.<= x[0] <= -tissue_x_dim/2.+

layer_VI_length and -tissue_y_dim/2. <= x[1] <=
tissue_y_dim/2. and -box_z_dim/2.<= x[2] <= -box_z_dim
/2. + tissue_z_dim

class LayerV(SubDomain):
def inside(self, x, on_boundary):

return -tissue_x_dim/2.+layer_VI_length<= x[0] <= -
tissue_x_dim/2.+layer_VI_length+layer_V_length*1.1 and
-tissue_y_dim/2. <= x[1] <= tissue_y_dim/2. and -

box_z_dim/2.<= x[2] <= -box_z_dim/2. + tissue_z_dim

class LayerIV(SubDomain):
def inside(self, x, on_boundary):

return -tissue_x_dim/2.+layer_VI_length + layer_V_length<=
x[0] <= -tissue_x_dim/2.+layer_VI_length+

layer_V_length+layer_IV_length and -tissue_y_dim/2. <=
x[1] <= tissue_y_dim/2. and -box_z_dim/2.<= x[2] <= -

box_z_dim/2. + tissue_z_dim

class LayerII_III(SubDomain):
def inside(self, x, on_boundary):

return -tissue_x_dim/2.+layer_VI_length+layer_V_length+
layer_IV_length <= x[0] <= tissue_x_dim/2. and -
tissue_y_dim/2. <= x[1] <= tissue_y_dim/2. and -
box_z_dim/2.<= x[2] <= -box_z_dim/2. + tissue_z_dim

# Class representing the ball
class Ball(SubDomain):

def inside(self, x, on_boundary):
r = sqrt((x[0]-ball_x_coor)**2 + (x[1]-ball_y_coor)**2 + (

x[2]-ball_z_coor)**2)
return r<1.5*radius

def snap(self, x):
r = sqrt((x[0]-ball_x_coor)**2 + (x[1]-ball_y_coor)**2 + (

x[2]-ball_z_coor)**2)
if r < 1.5*radius:

x[0] = ball_x_coor + (radius/r)*(x[0]-ball_x_coor)
x[1] = ball_y_coor + (radius/r)*(x[1]-ball_y_coor)
x[2] = ball_z_coor + (radius/r)*(x[2]-ball_z_coor)

# Class representing the stick
class Stick(SubDomain):

def inside(self, x, on_boundary):
r = sqrt((x[1]-stick_y)**2 + (x[2]-stick_z)**2)
return r<1.5*stick_radius and stick_x_left-.5*radius <= x

[0] <= stick_x_right+.5*radius
def snap(self, x):



114 Source Code

r = sqrt((x[1]-stick_y)**2 + (x[2]-stick_z)**2)
if r<1.5*stick_radius and stick_x_left <= x[0] <=

stick_x_right+.5*radius:
x[1] = stick_y + (stick_radius/r)*(x[1]-stick_y)
x[2] = stick_z + (stick_radius/r)*(x[2]-stick_z)

# Classes representing the outer boundaries (numbered from 1-6)
class Boundary1(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[0]-box_x_dim/2.)<=DOLFIN_EPS

class Boundary2(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[1]-box_y_dim/2.)<=DOLFIN_EPS
class Boundary3(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[2]-box_z_dim/2.)<=DOLFIN_EPS

class Boundary4(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[0]+box_x_dim/2.)<=DOLFIN_EPS
class Boundary5(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[1]+box_y_dim/2.)<=DOLFIN_EPS

class Boundary6(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[2]+box_z_dim/2.)<=DOLFIN_EPS

# Class representing the boundary of the ball
class BallBoundary(SubDomain):

def inside(self, x, on_boundary):
r = sqrt((x[0]-ball_x_coor)**2 + (x[1]-ball_y_coor)**2 + (

x[2]-ball_z_coor)**2)
return on_boundary and r < 1.1*radius

# Class representing the boundary of the stick
class StickBoundary(SubDomain):

def inside(self, x, on_boundary):
r = sqrt((x[1]-stick_y)**2 + (x[2]-stick_z)**2)
return on_boundary and r<1.5*stick_radius and stick_x_left

<= x[0] <= stick_x_right+radius

# Class representing the part of the boundary to be grounded (
reference electrode)

class GroundBoundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and box_x_dim/2.-0.1 <= x[0] <=
box_x_dim/2. and box_y_dim/2.-0.1<=x[1]<=box_y_dim/2.
and abs(x[2]-box_z_dim/2.)<=.01

# Generation of the original mesh:
mesh = Box(-box_x_dim/2.,-box_y_dim/2.,-box_z_dim/2.,box_x_dim/2.,

box_y_dim/2.,box_z_dim/2.,nx,ny,nz)

# Print mesh information to the shell
print mesh



115

# Multipliers used in the successive refinements:
# Because the stick is narrower than the ball, the region of the

mesh to be occupied by the stick has to be refined more times
than the ball before the stick can be extracted. Hence the
number of stick multipliers is larger. All the ones at the end
are the to avoid reaching the end of the ball_multipliers

vector before the refinement is finished. ball_multipliers has
to be at least as large as stick_multipliers

ball_multipliers = [15,15,10,10,8,8,7,6,5,5,4,3,2,2,
1.5,1.5,1.4,1.3,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1]

stick_multipliers = [200,100,90,75,50,50,40,35,30,25,20,16,12,8,7,
6,4,3,3,2.5,2]

num_refinements = len(stick_multipliers)

# Loop over the mesh refinements
for i in range(num_refinements):

# Class representing the part of the mesh to be refined. It varies
according to the multipliers defined above.
class Refinement(SubDomain):

def inside(self, x, on_boundary):
r = sqrt((x[0]-ball_x_coor)**2 + (x[1]-ball_y_coor)**2

+ (x[2]-ball_z_coor)**2)
r_stick = sqrt((x[1]-stick_y)**2 + (x[2] - stick_z)

**2)

# If the value of ball_multipliers for the particular i is equal
to 1, only the stick region should be refined. Otherwise both
the stick and the ball region should be refined.

if not ball_multipliers[i] == 1:
return (r < ball_multipliers[i]*radius) or (

r_stick < stick_multipliers[i]*stick_radius
and stick_x_left <= x[0] <= stick_x_right)

else:
return ( r_stick < stick_multipliers[i]*

stick_radius and stick_x_left <= x[0] <=
stick_x_right)

# Mesh function ref_region equals 1 on the part of the mesh to be
refined an 0 otherwise. A boolean mesh function can not be
constructed directly, and thus we have to go the way through
ref_region:
ref_region = MeshFunction(’uint’, mesh, mesh.topology().dim())
ref_region.set_all(0) # set all markers to 0
Refinement().mark(ref_region,1) # mark region to be refined

with a 1

# Define a boolean mesh function ’markers’, which is true in cells
to be refined and false otherwise.
markers = MeshFunction(’bool’, mesh, mesh.topology().dim())
markers.set_all(False)



116 Source Code

# Run through the whole mesh. If ref_region[cell]=1, the cell
should be refined (i.e. markers[cell]=True), otherwise it
should not (i.e. markers[cell]=False).
for cell in cells(mesh):

if ref_region[cell.index()] == 1:
markers[cell.index()] = True

# Define a new mesh; the refined version of the last mesh
mesh = refine(mesh, markers)

# Print mesh information to the shell
print mesh

# Extract submesh excluding ball and stick

# Define the mesh function ’subdomains’, which is a ’helper’
function for extracting the ball and stick

subdomains = MeshFunction(’uint’, mesh, mesh.topology().dim())
# Set ’subdomains’ to 0 all over the mesh
subdomains.set_all(0)
# Define ’ball’ as an instance of the Ball() subclass and mark it

with the value 1 in the ’subdomains’ function
ball = Ball()
ball.mark(subdomains, 1)
# Define ’stick’ as an instance of the Stick() subclass and mark

it with the value 2 in the ’subdomains’ function
stick = Stick()
stick.mark(subdomains,2)

# Extract the parts of the mesh with the value 1 or 2 in the ’
subdomains’ function and return it to the new ’mesh’ instance

mesh = SubMesh(mesh, subdomains, 0)

# Because we now have a new mesh, the mesh functions have to be
defined again!

subdomains = MeshFunction(’uint’, mesh, mesh.topology().dim())
subdomains.set_all(0)
# Mark the layers
LayerVI().mark(subdomains,1)
LayerV().mark(subdomains,2)
LayerIV().mark(subdomains,3)
LayerII_III().mark(subdomains,4)

# ’boundaries’ is a mesh function to be used for marking the
boundaries with the correct indicators

# Note that the boundaries are 2-dimensional surfaces, hence the
term ’mesh.topology().dim()-1’

# The values are initialized to zero over the whole mesh
boundaries = MeshFunction(’uint’, mesh, mesh.topology().dim()-1)
boundaries.set_all(0)

# Mark the boundaries by giving the ’boundaries’ meshfunction the
right values on the boundary



117

# Note that the snapping of the ball and stick boundaries happens
just before these boundaries are marked. If putting the snap
statements on the top, the markers will not be defined propely

Boundary1().mark(boundaries,1)
Boundary2().mark(boundaries,2)
Boundary3().mark(boundaries,3)
Boundary4().mark(boundaries,4)
Boundary5().mark(boundaries,5)
Boundary6().mark(boundaries,6)
GroundBoundary().mark(boundaries,9)
mesh.snap_boundary(ball)
BallBoundary().mark(boundaries,7)
mesh.snap_boundary(stick)
StickBoundary().mark(boundaries,8)

# Save the mesh and the markers to file. They will be used by the
script ’simulation.py’

file = File(’mesh.xml’)
file << mesh
file = File(’subdomains.xml’)
file << subdomains
file = File(’boundaries.xml’)
file << boundaries

Simulation

The file simulation.py from BS_Anis_Inhom is shown below.

#!/usr/bin/env python
"""
simulation.py
BS_Anis_Inhom
This Python script runs the simulations for a ball-and-stick

neuron in a tissue with anisotropic and inhomogeneous
conductivity

"""

from dolfin import *
import numpy

# Use the mesh, subdomains, and boundary markers generated by ’
create_mesh.py’

# After running the script ’create_mesh.py’, these files should
reside in the folder

mesh = Mesh(’mesh.xml’)
subdomains = MeshFunction(’uint’, mesh, ’subdomains.xml’)
boundaries = MeshFunction(’uint’, mesh, ’boundaries.xml’)

# Outer box dimensions (millimeters are used as units for all
length variables in the script!)

box_x_dim = 4; box_y_dim = 4; box_z_dim = 1



118 Source Code

# Initial number of cells in each spatial direction (0.1 mm
resolution)

nx = 40; ny = 40; nz = 10

# Tissue slice dimensions
tissue_x_dim = 2; tissue_y_dim = 2; tissue_z_dim = 0.3

# Ball and stick dimension
radius = 0.01 # radius of ball
stick_radius = 0.001 # radius of stick
stick_diameter = stick_radius*2
stick_length = 1.
ball_z_height = 0.1 # the height of the center of the ball (as

well as the stick) above the electrode array

# Coordinates:
# Center of the ball:
ball_x_coor = -stick_length/2.
ball_y_coor = 0.
ball_z_coor = -box_z_dim/2. + ball_z_height
# Point representing the ball origin:
ball_coor = Point(ball_x_coor, ball_y_coor, ball_z_coor)
# Stick coordinates:
stick_x_left = -stick_length/2.+radius # the left end, attached to

the ball
stick_x_right = stick_length/2.+radius # the right end
stick_y = 0 # the center in the y-direction
stick_z = -box_z_dim/2. + ball_z_height # the center in the z-

direction

# Electrophysiological parameters
R_m = 3e4 # [Ohm cmˆ2], membrane resistance
R_i = 150 # [Ohm cm], intracellular resistance
C_m = 1 # [microFarad / cmˆ2], membrane capacitance
f = 1.0 # [kHz], frequency of soma potential
I_0 = 250e-9

sigma_saline = 3. # [S/m], saline conductivity

# Membrane time constant:
tau = R_m*C_m*1e-3 # [ms]
# Electrotonic length
lbda = sqrt(stick_diameter*R_m/4/R_i)*sqrt(10) # [mm]
# Angular frequency of stimulus
omega = 2*pi*f

# Conductivity values in the different layers [S/m]
# Values are taken from Goto et al.
sigma_II_III_parallel = .319
sigma_II_III_perpendicular = .231
sigma_IV_parallel = .325
sigma_IV_perpendicular = .24
sigma_V_parallel = .353
sigma_V_perpendicular = .228



119

sigma_VI_parallel = .294
sigma_VI_perpendicular = .268

# Define a Hilbert space of piecewise linear basis functions
V = FunctionSpace(mesh, ’CG’, 1)

# Explicitly calculate soma and stick area numerically
# Soma surface area
area_soma = assemble(Constant(1)*ds(7), mesh=mesh,

exterior_facet_domains=boundaries)
# Stick surface area
area_stick = assemble(Constant(1)*ds(8), mesh=mesh,

exterior_facet_domains=boundaries)

# C++ string for soma current
soma_code = """
class SomeExpr : public Expression
{
public:

SomeExpr() : Expression(), omega(1), tau(30.), d(.002), R_i
(150),radius(.01), R_m(3e4), l(1.), lbda(1.), t(0.),
area_soma(.00125), I_0(250e-9) {}

//variable declarations
double omega, tau, d, R_i, R_m, l, lbda, t, area_soma, I_0,

radius;

void eval(Array<double>& values, const Data& data) const
{

std::complex<double> s_squared(1,omega*tau);
std::complex<double> s = std::sqrt(s_squared);
std::complex<double> Y_soma = (4.0*pi*pow(d,2)/R_m)*

s_squared*pow(10,-2);
std::complex<double> Y_stick = (pi*pow(d,1.5)/2.0*pow(R_i*

R_m,-.5))*s*std::tanh(s*l/lbda)*pow(10,-1.5);
std::complex<double> euler(cos(omega*t),sin(omega*t));
std::complex<double> dividend = (Y_soma+Y_stick)*area_soma

;
std::complex<double> J_soma = I_0*euler*Y_soma/dividend;
values[0] = J_soma.real();

}
};
"""

# C++ string for stick current
stick_code = """
class SomeExpr : public Expression
{
public:

SomeExpr() : Expression(), omega(1.), tau(1), d(.002), R_m(3e4),
R_i(150), lbda(1), l(1.), radius(.01), t(0), x_left(-.49),

I_0(250e-9) {}



120 Source Code

double omega, tau, d, R_m, R_i, lbda, l, Vs, radius, t, x_left,
I_0;

void eval(Array<double>& values, const Data& data) const
{

std::complex<double> s_squared(1,omega*tau);
std::complex<double> s = std::sqrt(s_squared);
double distance = data.x[0]-x_left;
std::complex<double> euler(cos(omega*t),sin(omega*t));
std::complex<double> Y_soma = (4.0*pi*pow(d,2)/R_m)*

s_squared*pow(10,-2);
std::complex<double> Y_stick = (pi*pow(d,1.5)/2.0*pow(R_i*

R_m,-.5))*s*std::tanh(s*l/lbda)*pow(10,-1.5);
std::complex<double> V_soma = I_0*euler/(Y_soma+Y_stick);
std::complex<double> J_m = s_squared/R_m*(std::exp(s*

distance/lbda)/(1.0+std::exp((2.0*l/lbda)*s))+std::exp
(-s*distance/lbda)/(1.0+std::exp(-(2.0*l/lbda)*s)))*(
V_soma*pow(10,-2));

values[0] = J_m.real();
}

};
"""

# Define soma current expression
J_soma = Expression(soma_code)
# Hand over parameters
J_soma.omega = omega
J_soma.tau = tau
J_soma.d = stick_diameter
J_soma.R_i = R_i
J_soma.R_m = R_m
J_soma.l = stick_length
J_soma.lbda = lbda
J_soma.t = 0
J_soma.area_soma = area_soma
J_soma.I_0 = I_0
J_soma.radius = radius

# Define stick current expression
J_stick = Expression(stick_code)
# Hand over parameters
J_stick.omega = omega
J_stick.tau = tau
J_stick.d = stick_diameter
J_stick.R_m = R_m
J_stick.R_i = R_i
J_stick.lbda = lbda
J_stick.l = stick_length
J_stick.radius = radius
J_stick.t = 0
J_stick.x_left = stick_x_left
J_stick.I_0 = I_0

# Define the constant scalar conductivity of saline



121

saline_conductivity = Expression(’s’, {’s’:sigma_saline})

# Expression for conductivity in layers II/III
# Define the matrix elements first
s11 = Expression(’s’, {’s’: sigma_II_III_parallel})
s12 = Constant(0.0)
s13 = Constant(0.0)
s21 = Constant(0.0)
s22 = Expression(’s’, {’s’:sigma_II_III_perpendicular})
s23 = Constant(0.0)
s31 = Constant(0.0)
s32 = Constant(0.0)
s33 = Expression(’s’, {’s’:sigma_II_III_perpendicular})
#Then define the conductivity tensor for the layer
layer_II_III_conductivity = as_matrix(((s11,s12,s13),(s21,s22,s23)

,(s31,s32,s33)))

# Expression for conductivity in layer IV
# Define the matrix elements first
s11 = Expression(’s’, {’s’: sigma_IV_parallel})
s12 = Constant(0.0)
s13 = Constant(0.0)
s21 = Constant(0.0)
s22 = Expression(’s’, {’s’:sigma_IV_perpendicular})
s23 = Constant(0.0)
s31 = Constant(0.0)
s32 = Constant(0.0)
s33 = Expression(’s’, {’s’:sigma_IV_perpendicular})
#Then define the conductivity tensor for the layer
layer_IV_conductivity = as_matrix(((s11,s12,s13),(s21,s22,s23),(

s31,s32,s33)))

# Expression for conductivity in layer V
# Define the matrix elements first
s11 = Expression(’s’, {’s’: sigma_V_parallel})
s12 = Constant(0.0)
s13 = Constant(0.0)
s21 = Constant(0.0)
s22 = Expression(’s’, {’s’:sigma_V_perpendicular})
s23 = Constant(0.0)
s31 = Constant(0.0)
s32 = Constant(0.0)
s33 = Expression(’s’, {’s’:sigma_V_perpendicular})
#Then define the conductivity tensor for the layer
layer_V_conductivity = as_matrix(((s11,s12,s13),(s21,s22,s23),(s31

,s32,s33)))

# Expression for conductivity in layer VI
# Define the matrix elements first
s11 = Expression(’s’, {’s’: sigma_VI_parallel})
s12 = Constant(0.0)
s13 = Constant(0.0)
s21 = Constant(0.0)
s22 = Expression(’s’, {’s’:sigma_VI_perpendicular})



122 Source Code

s23 = Constant(0.0)
s31 = Constant(0.0)
s32 = Constant(0.0)
s33 = Expression(’s’, {’s’:sigma_VI_perpendicular})
#Then define the conductivity tensor for the layer
layer_VI_conductivity = as_matrix(((s11,s12,s13),(s21,s22,s23),(

s31,s32,s33)))

# Time loop parameters, defined in terms of stimulation frequency
T = 1/f
dt = T/8.
t = 0

# Test and trial function
u = TrialFunction(V)
v = TestFunction(V)

# Defining the reference electrode
bc = DirichletBC(V, Constant(0), boundaries, 9)

# Write current information to file
ofile = open(’current.dat’, ’w’) # open file for writing
ofile.write(’f = %s kHz\n’ % f)

file = File(’phi.pvd’)
while t<T:

# Update time
J_soma.t = t
J_stick.t = t

# Necessary adjustments for currents to obey Kirchhoff’s
current law

# Write current (not electron current but contemporary) time
to file

ofile.write(’t = %s ms\n’ % t)
# Calculate soma current [mA]
soma_current = assemble(J_soma*ds(7), mesh=mesh,

exterior_facet_domains=boundaries)
# Write soma current to file
ofile.write(’Soma current = %s mA\n’ % soma_current)
# Calculate stick current before correction
stick_current = assemble(J_stick*ds(8), mesh=mesh,

exterior_facet_domains=boundaries)
# Write stick current (before correction) to file
ofile.write(’Stick current = %s mA\n’ % stick_current)
# Calculate the electrode current at this instance
I_e = I_0*cos(omega*t) # [mA], electrode current
# Write the electrode current to file
ofile.write(’Electrode current = %s mA\n’ % I_e)
# Calculate the deviation from Kirchhoff’s current law
delta = I_e - stick_current - soma_current
# Write the deviation to file
ofile.write(’I_e - I_soma - I_stick = %s mA\n’ % delta)



123

# Correction current
# Calculate the new current amplitude to use for the stick
I_0_corr = (I_e-soma_current)*I_0/stick_current
# Write it to file
ofile.write(’Correction current = %s mA\n’ % I_0_corr)

# Update the stick current
J_stick.I_0 = I_0_corr
# Calculte the total stick current [mA]
stick_current = assemble(J_stick*ds(8), mesh=mesh,

exterior_facet_domains=boundaries)
# Write it to file
ofile.write(’Stick current = %s mA\n’ % stick_current)

# Calculate the difference and write it to file
delta = I_e - stick_current - soma_current
# Write the new error, hopefully zero, to file
ofile.write(’I_e - I_soma - I_stick = %s mA\n’ % delta)

# Variational problem
# Bilinear form
a = saline_conductivity*inner(grad(u),grad(v))*dx(0) + inner(

layer_VI_conductivity*grad(u),grad(v))*dx(1) + inner(
layer_V_conductivity*grad(u),grad(v))*dx(2) + inner(
layer_IV_conductivity*grad(u),grad(v))*dx(3) + inner(
layer_II_III_conductivity*grad(u),grad(v))*dx(4)

# Linear form
L = Constant(0)*v*dx + J_soma*v*ds(7) + J_stick*v*ds(8)

# Assemble the stiffness matrix
A = assemble(a, exterior_facet_domains=boundaries,

cell_domains=subdomains)
# Assemble the RHS vector
b = assemble(L, exterior_facet_domains=boundaries,

cell_domains=subdomains)
# Apply Dirichlet boundary condition
bc.apply(A,b)
# Declare a function to hold the solution
phi = Function(V)
# Solve the linear system
solve(A, phi.vector(), b)

# Export the current solution
file << phi
# Update the time
t += dt

# Reset stick current. THIS IS IMPORTANT!!
J_stick.I_0 = I_0

# Close output file
ofile.close()



124 Source Code

Two-Monopole Approximation

Mesh Generation

The file create_mesh.py from TM_Impact_of_Saline is shown below.

#!/usr/bin/env python
from dolfin import *

# Outer box dimensions (millimeters are used as units for all
length variables in the script!)

box_x_dim = 4; box_y_dim = 4; box_z_dim = 1

# Initial number of cells in each spatial direction (0.1 mm
resolution)

nx = 40; ny = 40; nz = 10

# Tissue slice dimensions
tissue_x_dim = 2; tissue_y_dim = 2; tissue_z_dim = 0.3

# Ball dimension
radius = 0.01 # [mm]
separation = 1. # [mm]

# Ball height above array
height = .2 # [mm]

# Ball coordinates
left_ball_x = -separation/2.
left_ball_y = 0
left_ball_z = -box_z_dim/2. + height
left_ball_coor = Point(left_ball_x, left_ball_y, left_ball_z)

right_ball_x = separation/2.
right_ball_y = 0
right_ball_z = -box_z_dim/2. + height
right_ball_coor = Point(right_ball_x, right_ball_y, right_ball_z)

# Class representing the tissue
class Tissue(SubDomain):

def inside(self, x, on_boundary):
return -tissue_x_dim/2.<= x[0] <= tissue_x_dim/2. and -

tissue_y_dim/2. <= x[1] <= tissue_y_dim/2. and -
box_z_dim/2.<= x[2] <= -box_z_dim/2. + tissue_z_dim

# Class representing the left ball
class LeftBall(SubDomain):

def inside(self, x, on_boundary):
r = sqrt((x[0]-left_ball_x)**2+(x[1]-left_ball_y)**2+(x

[2]-left_ball_z)**2)
return r<1.5*radius

def snap(self, x):
r = sqrt((x[0]-left_ball_x)**2+(x[1]-left_ball_y)**2+(x

[2]-left_ball_z)**2)



125

if r<1.5*radius:
x[0] = left_ball_x + (radius/r)*(x[0]-left_ball_x)
x[1] = left_ball_y + (radius/r)*(x[1]-left_ball_y)
x[2] = left_ball_z + (radius/r)*(x[2]-left_ball_z)

# Class representing the right ball
class RightBall(SubDomain):

def inside(self, x, on_boundary):
r = sqrt((x[0]-right_ball_x)**2+(x[1]-right_ball_y)**2+(x

[2]-right_ball_z)**2)
return r<1.5*radius

def snap(self, x):
r = sqrt((x[0]-right_ball_x)**2+(x[1]-right_ball_y)**2+(x

[2]-right_ball_z)**2)
if r<1.5*radius:

x[0] = right_ball_x + (radius/r)*(x[0]-right_ball_x)
x[1] = right_ball_y + (radius/r)*(x[1]-right_ball_y)
x[2] = right_ball_z + (radius/r)*(x[2]-right_ball_z)

# Classes representing the outer boundaries (numbered from 1-6)
class Boundary1(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[0]-box_x_dim/2.)<=DOLFIN_EPS

class Boundary2(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[1]-box_y_dim/2.)<=DOLFIN_EPS
class Boundary3(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[2]-box_z_dim/2.)<=DOLFIN_EPS

class Boundary4(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[0]+box_x_dim/2.)<=DOLFIN_EPS
class Boundary5(SubDomain):

def inside(self, x, on_boundary):
return on_boundary and abs(x[1]+box_y_dim/2.)<=DOLFIN_EPS

class Boundary6(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and abs(x[2]+box_z_dim/2.)<=DOLFIN_EPS

# Class representing the boundary of the left ball
class LeftBallBoundary(SubDomain):

def inside(self, x, on_boundary):
r = sqrt((x[0]-left_ball_x)**2+(x[1]-left_ball_y)**2+(x

[2]-left_ball_z)**2)
return on_boundary and r<1.5*radius

# Class representing the boundary of the left ball
class RightBallBoundary(SubDomain):

def inside(self, x, on_boundary):
r = sqrt((x[0]-right_ball_x)**2+(x[1]-right_ball_y)**2+(x

[2]-right_ball_z)**2)
return on_boundary and r<1.5*radius

# Class representing the part of the boundary to be grounded



126 Source Code

class GroundBoundary(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and box_x_dim/2.-0.1 <= x[0] <=
box_x_dim/2. and box_y_dim/2.-0.1<=x[1]<=box_y_dim/2.
and abs(x[2]-box_z_dim/2.)<=.01

# Generation of the original mesh
mesh = Box(-box_x_dim/2.,-box_y_dim/2.,-box_z_dim/2.,box_x_dim/2.,

box_y_dim/2.,box_z_dim/2.,nx,ny,nz)

# Print mesh information to the shell
print mesh

multiplier = [10,8,7,6,5,4, 4,3,2.5,2.2, 2,1.8,1.7,
1.6,1.5,1.4,1.3,1.3]

num_refinements = len(multiplier)
for i in range(num_refinements):

# Mark cells for refinement
markers = MeshFunction("bool", mesh, mesh.topology().dim())
markers.set_all(False)
for cell in cells(mesh):

if cell.midpoint().distance(left_ball_coor) < multiplier[i
]*radius or cell.midpoint().distance(right_ball_coor)
< multiplier[i]*radius:
markers[cell.index()] = True

mesh = refine(mesh, markers)
print mesh

# Extract the submesh, excluding the two holes
subdomains = MeshFunction(’uint’, mesh, mesh.topology().dim())
subdomains.set_all(0)
LeftBall().mark(subdomains,1)
RightBall().mark(subdomains,2)
mesh = SubMesh(mesh, subdomains, 0)

# New mesh --> new MeshFunction() instance must be defined
subdomains = MeshFunction(’uint’, mesh, mesh.topology().dim())
subdomains.set_all(0)
Tissue().mark(subdomains,1)

# Function for boundary marking
boundaries = MeshFunction(’uint’, mesh, mesh.topology().dim()-1)
boundaries.set_all(0)

# Mark the boundaries
Boundary1().mark(boundaries,1)
Boundary2().mark(boundaries,2)
Boundary3().mark(boundaries,3)
Boundary4().mark(boundaries,4)
Boundary5().mark(boundaries,5)
Boundary6().mark(boundaries,6)
GroundBoundary().mark(boundaries,9)
mesh.snap_boundary(LeftBall())



127

LeftBallBoundary().mark(boundaries,7)
mesh.snap_boundary(RightBall())
RightBallBoundary().mark(boundaries,8)

# Save the mesh and the markers to file. They will be used by the
script ’simulation.py’

file = File(’mesh.xml’)
file << mesh
file = File(’subdomains.xml’)
file << subdomains
file = File(’boundaries.xml’)
file << boundaries

Simulation

The file create_mesh.py from TM_Impact_of_Saline is shown below.

#!/usr/bin/env python
"""
simulation.py
TM_Impact_of_Saline
This Python script runs the simulations for a two-monopole

approximation, testing the impact of saline
"""
from dolfin import *
import numpy

# Outer box dimensions (millimeters are used as units for all
length variables in the script!)

box_x_dim = 4; box_y_dim = 4; box_z_dim = 1

# Initial number of cells in each spatial direction (0.1 mm
resolution)

nx = 40; ny = 40; nz = 10

# Tissue slice dimensions
tissue_x_dim = 2; tissue_y_dim = 2; tissue_z_dim = 0.3

# Ball dimension
radius = 0.01 # [mm]
separation = 1. # [mm]

# Ball height above array
height = .2 # [mm]

# Ball coordinates
left_ball_x = -separation/2.
left_ball_y = 0
left_ball_z = -box_z_dim/2. + height
left_ball_coor = Point(left_ball_x, left_ball_y, left_ball_z)

right_ball_x = separation/2.
right_ball_y = 0



128 Source Code

right_ball_z = -box_z_dim/2. + height
right_ball_coor = Point(right_ball_x, right_ball_y, right_ball_z)

# Conductivity
sigma_saline = 3. # S/m
sigma_tissue = .3 # S/m

# Current amplitude
I_0 = 1e-6 # [mA]

# Use the mesh, subdomains, and boundary markers generated by ’
create_mesh.py’. These files should reside in the folder

mesh = Mesh(’mesh.xml’)
boundaries = MeshFunction(’uint’, mesh, ’boundaries.xml’)
subdomains = MeshFunction(’uint’, mesh, ’subdomains.xml’)

# Function space for the trial and test functions
V = FunctionSpace(mesh, ’CG’, 1)
# Function space for the step conductivity
V0 = FunctionSpace(mesh, ’DG’, 0)

# Calculate the area of the two monopoles, and write them to the
shell

area7 = assemble(Constant(1)*ds(7), mesh=mesh,
exterior_facet_domains=boundaries)

area8 = assemble(Constant(1)*ds(8), mesh=mesh,
exterior_facet_domains=boundaries)

print ’Area7 =’, area7
print ’Area8 =’, area8

# Define the conductivity function (uses numpy)
sigma = Function(V0)
sigma_values = [sigma_saline, sigma_tissue]
help = numpy.asarray(subdomains.values(), dtype= numpy.int32)
sigma.vector()[:] = numpy.choose(help, sigma_values)

# Write conductivity function to file (for verification)
file = File(’sigma.pvd’)
file << sigma

# Reference electrode
bc = DirichletBC(V, Constant(0), boundaries, 9)

# Define trial and test function
u = TrialFunction(V)
v = TestFunction(V)

# Membrane current
# Source
J7 = Expression(’I_0A/area7A’, {’I_0A’:I_0, ’area7A’:area7})
# Sink
J8 = Expression(’-I_0A/area8A’, {’I_0A’:I_0, ’area8A’:area8})

"""



129

First, the saline is taken into account, and the resulting
potential field is saved to ’phi_fem_saline.pvd’

"""
# Taking saline into account
a = sigma*inner(grad(u),grad(v))*dx
L = Constant(0)*v*dx+ J7*v*ds(7)+J8*v*ds(8)

# Assemble stiffness matrix and RHS
A = assemble(a, exterior_facet_domains=boundaries)
b = assemble(L, exterior_facet_domains=boundaries)
# Apply essential boundary condition, i.e., the reference

electrode
bc.apply(A,b)
# Define a function to hold the solution
phi_fem_saline = Function(V)
# Solve the problem and give it to phi_fem_saline
solve(A, phi_fem_saline.vector(), b)

# Export solution to file
file = File(’phi_fem_saline.pvd’)
file << phi_fem_saline

"""
Next, for comparison, we neglect saline, and save the potential

field to ’phi_fem_bc.pvd’
It is named so because it DOES take the boundary conditions into

account
"""

# Not taking saline into account
# Define variational problem
a = Expression(’sigma’, {’sigma’:sigma_tissue})*inner(grad(u),grad

(v))*dx
L = Constant(0)*v*dx+ J7*v*ds(7)+J8*v*ds(8)

# Assemble stiffness matrix and RHS
A = assemble(a, exterior_facet_domains=boundaries)
b = assemble(L, exterior_facet_domains=boundaries)
# Apply essential boundary condition
bc.apply(A,b)
# Define a function to hold the solution
phi_fem_bc = Function(V)
# Solve the problem and give it to ’phi_fem_bc.pvd’
solve(A, phi_fem_bc.vector(), b)

# Export the solution to file
file = File(’phi_fem_bc.pvd’)
file << phi_fem_bc

# Find the difference between the FEM solution and the infinite
medium solution and send it to file

diff = Function(V)
diff.vector()[:] = phi_fem_saline.vector()[:]-phi_fem_bc.vector()

[:]



130 Source Code

file = File(’diff.pvd’)
file << diff



Bibliography

[1] COMSOL Multiphysics. http://www.comsol.com.

[2] FEniCS project. http://www.fenics.org/.

[3] Multi Channel Systems. http://www.multichannelsystems.com/.

[4] Neuron. http://www.neuron.yale.edu/neuron/.

[5] Paraview 3.8.0 64-bit. http://www.paraview.org/.

[6] Python Programming Language. http://www.python.org/.

[7] Visualization Toolkit. http://www.vtk.org/.

[8] Martin S. Alnæs and Anders Logg. UFL specification and user manual 0.3.
http://www.fenicsproject.org/wiki/Documentation, 2010.

[9] Rembrandt Bakker, Ingo Bojak, and Dirk Schubert. Personal communication,
2010.

[10] Rembrandt Bakker, Dirk Schubert, Koen Levels, Gleb Bezgin, Ingo Bojak,
and Rolf Kötter. Classification of cortical microcircuits based on micro-
electrode-array data from slices of rat barrel cortex. Neural Networks,
22(8):1159–1168, October 2009.

[11] Mark F. Bear, Barry W. Connors, and Michael A. Paradiso. Neuroscience.
Lippincott Williams & Wilkins, 2001.

[12] Claude Bédard, Helmut Kröger, and Alain Destexhe. Modeling extracellular
field potentials and the frequency-filtering properties of extracellular space.
Biophysical Journal, 86(3):1829–1842, 2004.

[13] Gyorgy Buzsaki. Large-scale recording of neuronal ensembles. Nature Neu-
roscience, 7(446 - 451), April 2004.

[14] Enric Claverol-Tinture and Jerome Pine. Extracellular potentials in low-
density dissociated neuronal cultures. Journal of Neuroscience Methods,
117(1):13–21, 2002.



132 Bibliography

[15] Peter Dayan and L.F. Abbott. Theoretical Neuroscience. Computational Neu-
roscience series. MIT Press, 2001.

[16] Gaute T. Einevoll. Modeling of extracellular potentials recorded with multi-
contact electrodes. In Proceedings of 7th Int. Meeting on Substrate-Integrated
Microelectrodes, 2010.

[17] Gaute T. Einevoll, Klas H. Pettersen, Anna Devor, Istvan Ulbert, Eric Hal-
gren, and Anders M. Dale. Laminar population analysis: Estimating firing
rates and evoked synaptic activity from multielectrode recordings in rat bar-
rel cortex. J Neurophysiol, 97(3):2174–2190, 2007.

[18] Jonathan Erickson, Angela Tooker, Y.-C. Tai, and Jerome Pine. Caged neu-
ron mea: A system for long-term investigation of cultured neural network
connectivity. Journal of Neuroscience Methods, 175(1):1–16, 2008.

[19] Michael Fejtl, Alfred Stett, Wilfried Nisch, Karl-Heinz Boven, and Andreas
Möller. On Micro-Electrode Array Revival: Its Development, Sophistication
of Recording, and Stimulation. In Makoto Taketani and Michel Baudry, ed-
itors, Advances in Network Electrophysiology Using Multi-Electrode Arrays,
pages 24–37. Springer US, 2006.

[20] U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann. Microelectronic
system for high-resolution mapping of extracellular electric fields applied to
brain slices. Biosensors and Bioelectronics, 24(7):2191–2198, 2009.

[21] A. Gliere, C. Moulin, D. Barbier, S. Joucla, B. Yvert, P. Mailley, R. Guille-
maud, et al. A new 3-D finite-element model based on thin-film approxima-
tion for microelectrode array recording of extracellular action potential. IEEE
Transactions on Biomedical Enginering, 55(2):683–692, February 2008.

[22] Takakuni Goti, Rieko Hatanaka, Takeshi Ogawa, Akira Sumiyoshi, Jorge Ri-
era, and Ryuta Kawashima. An evaluation of the conductivity profile in the
somatosensory barrel cortex of wistar rats. Journal of Neurophysiology, 2010.

[23] David J. Griffiths. Introduction to Electrodynamics. Prentice Hall, 3rd edi-
tion, 1999.

[24] Espen Hagen. Personal communication, 2010.

[25] Johan Hake. Personal communication, 2010.

[26] Gary R. Holt. A Critical Reexamination of Some Assumptions and Implica-
tions of Cable Theory in Neurobiology. PhD thesis, California Institute of
Technology, 1998.

[27] Gary R. Holt and Christof Koch. Electrical interactions via the extracellular
potential near cell bodies. Journal of Computational Neuroscience, 6:169–
184, 1999. 10.1023/A:1008832702585.



Bibliography 133

[28] Eugene Izhikevich. Dynamical Systems in Neuroscience: The Geometry
of Excitability and Bursting. Computational Neuroscience series. The MIT
Press, 2007.

[29] Christof Koch. The Quest For Consciousness. Roberts & Company, 2004.

[30] Hans Petter Langtangen. Computational Partial Differential Equations. Texts
in Computational Science and Engineering. Springer, 2003.

[31] Hans Petter Langtangen. Python Scripting for Computational Science. Texts
in Computational Science and Engineering. Springer, 3rd edition, 2007.

[32] Hans Petter Langtangen. A FEniCS tutorial.
http://www.fenicsproject.org/doc/, 2010.

[33] A. Lehmenkühler, E. Syková, J. Svoboda, K. Zilles, and C. Nicholson. Ex-
tracellular space parameters in the rat neocortex and subcortical white mat-
ter during postnatal development determined by diffusion analysis. Neuro-
science, 55(2):339–351, 1993.

[34] Henrik Lindén. Modeling and analysis of extracellular field potentials in the
brain. PhD thesis, Norwegian University of Life Sciences, 2010.

[35] Henrik Lindén, Klas H. Pettersen, and Gaute T. Einevoll. Intrinsic dentritic
filtering gives low-pass power spectra of local field potentials. Journal of
Computational Neuroscience, May 2010.

[36] Anders Logg, Garth N. Wells, et al. DOLFIN.
http://www.fenicsproject.org/dolfin/.

[37] Shawn Means, Alexander J. Smith, Jason Shepherd, John Shadid, John
Fowler, Richard J.H. Wojcikiewicz, Tomas Mazel, Gregory D. Smith, and
Bridget S. Wilson. Reaction diffusion modeling of calcium dynamics with
realistic er geometry. Biophysical Journal, 91(2):537–557, 2006.

[38] Kenneth Moreland. The ParaView Tutorial, 3.8 edition, 2010.

[39] Philip Nelson. Biological Physics. Freeman, 2008.

[40] Ernst Niebur. Neuronal cable theory. Scholarpedia, 3(5):2674, 2008.

[41] Paul L. Nunez and Ramesh Srinivasan. Electric fields of the brain. Oxford
University Press, 2006.

[42] Klas H. Pettersen. Personal communication, 2010.

[43] Klas H. Pettersen and Gaute T. Einevoll. Amplitude variability and extracel-
lular low-pass filtering of neuronal spikes. Biophysical Journal, 2008.



134 Bibliography

[44] Klas H. Pettersen, Henrik Lindén, Anders M. Dale, and Gaute T. Einevoll.
Extracellular Spikes and Current-Source density. In R. Brette and A. Des-
texhe, editors, Handbook of Neural Activity Measurements. Cambridge Uni-
versity Press, 2010.

[45] J. Pine. Neurochip. Scholarpedia, 3(10):7766, 2008.

[46] Jerome Pine. A History of MEA Development. In Makoto Taketani and
Michel Baudry, editors, Advances in Network Electrophysiology Using Multi-
Electrode Arrays, pages 3–23. Springer US, 2006.

[47] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in C++. Cambridge University Press, 3rd edition,
2007.

[48] W. Rall. Rall model. Scholarpedia, 4(4):1369, 2009.

[49] Steve Roensch. Finite element analysis: Post-processing.
http://www.finiteelement.com/feawhite4.html.

[50] Werner Scholz, Josef Fidler, Thomas Schrefl, Dieter Suess, Rok Dittrich, Her-
mann Forster, and Vassilios Tsiantos. Scalable parallel micromagnetic solvers
for magnetic nanostructures. Comp. Mat. Sci, 28:366–383, 2003.

[51] Sébastien and Yvert Blaise Joucla. Improved focalization of electrical mi-
crostimulation using microelectrode arrays: A modeling study. PLoS ONE,
4(3):e4828, 03 2009.

[52] Jonathan Shewchuk. Triangle: A two-dimensional
quality mesh generator and delaunay triangulator.
http://www.cs.cmu.edu/˜quake/triangle.html.

[53] Hang Si. Tetgen: A quality tetrahedral mesh generator and a 3D Delaunay
triangulator. http://tetgen.berlios.de/.

[54] Ralph J. Smith. Electronics - Circuits & Devices. John Wiley & Sons, 3rd
edition, 1987.

[55] Gilbert Strang. Linear Algebra and its Applications. Thomson Brooks/Cole,
4th edition, 2006.

[56] Joakim Sundnes, Glenn Terje Lines, Xing Cai, Bjørn Frederik Nielsen, Kent-
Andre Mardal, and Aslak Tveito. Computing the Electrical Activity in the
Heart. Monographs in Computational Science and Engineering. Springer,
1st edition, 2006.

[57] Paul A. Tipler and Gene Mosca. Physics for Scientist and Engineers, vol-
ume 2. W. H. Freeman and Company, 6th edition, 2008.



Bibliography 135

[58] Eric W. Weisstein. Polynomial - From MathWorld - A Wolfram Web Re-
source. http://mathworld.wolfram.com/Polynomial.html.

[59] Eric W. Weisstein. Simplex - From MathWorld - A Wolfram Web Resource.
http://mathworld.wolfram.com/Simplex.html.

[60] C. Wolters and J. C de Munck. Volume conduction. Scholarpedia, 2(3):1738,
2007.


