ADOTONHOAL ANV S3ON3IOS TVIOILVINAHLYIN 40 INJWLEVd3d

S3ONZIDS 3417 40 ALISHIAINN NVIOIMAUON

SOLVERS FOR DIFFERENTIAL EQUATIONS
FOR A NEURON MODEL WITH NON-LINEAR DYNAMICS

LASERE FOR DIFFERENSIALLIGNINGER
FOR EN NEVRONMODELL MED IKKE-LINEAR DYNAMIKK

ANDERS GR@NVIK JAHNSEN

Preface

This master thesis marks the end of my five years as a Master of Science
student at the Department of Mathematical Sciences and Technology at the
Norwegian University of Life Sciences. I have attended the study programme
“Environmental physics and renewable energy”, and the master thesis is the
result of the last half years work (30 study points).

Hans Ekkehard Plesser has been my supervisor for this master thesis. Thank
you for good discussions and helpful supervision. I would also thank you for
introducing me to informatics and programming.

To good friends: Thank you for your support and discussions, both of sci-
entific and non-scientific character.

Finally I want to thank Aud Jorunn Karlsen Hovda for all help and support
you kindly have given me.

As, 12th of May, 2010

Anders Grgnvik Jahnsen

Abstract

The human kind knows a lot about nature but it is still overwhelming many
phenomena the humans in total do not know much about. This is influenced
by the fact that many of the systems in nature are complex. A possible way
of investigating such systems is by simulations. The increase in computa-
tional power during the last years has made it possible to do research on
more and more complex systems.

Neuroscience is the science which deals with the understanding of the brain
and the nervous system. Such systems are very complex. Simulations are
therefore a necessary tool to increase the understanding in this field.

Neurons are an important building brick of the brain and the nervous system.
Different types of neurons exist and are specialized for different purposes.
Before it is possible to simulate their behaviour, a mathematical model of
equations has to be made. Depending on what effects it is desirable to
investigate, the description of the neuron varies.

Neural Simulation Toolbox (NEST) is a simulator aimed to simulate net-
works of neurons and measure the network activity. NEST supports differ-
ent neuron models. Among them is the conductance based model of a leaky
integrate-and-fire neuron, named iaf_cond_alpha.

The aim of this master thesis has been to decrease the simulation time for
this model. Two new versions of it have therefore been made. They are
named iaf_cond_alpha_ei and iaf_cond_alpha_ei_step.

The simulation times for the new models are approximately 25% for the
iaf_cond_alpha_ei model and 30% for the iaf_cond_alpha_ei_step model, when
comparing to the simulation time for the original iaf_ cond_alpha model.

Neuron models are described by differential equations. These equations are
integrated numerically in a simulator. This will take the system forwards in
time.

In the models used in this master thesis there are five equations that have
to be evaluated. Four of the equations describe the synaptic dynamics of

iv ABSTRACT

the neuron and the last one describes the membrane potential.

The original and the new models differ in which methods for numerical inte-
gration that are used. Iaf_cond_alpha uses a Runge-Kutta-Fehlberg method
of fourth-fifth order with adaptive step size control from GNU Science Li-
brary. The new models use Exact Integration for updating of the synaptic
dynamics. Updating of the membrane potential is done with a manually im-
plemented Runge-Kutta method. The iaf_cond_alpha_ei model uses a fourth
order method and the iaf cond_alpha_ei_step uses a fifth order method.

It is, however, not enough to reduce the simulation time. The numerical
precision and error is also important. The new models are tested for nu-
merical precision and error, and are as good as the original iaf cond_alpha
model.

Both the original and the new neuron models are written in the C++ pro-
gramming language. The testing is done in the Python programming lan-
guage. NEST Python interface PyNEST has been used to easily create neu-
rons, adjust parameter values, make simulations and pick out the desired
recorded values.

Sammendrag

Menneskene vet mye om naturen, men det er fortsatt veldig mange fenomener
som menneskene samlet sett ikke vet stort om. At mange av systemene som
finnes i naturen er komplekse pavirker til dette. En mulig mate & finne
ut mer om slike systemer er & simulere dem. I de senere arene har det
blitt mulig & gjgre undersgkelser pa stadig mer komplekse systemer. Dette
skyldes en kraftig gkning av regnekraft.

Nevrovitenskap er vitenskapen der en prgver a forstd hjernen og nervesys-
temet. Dette er sveert komplekse system. Simuleringer er derfor et ngdvendig
hjelpemiddel og verktgy for & kunne gke kunnskapen pa dette omradet.

Nevroner er viktige byggesteiner i hjernen og i nervesystemet. Det eksisterer
forskjellige typer nevroner som alle er spesialisert for ulike formal. For
det er mulig & simulere et nevrons oppfersel ma det lages en matematisk
modell som i ligninger beskriver oppferselen til nevronet. Hvordan nevronet
modelleres er avhengig av hvilke egenskaper som gnskes undersgkt.

NEST (Neural Simulation Toolbox) er en simulator utviklet med det til hen-
sikt & kunne simulere nettverk av nevroner og male aktiviteten i nettverket.
NEST har stgtte for bruk av mange ulike nevronmodeller. Blant dem er en
konduktansebasert modell av et integrer-og-fyr nevron med lekkstrom (En-
gelsk betegnelse: Integrate-and-fire neuron). Denne modellen heter iaf_cond -
alpha.

Arbeidet utfgrt i denne mastergradsoppgaven har hatt til hensikt & redusere
simuleringstida for nevronmodellen iaf_cond_alpha. Det er derfor blitt lagd
to nye versjoner basert pa den originale modellen. De heter iaf_cond_alpha_ei
og iaf_cond_alpha_ei_step.

Simuleringstida for de nye modellene iaf_cond_alpha_ei og iaf_cond_alpha_ei_step
er henholdsvis omtrent 25% og 30% av simuleringstida til den originale
iaf_cond_alpha-modellen.

For & beskrive nevronmodeller brukes differensialligninger. I en simulator
blir disse integrert numerisk. Dermed tas systemet framover i tid.

vi SAMMENDRAG

I modellene som brukes i denne mastergradsoppgaven er det fem ligninger
som ma oppdateres. Fire av dem beskriver signaler inn til nevronet via
synapsen. Den siste beskriver membranpotensialet.

Den originale og de nye modellene bruker ulike metoder for numerisk inte-
grasjon. laf cond_alpha bruker en Runge-Kutta-Fehlberg metode av fjerde-
femte orden med skrittlengdekontroll fra GNU Science Library. De nye mod-
ellene bruker Eksakt Integrasjon for & oppdatere dynamikken i synapsen.
Oppdatering av membranpotensialet gjgres med en manuelt implementert
Runge-Kutta metode. Modellen iaf cond_alpha_ei bruker en fjerdeordens
metode og iaf_cond_alpha_ei_step bruker en femteordens metode.

Uansett er det ikke tilstrekkelig & redusere simuleringstida. Numerisk pre-
sisjon og feil er ogsad viktig. De nye modellene har blitt testet pa bade
numerisk presisjon og feil, og er like gode som den originale iaf_cond_alpha-
modellen.

Bade den originale nevronmodellen og de to nye er skrevet i programmer-
ingsspraket C++. Testing er gjort med programmeringsspraket Python.
Brukergrensesnittet til NEST via Python, PyNEST, har blitt brukt for a
enkelt kunne skape nevroner, forandre parameterverdier, kjgre simuleringer
og hente ut gnskede lagrede verdier.

Contents

Preface i
Abstract iv
Abstract in Norwegian vi
List of Figures ix
List of Tables xi
1 Introduction 1
1.1 NEST - Neural Simulation Toolbox 2
1.2 Scopeofthethesis 2
2 Neurons 5
2.1 The nervous systemo 5
2.2 Biology of neurons L0 6
2.3 Neuronmodels, 10
3 Numerically integration of ODE’s 17
3.1 Introduction to numerical integration 17
3.2 Different types of integrating methods 20
3.3 The Runge-Kutta method 22
3.4 Exact Integration L. 25
4 Methods 27
4.1 Creating neuron models 29
4.2 Testing neuron models 32
5 Stable states 37
5.1 Resolution dependent differences 37
6 Precision and error 43

6.1 Rough resolutions. 43

viii

CONTENTS

6.2 Realistic simulations
6.3 Updating algorithms

6.4 Variations in firing rates and time constants

7 Effectiveness

7.1 Simulation times

8 Summary
A An introduction to PyNEST
B Programming code

Bibliography

59

....... 99

65

67

71

105

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3

4.1

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

Neuron. e 7
Ton channels in the neuron membrane 8
Action potential/spike oL 9
Firing rate of aneurono 10
Different spike patterns, same frequency 11
Equivalent electric circuit 12
Euler’s method, 19
Runge-Kutta method of the second order 23
Runge-Kutta method of the fourth order 24
Test regimes L 33
Stable differences L oL 39
Conductance based neuron models in with-noise regime . .. 44
Local error for different rates 46
Resolution dependent errors 48
Differences in membrane potential, conductance based models 50
Membrane potential differences for Iaf psc_alpha model . . . 52
Fluctuations in membrane potential caused by rate variation 55

Fluctuations in membrane potential caused by variation of
synaptic time constanto 56

Simulation times for neuron models 60

List of Tables

4.1
4.2
4.3
4.4
4.5

5.1

7.1
7.2

Specifications of test computer 29
Standard values for Poisson generators 34
Parameter values for neurons 35
Resolutions and repetitions used for speed test 35
Values used to adjust the firing rates in speed test 36
Differences in fix point values 42
Simulation times for four neuron models 61
Simulation time per step for four neuron models 63

Chapter 1

Introduction

A simulator is trying to recreate nature. They are necessary tools when
studying complex systems, as done in neuroscience. The latest years it
has been an enormous increase in accessible computational power. This
has made it possible to simulate more complex systems than before and
with more variations of parameter values. This has caused a simultaneous
increase in the demand for such possibilities. The effiency of the simulators
used is therefore important.

The precision of the results is important. Results delivered efficiently are
not enough if the results not are correct enough. The desired degree of error
depends on the research that should be done. In some cases results delivered
efficiently is more important than as little error as possible, and in other
cases it is the other way around. No matter what the researchers actually
want it is necessary that simulators are able to deliver precise results.

There are developed simulators which emphasize research on different sys-
tems in neuroscience. The neuron is an important building brick of the
brain. Some simulators are used to simulate, for example, the internal
changes inside a neuron. Others are used to simulate networks of neurons
to understand more about the network activity.

In this master thesis the precision and efficiency of one neuron model in
the simulator NEST (Neural Simulation Toolbox) have been investigated.
The aim was to decrease the simulation time, but still keep the numerical
precision and error as good as they were.

2 Chapter 1 Introduction

1.1 NEST - Neural Simulation Toolbox

NEST! is a simulation tool made for modelling the behaviour of networks of
neurons. It supports a large number of neuron types and has several tools
necessary when modelling different kinds of networks. NEST is aimed to be
used for simulations of large neuronal networks (more than 10 neurons and
107 to 10? synapses) [Eppler et al., 2009].

The computational performance is important in NEST. It is therefore writ-
ten in the programming language C++ which has many possibilities for
computational optimization. Before any user interface had been developed,
simulations were set up by writing the C++ code for the whole simulations.
This is not basic knowlegde, and the user has to know quite a lot about
programming and C-++.

The original user interface for NEST was made in its own simulation lan-
guage SLI. A more convenient programming language for NEST was required
and PyNEST was created. It combines NEST and the programming lan-
guage Python. PyNEST keeps both the efficient simulation kernel in NEST
and the simplicity and flexibility which Python gives [Eppler et al., 2009].

1.2 Scope of the thesis

In NEST it is possible to simulate several different neuron models. Among
them is the conductance based leaky integrate and fire model (see Section
2.3) named iaf cond_alpha. This model delivers precise results, but the
simulations could be done faster and more efficient.

Every neuron model is described by some differential equations. These equa-
tions must often, and also in the case of the iaf_cond_alpha model, be solved
numerically with use of some integration routine (see Chapter 3). This is
necessary for updating variables which describes the state of the neuron.
The iaf_cond_alpha model uses a routine from the GNU Science Library.
The numerical integration could be done faster if using Exact Integration
(see Section 3.4) instead of the GSL routine.

The aim of this master thesis has been to make the iaf_cond_alpha neuron
model faster and still keep the numerical precision and error at the same
level as it is today. It is therefore possible to say that this thesis regards
giving a contribution to the development of this simulator.

The work done during this master thesis has resulted in two new neuron
models which both deliver faster simulations and keeps the precision. All

"http://www.nest-initiative.org

1.2 Scope of the thesis 3

the work done is described in this master thesis.

Chapter 1 is this introduction to the master thesis. Here the simulator NEST
(Neural Simualtion Toolbox) has been described. The aim and results of the
thesis are also explained briefly. An overview of the thesis, with more details
than in the table of contents, is given.

Chapter 2 deals with neurons. The nervous system is treated briefly, but
the biological explanation of a neuron and neuron models are emphasized.
Important effects as neuron spiking and the connection between information
sent by a neuron and its firing rate is explained. Different types of neuron
models are explained before variations of the used leaky integrate-and-fire
neuron are described.

Neuron models are described by differential equations. Often they have to
be solved numerically. Chapter 3 is an introduction to numerical integration.
Several different methods for numerical integration exist. Three of them are
explained more in detail. These are Euler’s method, Runge-Kutta methods
of different orders, and Exact Integration.

Chapter 4 concerns the methods used. The development of the new neu-
ron models are explained, and also the updating of them. Testing of the
different neuron models has been an important part of this thesis. This
chapter therefore also contains a description of the different test methods
used. Parameters used for testing are given in this chapter.

The results of this master thesis work is described in Chapter 5, 6 and
7. Chapter 5 is about some differences found in this master thesis which
are caused by the fact that numbers have to be represented numerically.
Precision and error in general is treated in Chapter 6. Chapter 7 concerns
simulation times.

The last chapter in the main part of this master thesis is the summary
in Chapter 8. The conclusions based on the results are drawn and some
suggestions for further work are given.

There are two appendices in this master thesis. Appendix A gives an intro-
duction to PyNEST, the Python user interface of NEST. The source code
of the new neuron models and the scripts used for production of data or
figures included in this master thesis can be found in Appendix B. The
bibliography of used references is included at the very end.

Chapter 2

Neurons

This chapter aims to give an introduction to neurons. Section 2.1 deals with
the nervous system in general. Section 2.2 concerns a biological view on
neurons and includes both a description of the different parts of a neuron
and its properties. The last section, Section 2.3, explains about neuron
models. They are necessary when trying to recreate the behaviour of a
neuron in a simulator.

The whole chapter is based on sources from the neuroscience books “The-
oretical Neuroscience: Computational and Mathematical Modeling of Neu-
ronal Systems” [Dayan and Abbott, 2001] and “The Brain: A Neuroscience
Primer” [Thompson, 2000].

2.1 The nervous system

The first kind of nervous system that was developed was in animals such as
jellyfish. Jellyfish can react on nutrients in the water and swim to capture
it. This was a great development from the sponge, which just sits on the
bottom of the sea and whose survival depends on whether nutrients are
passing nearby or not. The jellyfish’s possibility to react on the surroundings
shows that different cells must have been created and that the cells are
communicating. Muscle tissue contracts and is controlled by signals sent
from neurons.

All animals have a nervous system which controls the behaviour of the body.
The neurons are also thought to act the same way in all animals, from jelly-
fish to humans. The main difference separating animals are the number of
neurons and the ways they are put together. Humans have a huge number of
neurons put together in a complicated way and therefore have the possibility
of a sophisticated and adaptive behaviour.

6 Chapter 2 Neurons

The centre of the nervous system is located in the brain. A brain with a
large number of neurons compared to the body mass gives the species an
advantage compared to a species with a smaller number of neurons. This
advantage ensured human survival.

The humans do not have the biggest brain among mammals. The whales
have the biggest and both porpoises and elephants have bigger. But the
human brain is largest compared to the body size [Thompson, 2000].

The presence of the human nervous system makes us more adaptable to
the constantly changing surroundings. We can process the signals from our
sensory instruments (eyes, ears and so on) and make better decisions.

But not all things that live on the Earth have a nervous system. Plants are
an example of this. Instead of a nervous system the plants interact with
the surroundings based on reflexes. One reflex could be to produce sugar
during photosynthesis when there is enough light. The cycles that plants go
through, both daily and seasonally, are controlled by these reflexes.

2.2 Biology of neurons

Neurons consist of a well-developed cell nucleus that contains chromosomes
with the genetic material (DNA). The same applies to cells in multi-cellular
plants and animal organisms. In contrast to other cells, the reproduction
of neurons stops when a human is born. The number of neurons in the
brain and nervous system is therefore constant, or decreasing, throughout a
human life.

Some fibres extend from the nucleus of a neuron. These are used to create
connections between neurons where information could be sent or received.
All sending of information goes through only one fibre called the axon.
Through the other fibres, called dendrites, the individual neuron receives
information. The length of the dendrites is tens to hundreds micrometers.
The length of the axons in the human body, on the other hand, can differ
a lot. Some neurons have axons which are up to one meter long and some
axons have a length comparable to the length of the dendrites. The axon
divides into a number of small fibers. In these ends there are terminals that
make the connection with one other cell through the synapse.

Depending of the type of neuron, the axon could make different connections.
The axon from the motor neuron, as showed in Fig. 2.1a, creates connections
with muscle cells. The pyramidal cells, as showed in Fig. 2.1b, are the main
work horses in the cortex, which is a part of the brain. They do not connect
with muscle cells. Instead connections to other neurons are made, and they
can connect with both dendrites and the cell body of the actual neuron.

2.2 Biology of neurons 7

Dendrites — Apical
7 dendrite

Basal
dendrite

Axon

(a) Motor neuron (b) Pyramidal neuron

Figure 2.1: Schematic view of different types of neurons and its parts [Kandel
et al., 1991, Fig. 2-4 D]. Figure 2.1a is a motor neuron, which sends signals to
muscles. Figure 2.1b is a pyramidal neuron. They are the work horses in cortex,
which is a part of the brain.

Other types of neurons represented in the brain can make the same types of
connections.

Fig. 2.1 gives a schematic view of a motor neuron and a pyramidal neuron.
Both figures show the cell body, the axon and the dendrites. The motor
neuron shows a good schematic view of neurons, if only one type should be
presented.

The largest collection of neurons in humans is found in the brain. The
neurons are important parts for the brains function. It is thought that the
brain consists of as many as a trillion (10'2) individual neurons. Each of
these neurons is a separate cell and is connected to several thousands of
other neurons. It could therefore be around 10'® connections in the brain.
Thompson [2000] states that in general the number of possible connections
in the brain is larger then the total number of atomic particles that makes
up the known universe.

In the cell membrane of the neuron there are ion channels that allow ions to
move into and out of the cell. The dominant ions are sodium (Na™), potas-
sium (K7), calcium (Ca?*) and chloride (C17). The flow of ions through
the membrane is controlled by the opening and closing of ion channels. This
is done in response to voltage changes and external and internal signals.

Fig. 2.2 shows ion channels in the axon membrane and how these ions are

8 Chapter 2 Neurons

(a) Outside axon
@ o9 © 00 .

0 ed e LA ‘00. 00.0030:.:‘.:.°.
. Inside axon

Potassium channels and
potassium (K*) ions (@)

() Outside axon ¢

b4 Inside axon

Sodium channels and
sodium (Na*) ions (@)

() Outside axon
o o _ 90%o0
o 09,0 o o 009 Oooooo 04
o O,.0 05 099°959%80,0% .8 9
o 90~ 0 o 0o 098 000~ o

0 E
1) 0% o o o 00 09
Inside axon

Chloride channels and
chloride (CI") ions (0)

Figure 2.2: Jon channels and ion concentration in the axon membrane of the
neuron [Thompson, 2000, Fig. 3.5]. Figure a): Most potassium ions are open
and most of the potassium ions are inside. Figure b): Most of the sodium ions
are outside and the sodium channels are mostly closed. Figure c): The chloride
channels are open and the chloride ions are outside. There are not as many chloride
channels as there are channels for potassium and sodium.

distributed between inside and outside of the neuron. The potassium ions
are mostly inside and just some of its channels are closed. Most of the
sodium channels are closed and the concentration of sodium ions is highest
outside the axon. The number of chloride channels is not as large as the
number of channels for potassium or sodium, but they are all open. The
chloride ions are mostly at the outside.

The membrane potential is the difference between the voltage inside the
cell and in the surroundings. It is, among other things, determined by the
relative number of open ion channels. The voltage in the surroundings is
conveniently set to 0 mV (millivolt). The resting potential of a neuron is

2.2 Biology of neurons 9

Vohtaoe of (mV)

actiod €’-t<<\‘v““
F -

go 4

v .‘ ,: + P
0 7 e 3 ! Tine, (ms)

Figure 2.3: Schematic view of an action potential/a spike. Based on Thompson
[2000, Fig. 3.12]

about -70mV.

A special property of neurons is their ability to propagate signals rapidly
over large distances. The electric pulses that travel down the axon are called
action potentials, or simply spikes. Depending on the pattern and frequency
of the firing spike sequences, different information is sent down the axon to
other neurons and cells.

These action potentials are fluctuations in the membrane potentials of roughly
100 mV that lasts for about 1 ms (millisecond). If the membrane potential
gets over a threshold the neuron will send out a spike. The typical threshold
value of the membrane potential, Viy,, is about -55 to -50 mV. Fig. 2.3 shows
a schematic view of a spike.

After a spike the neuron becomes refractory, first in the absolute refractory
period and second in the relative refractory period. In the first one it is
almost impossible for the neuron to create a new spike. This period does
not last long, only a few milliseconds. The relative refractory period, on the
other hand, lasts for up to tens of milliseconds. Here it is more difficult than
normal to create a spike.

Neurons communicate with other neurons or cells through spikes. Because
all spikes look the same, the content of the message which a neuron sends out
is determined by the pattern and the frequency of the spikes. The frequency
of the spikes tells the mean value of spikes per time. It could change over
time, and then be time dependent, or it can be constant over time, and then
be independent of time. The pattern of the spikes tells how the spikes are

10 Chapter 2 Neurons

AU

Figure 2.4: Neuron firing rate. Top figure shows high firing rate and the lower
one shows low firing rate

distributed over time.

The frequency of the spikes are in many cases taken as the important pa-
rameter to describe a spike train. It is therefore important to measure it.
The parameter which tells the frequency of the spikes is called the firing rate
of a neuron. Fig. 2.4 shows examples of both high and low firing rate.

Although the frequency could influence the message from the neuron more
than the pattern of spikes, the pattern is also important. Fig. 2.5 shows
different possibilities of spike trains which have the same frequency, but
different patterns. In these cases also the pattern influence on the message
sent.

The simplest pattern is illustrated as the red crosses in Fig. 2.5. In this case
the spikes are separated with the same distance of time. The message is then
determined by the frequency of the spikes. One step further in complexity
is a spike train where several spikes come with a short distance between
themselves and the time distance to the next one is longer. Both the blue
crosses (on short, one long) and the green crosses (two short, two long) are
examples of this type of pattern. In these cases the frequency could no
longer tell the whole truth about the information sent out from the neuron.

2.3 Neuron models

The last section gave an introduction to neurons. It was shown that neurons
consist of three main parts, the neuron cell body, the dendrites and the axon.
The neurons have a membrane too. Here is ion transport possible and the

2.3 Neuron models 11

Figure 2.5: Different spike patterns, same frequency

membrane defines the shape of the neuron.

When trying to recreate nature, as done in a simulation, it is useful to make
a model of the system we are dealing with. In all cases it is possible to
make models which span from simple models, which only cover the basics,
to complex models, where all known mechanisms are taken into account. A
simple model is easy to use, but it may be so simple that the results not are
mirroring what would have happened in the real system. Simulations with
a complex model will hopefully show a true picture of the real system. But
there are some disadvantages with these types of models. Many mechanisms
that are taken into account humans do not understand very well. It is there-
fore uncertain if the mechanisms are modelled the right way and if the values
of the parameters used are representative. If these mechanisms are modelled
wrong and incorrect parameter values are used, using a complex model could
give a false security about the results of the simulation. Simulations with
complex models could also need more resources than necessary.

When modelling neurons it is possible to make the model with all the mech-
anisms which happen inside the neuron cell body taken into account. This
is called a full-compartment model. When modelling networks of neurons
the network activity is the main thing of interest. Therefore it is sufficient
to use a less complex model. The model used is called a single-compartment
model and models the neuron as a point neuron.

Single-compartment models use a single variable V' to describe the mem-
brane potential of a neuron. Multi-compartment models can also describe
spatial variations in the potential. The basic equation for single-compartment
models is [Dayan and Abbott, 2001, Eq. 5.6]

v In
v, e 9.1
tmgy = Tmt Yy (2.1)

12 Chapter 2 Neurons

E;

s - 1 2

Ie

>>|m~

_Q S

'||—| I—

Figure 5.4 The equivalent circuit for a one-compartment neuron model. The neu-
ron is represented, at the left, by a single compartment of surface area A with
a synapse and a current-injecting electrode. At right is the equivalent circuit. The
circled @ indicates a synaptic conductance that depends on the activity of a presy-
naptic neuron. A single synaptic conductance gs is indicated, but in general there
may be several different types. The circled @ indicates a voltage-dependent con-
ductance, and I is the current passing through the electrode. The dots stand for
possible additional membrane conductances.

Figure 2.6: Equivalent electric circuit to a single-compartment model. I, equals
Ir. The original figure text is included for full explanation of the figure [Dayan and
Abbott, 2001, Fig. 5.4].

The charge in the neuron builds up with a rate equal to the total amount
of current entering the neuron. The change of the membrane potential 4~
multiplied with the total capacitance Cy, gives this current. The current
is also equal to the membrane current plus eventually an experimentally
added current Ig. Since the membrane current usually is given as current
per unit area, both total capacitance and experimentally added current must
be divided by the neuron area. It gives the specific capacitance ¢y, and %E,
where A is the surface of the neuron. Putting all this together gives Eq.

(2.1).

A single-compartment model has its equivalent electric circuit. Both the
neuron and the equivalent circuit are shown in Fig. 2.6. The neuron has
surface area A, one synapse and a current-injecting electrode. The electric
circuit is modelled with a conductance dependent on the presynaptic input,
a synaptic conductance and several voltage-dependent conductance. The
original explanation from Dayan and Abbott [2001] is included in the figure
and explains better.

Integrate-and-fire-models (I&F models) consider only the sub-threshold dy-
namics of the membrane potential. This means that the biophysical mecha-
nisms that are responsible for action potentials are not explicitly taken into
account. They are well known and could be modelled, but are excluded
to make neuron models easier and simulations faster. In the I&F model a
neuron spikes whenever its membrane potential reaches the threshold poten-
tial Vip. After a spike the membrane potential is reset to a reset potential

2.3 Neuron models 13

Vieset < Vin- The neuron is then refractory for some time before it has the
opportunity to send out a new spike.

The most used version of the I&F model is called passive or leaky integrate-
and-fire model. In this model the “entire membrane conductance is modeled
as a single passive leakage term, i, = gr,(V—Er,)” [Dayan and Abbott, 2001].
The resting potential of the cell is Ey,. Combining it with Eq. (2.1) gives
[Dayan and Abbott, 2001, Eq. 5.7]

LAV
"d

;= —gL(V — Ey)

E
—. 2.2
- (22)
The specific membrane resistance r,, = 1/gr,. The membrane time constant
Tm 1S defined as the specific membrane conductance multiplied with the
specific membrane resistance, 7, = ¢yrm. Multiplying Eq. (2.2) with 7y,

and using the connections given over, gives the basic equation for leaky I&F
models [Dayan and Abbott, 2001, Eq. 5.8]

dv

This equation does not depend of the surface area A of the cell, as Eq. (2.2)
did. Instead the total resistance Ry, is used. Using Ohms law it can be
showed that r, = RnA.

Eq. (2.4) starts with Ohms law U = IR. The total voltage is also equal
to specific current multiplied with specific recistance. The specific current
isis = %. If the product isrs should be equal U, the specific resistance r;
must be given as R A.

_ L

U=IR=imr = (RA)=IR (2.4)

If the current Iy is the only input to the neuron, the membrane potential
will, with time constant 7y,, reach this value as time t — co. An analytical
solution of Eq. (2.3) could be computed, independent on whether I, is time
dependent or not.

In the case of time independent current Iy and initial condition V(¢ = 0) =
FEr,, the analytical solution is

(1 —e t/m), (2.5)

14 Chapter 2 Neurons

2.3.1 Current vs conductance based I1&F models

There are mainly two different types of leaky integrate-and-fire models,
where the difference is how the synaptic input is modelled. In the first
model the input is modelled directly as an input of current. The second
possibility is that the input could be modelled as a change of the membrane
conductance. This change would then result in a current input.

The current Ig to a neuron could be described as the sum of external current
Ioxt and current due to synaptic input, Igyy,

Ig = Iext + [syn- (26)

Isyn could be described as a sum of current functions i(t) or as a sum of
conductance functions g(t) multiplied with a voltage V' — Eyey. FErey is a
reversal potential which is different for each type of ion. The functions are
weighted with a factor w. These two cases are shown mathematically as

Lon(t) = = > wi(t — ts)O(t — tip), (2.7)
Iyn(t) = = > _wg(t — tep)(V — Erey)O(t — tp). (2.8)

The two equations describe Igyn(t) for a current based I&F model and a
conductance based I&F model, respectively.

The sum is over all spike times. O is the Heavyside function. It is 0 when
its argument is negative and 1 when its argument is positive or zero. When
using O(t — tp) it is ensured that times before spike time g, should not
count.

In NEST the conductance based model and the current based model are
called iaf_cond_alpha and iaf psc_alpha, respectively. There are four equa-
tions which describe the synaptic dynamics and one equation which describes
the membrane potential. The equations for the synaptic dynamics are linear
first orders differential equations.

In the case of iaf_psc_alpha, with current based input, the equation for the
membrane potential is linear too. In the case of iaf_cond_alpha, with con-
ductance based input, the equation becomes non-linear. This is caused by
the product of conductance and membrane potential, gV, in Eq. (2.2). The
four equations that describe the synaptic input then create a linear sub-
system. This gives opportunities for the way these variables are updated

2.3 Neuron models 15

and is used when creating new neuron models based on the iaf cond_alpha
neuron model (see Chapter 4).

The function which describes the conductance and current functions in these
two models is an alpha function [iaf_psc_alpha.h, 2010]. Alpha functions, and
beta functions, are explained by Rotter and Diesmann [1999]. The second-
order differential equation given by Eq. (2.9) is called alpha-function for
a = b and beta-function for a # b.

i+ (a + b)) + (ab)y = 0, n(0) = 0, §H(0) = 0 (2.9)

The explicit form of these equations are

n(t) = riote™ ", (2.10)

n(t) = bn—o (e““ + e‘bt) : (2.11)

for the alpha and the beta function, respectively.

Chapter 3

Numerically integration of
ODE’s

The previous chapter concerned neurons and explained the biology of neu-
rons and how to model them. These neuron models are necessary tools
when trying to recreate nature by simulation. The mathematical descrip-
tion is done with ordinary differential equations.

This chapter concerns solving such equations on a computer. Section 3.1
gives an introduction to numerical integration. Section 3.2 is an overview
of different types of methods that can be used for this purpose. The last
two sections explain different methods that can be used for numerical inte-
gration. Different Runge-Kutta methods is explained in Section 3.3. Exact
Integration is explained in Section 3.4.

This chapter has been written based on different sources. Section 3.2 is
based on the book of Vandergraft [1983]. The books of Butcher [2008] and
Press et al. [2007] are used in Section 3.3. Section 3.4 is written based on
the article of Rotter and Diesmann [1999].

3.1 Introduction to numerical integration

Differential equations can be written as

y'(z) = f(=z,y(2)). (3.1)
y'(z) means the derivative %. x and y are generally used to denote the time
independent and time dependent variable, respectively [Butcher, 2008]. z is
then often denoting time and y is the variable which changes over time.

18 Chapter 3 Numerically integration of ODE’s

The solution of some differential equations can be found analytically. For
those where an analytical solution not is achievable, the differential equation
is to be solved numerically with use of computers. The rest of this chapter
considers solving this kind of differential equations.

The representation of differential equations in computers is done by dif-
ference equations. Instead of using the derivative g—g, the derivative are
represented approximately by Ay/Az. This is used with the assumption
that the function is linear between the start point of time interval, x1, and
the end point of the time interval, x5. In most cases this is not a valid
assumption. Decreasing the interval of time, which means decrease Az, in-
crease the validity of the change of the derivative. However, because it only
is an approximation there will always be an error when calculating a value
numerically.

Eq. (3.1) shows how a difference Ay can be calculated from a difference Ax
and the derivative f(x,y).

Ay = f(w,y(x))Au. (3.2)

The aim of solving differential equations is to find out how y behaves as a
function of z. When standing at time x, at place y;, finding the new value
yo is what is desirable. It is possible to calculate the derivative at y; based
on future points. Standing at y; it is assumed that the y(z) from y; to ys
is linear with derivative equal to the derivative at y.

In these cases where x represents time, Ax is the time step for the integra-
tion. This is hereafter called the resolution and is denoted h.

Updating of y could look like

Yk+1 = Yk + Ay (3.3)
= yx + hf(z,y(z)). (3.4)

Az is here replaced by h. h is denoting the resolution of the integrating
methods, or the length of the time steps taken. yy is the value of y after k
steps of size h. The initial value, yo = y(x = 0), is the starting value of y
and has to be given explicit. f(x,y(x)) is denoting a derivative, because of
the equality in Eq. (3.1). f(z,y) do hereafter represents the derivative.

This way of updating a variable y is called Euler’s method and Fig. 3.1
shows it graphically.

Euler’s method is not recommended for practical use. The method is not
very accurate when compared to other, more advanced methods which run at

3.1 Introduction to numerical integration

19

y(x)

-
-
-
-
-

|

T
X1

I
X2

T
X3

Figure 3.1: Euler’s method [Press et al., 2007, Fig. 17.1.1]. The derivative at
the starting point (1) of the interval is used to extrapolate the value at the ending
point (2).

the equivalent step size. Because the behaviour of the function modelled only
depends on the derivative at one point for each step taken, Euler’s method
is not stable either. Amongst several reasons to avoid Euler’s method, these
two may be the main reasons.

During the years many different methods have been developed. They are
specialized for different purposes and for different types of differential equa-
tions. Some methods are fast, but very simple. Others can simulate the
behaviour of the actual differential equation with good precision, but are
less efficient.

Efficiency is important when solving differential equations numerically. The
right hand side of the differential equation has to be evaluated many times
during the simulation and, depending on the method used, many evaluations
are also necessary during one time step h. Another important criterion is
that the difference between the simulated values and the real solution should
be as small as possible. Reducing h would in many cases give simulated
values which are closer to the real solution.

Numerical solutions only give approximate values. Therefore it will always
be a difference between the simulated value and the real value, which means
that there will be an error. The real value is accessible in those cases where
an analytical solution could be found. The difference between the approx-
imate values from the simulation and the exact values, if an analytical so-
lution is achievable, is an estimate of this error for the actual method for
numerical integration. The error term also defines how good the method is.

The error term is denoted O(h"). Eq. (3.5) is identical with Eq. (3.4),
except that the error term O(h?) is added.

20 Chapter 3 Numerically integration of ODE’s

Ykt = Y + hf(z,y(x)) + O(h?) (3.5)

There could be defined two types of errors which are local and global error.
The local error is the error that occur in every single computational step.
This means the difference between the simulated value and the real value, if
accessible. The global error is the total error occured during a simulation.
The local error depends on A" and the global error depends on A~ 1.

Every type of problem has different criteria for what is preferred or needed.
An error which is as small as possible desired in many cases, but not always.
In some cases it is more important that the simulations deliver roughly
correct results efficiently, in other cases the time used is nearly irrelevant
because the results have to be as correct as possible. Depending on what is
emphasized to be important, different methods should be chosen.

3.2 Different types of integrating methods

Implicit and explicit methods

Eq. (3.6) [Vandergraft, 1983, Eq. 8.27] is an example of an equation used
in an implicit method. The variable for which we seek a value, in this case
Yk+1, occurs on both sides of the formula. Because the new value of the
variable depends on itself, the updating has to be done by iteration. This
means to go through all possible values that y;41 can take and test if this
actual value fulfils the equation. If it does, the integration routine could
move to step yi+1 and start over again.

1
Ykt1 = Yk + §h<f(xk+1a Ykt1 + f(@r, yr)) (3.6)

Implicit methods have two main advantages compared to explicit methods.
In general they are more accurate than comparable explicit methods and
the difference equations created are also often better conditioned than those
created by explicit methods.

The main disadvantage of implicit models is their complexity. This is due
to the fact that the variables are dependent of themselves when updating.
Implicit methods therefore demand a lot of resources, as time and simulating
power.

Eq. (3.7) [Vandergraft, 1983, Eq. 8.30] is an example of an explicit method.
It is, said in a more specific way, the equation for the Runge-Kutta method
of second order. The last term, O(h?), is an error term.

3.2 Different types of integrating methods 21

Yo = Ui+ L x) + Fonan, e+ hf)]+ O%) (3.7

With explicit methods it is, as shown, possible to update variables based
only on already known values. gy is needed to calculate yj11, but yr11 does
not occur on both sides of the equation. Explicit models are, when compared
to implicit methods, less complex.

When simulating neural networks it is important to measure the spike ac-
tivity as correctly as possible. It is therefore not possible to use large time
steps, which equals rough resolutions. The reason is that increasing the
length of the time step will also increase the possibility of missing a spike.
How this could happen is explained in the following.

V denotes the membrane potential for a neuron. After k time steps of length
h, the time is t;; = kh. At time t; the membrane potential V' < Vi, where
Vin is the threshold potential for spiking. Within the next time step, which
means before time tx1 = (k + 1)h = tx + h, the membrane potential of
the neuron could have exceeded the threshold potential for spiking, Vip,
and then decreased to a value lower than the threshold. At time ¢;.1 the
membrane potentiale V' < V4, and no spike is sent out. But during the
time step from t; to t;41 at least one spike should have been sent out. The
threshold passing fluctuation of the membrane potential could have been
registered if the length of the time step has been smaller. This would mean
using a finer resolution h.

Other types of methods

Another way to split different integrating methods is to see whether they
are one-step or multistep/n-step methods. A one-step method do only use
y(zk) to obtain the approximate value for y(zyi1). For k > 0, however,
approximate values have already been calculated. In these cases it would
be reasonable to use more than one value to create the next one. A method
is called a n-step method if it uses n approximate and already calculated
values for y(x) to obtain y(zk11). If n > 1 the method could also be called
a multistep method.

Runge-Kutta methods (see Section 3.3) are not considered as a multistep
method, despite the fact that several test steps are taken during a time step
h. This is because the value of Vi1 only depends on Vj and test steps taken
between Vi and Viy1. It do no depend of values of V; with ¢ < k.

Adaptive solvers do not use the same step size all the time. Adjustments of
the step size are done by the step size control. It checks how small steps it is
necessary to take, or in other words how large steps that could be taken, to

22 Chapter 3 Numerically integration of ODE’s

describe the behaviour of the system well enough compared to some criteria.
If the function used in the solver is smooth, big steps could be taken and the
simulation could be done more efficiently. The maximal length of the time
step is, however, determined by the user of the alghoritm. The adaptive
solver can therefore not use as large steps as possible, but can reduce the
length of the time step to a minimum.

3.3 The Runge-Kutta method

When using Euler’s method the whole interval is taken in just one step.
The information about the derivative is only used in the beginning of the
step. This can give non-accurate results. A possible way to achieve better
accuracy is by using the Runge-Kutta method, which is a modified version
of Euler’s method.

The Runge-Kutta method takes test steps inside a time step h. Approximate
values of y, the time dependent variable, are calculated at the end points
of these test steps. The updating of y, from yi to yky1, is done by giving
the values from the test steps different weights. There are several versions
of the Runge-Kutta method, and a main difference is how many test steps
that are taken.

As for all methods for numerical integration, the Runge-Kutta method has
errors. In general, a Runge-Kutta method is called an nth order method
if its error term is O(h™*1). This can be showed with a Taylor expansion
of, for example, Eq. (3.15) around a point (zy,yx) [Vandergraft, 1983, Ch.
8.2.1]. The error from the Runge-Kutta method does therefore decrease
with decreasing step size, which means finer resolution h.

The Runge-Kutta method of second order is the most basic one, and uses one
test step in the middle of the interval. Information about the derivative at
the midpoint of the interval is then used in addition to information about the
derivative at the beginning of the step. Eq. (3.8)—(3.10) describes the way of
computing an integrating step with the Runge-Kutta midpoint method. The
last part of Eq. (3.10), O(h?), is an error term. Fig. 3.2 shows graphically
the Runge-Kutta midpoint method.

k1 = hf(xn,yn) (3.8)

1 1
k2 - hf(xn + §h7yn + ikl) (3'9)
Ynt1 = Yn + ko + O(h?) (3.10)

3.3 The Runge-Kutta method 23

y(x)

Figure 3.2: Runge-Kutta method of second order, also called the midpoint
method. The derivative in the midpoint of the interval (at 2) is, together with
the derivative at the starting point (1), used to extrapolate the value at the ending
point of the interval (3) [Press et al., 2007, Fig. 17.1.2].

The Runge-Kutta method is, rather than Euler’s method, preferred when
selecting a method for numerical integration. The Runge-Kutta method of
second order uses a test step at h/2 to get better results. Euler’s method do
not use test steps. But if Euler’s method is used with step size h/2, would
not that be equal to use the Runge-Kutta method of second order with step
size h?

The actual Runge-Kutta method has an error term which depends on h3.
The error term in Euler’s method depends on h%. With step size h/2 it
depends on h?/4. This difference in the local error is the reason why the
Runge-Kutta method of second order is preferred rather than Euler’s method
with half the step size.

Higher orders and the Fehlberg variant

Runge-Kutta methods could, as mentioned, be of different orders. Methods
of higher orders use more test steps, and the result would be more correct
than with use of lower orders‘ methods. More test steps in total means more
calculations. The computational resources needed are therefore greater for
the methods of higher orders than, for example, for the second order Runge-
Kutta method.

The most common of the Runge-Kutta methods of higher orders, is the
fourth order method. Eq. (3.11)—(3.15) is from Press et al. [2007] and
describes how to compute this method. The last part of Eq. (3.15), O(h%),
is an error term.

24 Chapter 3 Numerically integration of ODE’s

Figure 3.3: Runge-Kutta method of fourth order. The derivative at the starting
point of the interval (1), twice at the midpoint of the interval (2 and 3) and at the
endpoint of the interval (4), are used to extrapolate the value at the endpoint (4)
[Press et al., 2007, Fig. 17.1.3].

k1= hf(xn,yn) (3.11)
B = hf(en+ gy + 5h) (3.12)
ks = hf(zn + %h,yn + %kg) (3.13)
ky = hf(zn+ h,yn + k3) (3.14)
Yn+1 = Yn + lkl + 1/€2 + }kg + 1l<:4 + O(h°) (3.15)

6 3 3 6

Different simulations tolerate different errors. The error is depending on the
resolution h. If an estimate of the local error had been accessible, this would
have given important information. It would then be possible to change the
resolution due to the tolerated error. A resolution which gives an error
slightly smaller than tolereated will give the best result. It combines high-
est precision with the lowest computational cost. Using a finer resolution
will decrease the error to a level lower than necessary. This will increase
the computational costs. A less precise result is achieved with a rougher
resolution.

In a multi step method this is possible with just one extra evaluation. In
a Runge-Kutta method several extra evaluations are needed. Felberg intro-
duced the idea to use two Runge-Kutta methods where some of the evalu-
ations were used in both methods. It turns out that this is possible if the
methods are of different orders. The local error in the lower order Runge-
Kutta method is calculated when doing it like this. The most used of the
Runge-Kutta-Fehlberg methods is the fourt-fifth method. This gives an
estimate of the difference between the fifth and the fourth order method.

3.4 Exact Integration 25

3.4 Exact Integration

Rotter and Diesmann [1999] introduced “an efficient method for the exact
digital simulation of time-invariant linear systems”!. In such time-invariant
systems the output, for example the membrane potential, is treated as to
not be explicitly independent of time. Time is therefore representing the
independent variable.

Eq. (3.16) could describe a time-invariant linear system [Rotter and Dies-
mann, 1999, Eq. (2)]. As for the other methods, y is the time independent
variable and x represents time. Both y and z are vectors of dimension n. A
is a quadratic matrix and its numerical constants defines the characteristics
of the system.

y=Ay+x (3.16)

There are two variants of this equation, the homogenous one and the inho-
mogenous one. The homogenous equation has x = 0 and describes a system
with zero input. The inhomogenous equation is as shown above and the
corresponding system has input.

The matrix exponential e4* would have given the set of solutions if the
equation was homogenous. This matrix is then termed “time-evolution op-
erator or propagator” matrix. If the equation is inhomogenous the matrix
exponential is called “the impulse response of the system”.

It can be shown that the updating of variable y can be done as

Yir1 = Py + 21, (3.17)

where A is the resolution of the updating. This means that it is equal to
the variable h used before, A = h. This resolution determines the time grid
of the updating. A condition for this equation to be valid is that input is
restricted to this grid.

Exact Integration proved to deliver more accurate results on both sub-
threshold dynamics and spike-timing than the other integrating methods
tested by Rotter and Diesmann [1999]. The tests were done with integrate-
and-fire neurons. The fact that “in theory, deviations from the analytical
solution do not occur, independently of the step size of the iteration” is
perhaps the main advantage of this method.

The grid restricted input makes this method efficient and precise. On the
other hand, this restriction may be the main disadvantage of this method.

'Quotes in this section are from Rotter and Diesmann [1999]

26 Chapter 3 Numerically integration of ODE’s

Within a time interval h some neurons have spiked. They have not spiked at
exactly the same time, but since all the input is restricted to the time grid,
it seems as though they have done. This could lead to artificial synchrony.
If measuring the correlations between neurons in a network simulation, this
synchrony can distort the measurements.

Morrison et al. [2007] pointed at this synchrony and developed a new method
which ensures that the spikes are handled with their exact spike times. This
method is implemented and used in NEST.

Chapter 4

Methods

NEST supports many different types of neuron models. Among them are
implementations of both the current based and the conductance based leaky
integrate-and-fire model (see Section 2.3). They are named iaf_psc_apha and
iaf_cond_alpha, respectively. These two model types differ in the way that
the synaptic input is described. In the iaf_psc_alpha model it is described
as a current function and as a conductance function in the iaf cond_alpha
model.

Both models have five variables that need regularly updating. Four vari-
ables describe the synaptic input and the last one describes the membrane
potential. The variables for the synaptic input are described by ordinary dif-
ferential equations and create a linear system of equations. The differential
equation for the membrane potential, Eq. (2.2), is linear in current based
models and non-linear in conductance based models. The non-linearity is
caused by the product of gV in the previously mentioned equation. The
result of this difference is that the system of equations for the iaf psc_alpha
model in total is linear and that the corresponding system of equations for
the iaf_cond_alpha model is linear except for the equation describing the
membrane potential.

The variation of linearity for the two systems of equations makes it nec-
essary to do the updating in two different ways. The iaf_psc_alpha model
can, because of the linearity of the system, be updated with use of the ex-
act integration routine. The iaf_cond_alpha model, on other hand, uses the
Runge-Kutta-Fehlberg method of fourth-fifth order to updates all five pa-
rameters. This method is implemented in GNU Science Library! and has
adaptive step size control.

Exact Integration can be implemented with use of just a few functions. Few

"http://www.gnu.org/softare/gsl/

28 Chapter 4 Methods

functions mean that a small amount of time is used for function calls. The
GSL solver is, on the other side, an external part. Many functions must
therefore be called before the needed values can be calculated by GSL, and
then the result has to be returned the opposite way back to the simula-
tor. The time used for this operation will, compared to time used for the
iaf_psc_alpha model, be larger.

The iaf_psc_alpha model is considered to be fast enough when simulating.
Simulations with the iaf_cond_alpha model, on the other hand, takes longer
time than desirable. The work done during this thesis was aimed to make
simulations with the iaf_cond_alpha model faster.

The fact that the different models use different methods for numerical in-
tegration to update the variables is important when trying to reduce the
simulation time for the iaf_cond_alpha neuron model.

The way to reduce the simulation time is to convert as much as possible
of the calculations from use of GSL and over to Exact Integration. This
means to use Exact Integration, instead of Runge-Kutta-Fehlberg method
of fourth-fifth order from GSL, to update the variables which describe the
synaptic input. These equations are linear and do not need to be updated
with GSL. Since the equation for the membrane potential is non-linear it
can not be updated with Exact Integration. The Runge-Kutta method must
be used for updating of this variable.

With this conversion the simulation time would decrease, and therefore in-
crease the computational efficiency of the simulator. This is an always ex-
isting goal when developing simulators. To convert other neuron models
was another aim for this master thesis, but the time period was not long
enough. Instead, two versions of the iaf_cond_alpha model, which are slightly
different from each other, have been developed.

Testing of the new neuron models was also an important part of the work
done during this master thesis. It is necessary to test both the simulation
time and the numerical precision. This precision at the new models should
be at least as good as with the original iaf_cond_alpha model.

This chapter presents the work done during this thesis and how it is done.
Section 4.1 presents the neuron models in more detail than done in this
introduction and Section 4.2 presents the methods used for testing of the
neuron models.

The Python interface of NEST, PyNEST, has been used when testing the
neuron models. An explanation of the functions used in this master thesis
is given in Appendix A. The programming code for the new neuron models
and the test scripts used for production of figures and data used in this
master thesis are included in Appendix B.

4.1 Creating neuron models 29

Processor Intel Core 2 Duo T6600, 2.2 GHz
Memory 4 GB RAM

(ON] Linux Ubuntu 9.10, 32 bits

C++ Compiler | gcc version 4.4.1

Table 4.1: Specifications of test computer

This master thesis, including the testing done, has been produced on a
computer with specifications as given in Tab. 4.1.

4.1 Creating neuron models

The new model iaf_cond_alpha_ei has been developed. To update the synap-
tic dynamics Exact Integration is used instead of GSL. This use of Exact

Integration is indicated by the adding “_ei” in the model name.

The original plan was to use the GSL-solver to update the membrane po-
tential. This routine takes test steps, inside one interval, at the lengths

12 1
17 o |

1 3
Sgsl - 07 Za ga E7 2

and in this order.

When updating the other variables, Exact Integration with constant step size
would be used. The GSL version of Runge-Kutta-Fehlberg algorithm has, on
the other hand, adaptive step size control. If combining Exact Integration
and GSL there will therefore be possibilities that the approximate values are
calculated at different times. All five variables have to be calculated at the
same point in time, otherwise it would lead to wrong results. This excludes
the combination of Exact Integration and solvers with adaptive step size
control.

Instead of using GSL to update the membrane potential, the Runge-Kutta
method of fourth order was implemented manually. Constant step size is
used and it would therefore be possible to combine it with use of Exact
Integration.

The GSL solver uses the Runge-Kutta-Fehlberg solver of fourth-fifth order.

In the iaf_cond_alpha_ei model only the Runge-Kutta method of fourth order

has been used. This difference led to the development of the iaf_cond_alpha_ei_step
model.

The iaf_cond_alpha_ei_step model is based on the iaf_cond_alpha_ei model.
The Runge-Kutta-Fehlberg method of the fifth order is used to calculate the

30 Chapter 4 Methods

membrane potential. Constant step size is used. The increase from fourth to
fifth order Runge-Kutta is indicated by adding “_step” to the model name.

This model has also implemented a calculation of error. This is a copy of
how it is done in the GSL. The error is, in this case, the difference between
the approximate values from the Runge-Kutta method of fourth order and
the Runge-Kutta method of fifth order. To calculate this error the Runge-
Kutta-Fehlberg method of fourth order is used in addition to the already
used fifth order method. This error could be picked out with use of the
PyNEST function GetStatus with keyword ’V_error’ (see Appendix A).

Updating the models

In the iaf_cond_alpha_ei model, the Runge-Kutta method of fourth order is
used. The test steps are then taken at the start of the interval, twice halfway
through the interval and at the end of the interval. The two steps in the
middle create the derivative based on different values. Fig. 3.3 shows this
method graphically.

The fact that two of the steps are at the middle of the interval makes the
calculation a bit easier. Then the simulation only has to be brought forwards
in steps of h/2. First from the start to the middle, and then from the middle
to the end. The values of the synapses have to be calculated at the same
points as the derivative. Updating of the synapses does therefore also happen
in steps of h/2.

When values from all the four test steps have been calculated, the difference
of membrane potential AV is calculated. The values from the different test
steps are weighted differently according to the Runge-Kutta method.

The updating sequence during a time step of length h could in the iaf_cond._-
alpha_ei neuron model be described as follows. The variables k,. is the value
of test step number .

1. Time t=0 (beginning of time step):

e Calculate k;

e Update synapses h/2 forwards in time
2. Time t=h/2 (middle of test step):

e Calculate ko

e Calculate k3

e Update synapses h/2 forwards in time

3. Time t=h (end of time step):

4.1 Creating neuron models 31

e Calculate ky
e Calculate AV and update V

The different elements of the propagator matrix used in the Exact Integra-
tion routine are calculated once. This calculation involves the synaptic time
constant. Since this time constant is different for excitatory and inhibitory
neurons the calculations are done twice. Because every updating step is of
length h/2 there is only necessary to create six matrix elements for the exact
integration, three for each of excitatory and inhibitory neurons.

In the iaf_cond_alpha_ei_step model the test steps are taken at the lengths
of the interval given in Sgq in Eq. (4.1). The updating of the synapses is
done once in the end of each time interval, after the test steps have been
taken. All the different test steps are taken with the start of the interval as
a base. The values are created using corresponding length and elements in
the propagator matrix. This could be showed as follows, where the variables
k, denote the value of the different test steps taken:

1. Time t=0 (beginning of time step):
e Calculate ki at the base (t=0)
e Calculate ko at time t=(1/4)h
e Calculate k3 at time t=(3/8)h
e Calculate ks at time t=(12/13)h
e Calculate kg at time t=h (end of time step)
o Calculate k4 at time t=(1/2)h
e Calculate AV and update V

e Update synapses h forwards in time

13 39

The updating in the step model differs a bit from the “_ei” model on this
point. The change has been done to minimize numerical error. Since all
calculations done in a computer increase the numerical error, it is desirable
to make as few calculations as possible. The precision of values depend on
the precision of the future calculations. All test steps are therefore taken
with the same point as a base. The precision of the fifth and last test step
depends therefore only on the numerical precision of the base.

The test steps could have been taken in increasing order and with the value
from the previous test step as a base for the next one. The numerical
precision of the fifth and last test step would then have been influenced by
the precision of all the four previous steps. Taking all the test steps with
the use of the same base therefore decrease the numerical error and increase
the numerical precision.

32 Chapter 4 Methods

The propagator matrix for both excitatory and inhibitory neurons is calcu-
lated once in the beginning of the simulation.

4.2 Testing neuron models

Four neuron models have been tested. They are
e Iaf psc_alpha
e laf_cond_alpha
e laf cond_alpha_ei
e laf_cond_alpha_ei_step

Four different test regimes have been used to test the precision of these
neuron models. The first one is without output spikes and the second one
is with extra produced noise from Poisson generators. The third one is with
extra produced spikes from spike generators in NEST. The fourth regime is
equal to the second, but with noise discretized to intervals of one millisecond.
These regimes are in the test scripts respectively called

nsp Non-spiking regime with external current as only input.

wno Noise input from Poisson generators.

esp Extra excitatory spikes.

wfn As wno, but with noise input discretized to intervals of one millisecond.

Fig. 4.1 shows the behaviour of the membrane potential for all these types of
regimes. These figures are produced with the iaf_cond_alpha neuron model
and with resolution » = 276, Graphs of membrane potential will look dif-
ferent for each model and with different parameters, but these figures give
an impression of how the membrane potential develops through time in the
different test regimes.

Exact values are achievable in the first regime, the non-spiking regime. Eq.
(2.3) describes the behaviour of this system. Eq. (2.5) is the analytical
solution of the mentioned equation. They are repeated here as Eq. (4.1) and
(4.2), respectively. Exact values for the membrane potential are therefore
achievable for every moment of the simulation. The precision of each neuron
model, being the difference between exact and simulated values, is therefore
possible to calculate.

4.2 Testing neuron models 33

-65

-70
S
E
T
2 — nsp
[
— wno
g -5 1
0 — esp
j=
© — wfn
Q
=
[J]
=
—80H i
g5 ‘ ‘ ‘ ‘
0 100 200 300 400 500

Time [ms]

Figure 4.1: The behaviour of the membrane potential for the four different test
regimes. The figures are produced with the iaf cond_alpha neuron model with
resolution 276 ms.

dVv

T, T L + (4.1)
IgTm _
V(t) = Bp, + 2 (1 — e t/mm) (4.2)

The second test regime with extra produced noise is used to test the preci-
sion of the models when the membrane potential is fluctuating a lot. This
extra noise comes from the Poisson process, which gives an approximation of
neuronal firing. This process has proved “extremely useful” for this purpose
[Dayan and Abbott, 2001].

A homogenous Poisson process is used in this master thesis. The firing rate
for this process is constant over time and therefore time independent. The
events in a Poisson process do not depend on the history of the system
either, and every event is then statistically independent.

The noise from the Poisson process is one type of possible input to the neu-
ron. This input comes through the synapse and is called synaptic input.
This synaptic input can come from two types of neurons, excitatory neu-
rons and inhibitory neurons. Their spikes influence the membrane potential
in opposite directions. Inhibitory spikes decrease the membrane potential

34 Chapter 4 Methods

Description Value
Excitatory rate [Hz] 80 000
Inhibitory rate [Hz] 20 000
Excitatory connection strength | 15.0/70.0
Inhibitory connection strength -4.0
Delay [ms] 1.0

Table 4.2: Standard values for Poisson generators used for production of noise to
the with-noise regime (wno).

and excitatory spikes increase it. The possibility of firing a spike therefore
decreases when a neuron receives a spike from an inhibitory neuron. Re-
ceiving a spike from an excitatory neuron would give the opposite outcome
and increase the possibility of firing a spike.

Inhibitory neurons are normally modelled as four times as powerful as ex-
citatory neurons. To make the network simulation so that the inhibitory
and the excitatory neurons influence equally, four times as many excitatory
neurons as inhibitory neurons are being used. This can be seen, for example,
in the network used for testing of speed (see speed_brunel.py in Appendix
B).

When using Poisson generators it is possible to adjust both the firing rates,
the strength of the connection with the neuron and the delay of the trans-
mission of the signal. The standard values of these parameters are showed in
Tab. 4.2. The delay could be zero millisecond, but are of technical reasons
set to one millisecond.

When using the rates as described in Tab. 4.2, the frequency of the spike
generators is at a level which equals a network of 10* neurons each firing at
10 Hz. It has also been done stress tests of the neuron models with total
rates from 1 kHz to 750 kHz. This equals, in the same network with 10%
neurons, a firing rate for each neuron varying from 0.1 Hz to 75 Hz. Stress
tests with different synaptic time constants have also been done.

The third test regime was created to test how the different neuron models,
and at different resolutions h, manage the sudden changing of the mem-
brane potential which a spike causes. Tests of the esp regime has not been
emphasized in this master thesis.

The fourth test regime is based on the with-noise regime, but all the Poisson
input are discretized to intervals of one millisecond. Every simulation then
receive the same input independent of resolution. The results presented in
Section 6.2 are based on simulations done with the with-frozen-noise test
regime.

4.2 Testing neuron models 35

Description Parameter | Value
Leak reversal potential [mV] Ex, -70
Threshold potential [mV] Vin -55
Reset potential [mV] Viesot -60
Leak conductance [mS] 9 15.0
Input current [pA] Iy, 4.0% gy,
Membrane capacitance [pF| Cm 120.0
Membrane time constant [ms] Tm Ci /9L,
Exc. synaptic time constant [ms] | Toyn E 0.2
Inh. synaptic time constant [ms] | Tgyn 1 2.0

Table 4.3: Parameter values for the neuron. Descriptions and units are from
iaf_cond_alpha.h [2010].

Resolutions (logy h) [-2, -4, -6, -10, -14 |
Repetitions per resolution 3

Table 4.4: Resolutions and the number of repetitions used in the speed test. This
test measures the simulation times for the neuron models.

The neuron models have been tested in several different ways, and some ex-
amples are given. Differences between analytical and simulated values have
been investigated. How the error from the iaf_cond_alpha_ei_step model de-
velops with resolutions has given indications of how reliable the new models
are compared to for example the original iaf_cond_alpha model.

The parameter values for the neurons used for testing can be found in Tab.
4.3. These parameters have been the same in all the tests, both in the tests
of precision and in the speed tests. All handling of values of parameters is
done in the file class_Params.py (se Appendix B).

The test script that does the simulation uses functionalities of PyNEST,
NEST’s Python interface. These functions are therefore showed and ex-
plained in Appendix A.

Testing of speed

The work done during this thesis was aimed to decrease the time used when
simulating with the iaf_cond_alpha neuron model. The numerical precision
should be kept as good as it was with the original model. Decreased simu-
lation time means increased computational efficiency, which is desirable.

Since two new versions of this model have been created, and the updating
done with Exact Integration is based on how it is done in the iaf_psc_alpha

36 Chapter 4 Methods

Variables g eta
Current based 19.05 6.75
Conductance based 2.0 | 0.0015

Table 4.5: The two variables g and eta are used to adjust the firing rate. In the
speed test it is important to keep the firing rate constant. These two sets of values
keeps the firing rate at around 30 Hz. Tested with resolution h = 27 ms.

model, all four models have been tested. These four models are
e Iaf_psc_alpha
e Iaf_cond_alpha
e laf_cond_alpha_ei
e Jaf cond_alpha_ei_step

The testing of speed has been done with the scripts comparision.py and
speed_brunel.py (see Appendix B). The script speed_brunel.py is based on
the test script brunel-alpha-numpy.py found in the NEST source code. The
speed test is done by simulating the network given in brunel-alpha-numpy.py
and measure the time used.

The speed test makes three repetitions of the network with different res-
olutions. Resolutions h = [272, 274 276 2710 2-14] are used. Different
resolutions are used to get an impression of how the simulation time is in-
fluenced by the resolution. Tab. 4.4 shows graphically the repetitions and
resolutions used in the two different speed tests.

The firing rate, both excitatory and inhibitory, for all models should be
almost equal. If they are not, the simulation is not done with the same
network with the same activity. The spike handling is the part of NEST
which uses the most time, so it is important to keep the same firing rate if
the simulations’ times should be comparable.

The firing rates could be adjusted by the parameters g and eta in speed._-
brunel.py. ¢ is the ratio between the strength of the inhibitory connection
and the strength of the excitatory connection. eta is the ratio between the
external rate of input and the threshold rate of input which is sufficient to
make the neuron spike [Brunel, 2000].

The variables g and eta must be adjusted differently for current based and
conductance based integrate-and-fire models. Since the iaf_psc_alpha model
is the only current based model, and the three others are conductance based
models, just two sets of parameters have to be found. The values used are
shown in Tab. 4.5. Tested with resolution h = 274 ms they adjust the firing
rates to around 30 Hz.

Chapter 5

Stable states

During this master thesis a new numerical phenomenon has been discovered.
It is seen in the non-spiking test regime. These errors are caused by decreas-
ing precision in the numerical representation of numbers. This chapter will
show what has been seen and give the explanation of this phenomenon.

5.1 Resolution dependent differences

The first test regime is a non-spiking regime with an external current as
only input. The equation which describes the membrane potential in this
case is presented in Dayan and Abbott [2001]. The equation is

. V—-FE, Ig
V=--«-—"7"7+—. 5.1
Tm + C (5-1)
The solution of this equation is
I
V(t) = By + 2 (1 — o t/m), (5.2)
m

This is the same equation as Eq. (2.5) in Section 2.3.

The membrane potential described by Eq. (5.2) would evolve exponentially
towards its asymptotic value. Fig. 4.1 shows this. After the membrane
potential has reached a stable value close to its asymptotic value, its deriva-
tive V = 0. This makes it easy to compute the asymptotic value of the
membrane potential.

IETm
V= FE 5.3
C + L1 (5.3)

38 Chapter 5 Stable states

In a regime with the current Iy as only input, Eq. (5.3) will give the exact
value of the asymptotic membrane potential. Exact values for all measuring
points could, in the same regime, be calculated with Eq. (5.2).

The fact that analytical values are achievable makes it possible to determine
the difference between the simulated values and the analytical ones. This
will say something about the precision of the simulated values. Because the
simulation tries to recreate nature, the difference between simulated and
analytical values should have been zero. It is not.

When the membrane potential evolves towards its asymptotic value given
as Eq. (5.3), there are some differences between the analytical and the
simulated values. They are caused by too rough resolution. These kinds of
differences are treated in Chapter 6.

Differences caused by rough resolution can almost be removed if the res-
olution chosen is fine enough. But there will always be some unavoidable
differences between the exact values of the membrane potential and the
simulated values. Such differences increase with increasing fineness of the
resolution. Figure 5.1 shows these differences.

The values, which are plotted, are therefore

AV = ‘/;im - %xaet; (54)

where Vg is the simulated value of the membrane potential and Voyact is
the exact value of the analytical solution given in Eq. (5.2). The different
lines in the graph represent different resolutions A for the simulation.

At some point about ¢ = 150 ms the difference starts to oscillate. The first
one to start oscillating is the simulation with the finest resolution (smallest
time step), and the last one to start is the simulation with the roughest
resolution (largest time step). This one is also the one to oscillate the least
of all.

When graphs are starting to oscillate, the amplitude grows larger and larger.
At some point the difference has found a steady state value. From here on the
difference between exact and simulated, or approximated, value is constant.
This steady state solution seems to be more stable than the correct solution
where the difference between exact and simulated values are zero.

How much the graph oscillates and what the value of this steady state dif-
ference becomes, depends on the resolution of the simulation. Increased
fineness of the resolution h gives more oscillations and a larger steady state
difference.

5.1 Resolution dependent differences 39

0.216_9
— 6
— 7
— -8
0.0 — 9 H
K — -10[4
11
— 12
$ -0.2F — -13]
£ — .14
o
[¥)
c
o
g -04
E
9]
(o)}
S
S
> 06
_0.8’
~10
0 100 200 300 400 500

Time [ms]

Figure 5.1: Differences between analytical and simulated values do occur. This
figure shows schematically how these differences depends on the resolution used in
the simulation. Different lines indicate different resolutions and increasing fineness
of the resolution give increased difference. Simulations are done with iaf_cond_alpha
neuron model with resolutions 276 to 2714 ms.

The steady state difference will be, as shown in Figure 5.1, from the point
where the graph reaches its steady state and to the end of simulation. Sim-
ulating in 500 ms or 5000 ms gives the same difference, and the difference is
constant for about 500-200= 300 ms or 5000-200 = 4800 ms, respectively.

These oscillations also occur both for neuron models which use Exact In-
tegration and for those who use the Runge-Kutta method to calculate the
approximate values. This is an indication that the described behaviour not
can be explained based on the algorithm used, and that the error is depend-
ing on something numerically more general.

Calculating the error

Eq. (3.11)—(3.15) are from Press et al. [2007] and describe how to calculate
the value y,+1 by using the Runge-Kutta method of fourth order. Eq. (5.1)
was used as the function f(x,y). The resting potential of the cell, Er,, was
set to zero for simplicity. Eq. (5.1) was written as

40 Chapter 5 Stable states

fV)=V =2V +3, (5.5)
with
)\——; andﬁz%. (5.6)

The change in membrane potential, AV, is given as

1 1 1 1
AV = = — - — .
Vv 6k1+3k2+3k3+6/€4 (5.7)

when using the Runge-Kutta method of the fourth order.

The software Mathematica! was used to obtain an explicit equation for AV.
The FullSimplify-command was used and the result was

1 1 1 1
AV ==k + ko + ks + =k .
\% 61+32+33+64 (5.8)
1
:ﬁh(ﬂ + VA) (24 + hA(12 + hA(4 + hA)))
hA
=(hB+ ﬁ(12 + 4hX + h?)\?))
hA 242 3143
+V ﬂ(24—|—12h/\+4h A%+ h°A?)
Updating of the membrane potential with the Runge-Kutta method of the

fourth order is done as in Eq. (3.15). Combined with Eq. (5.7) and excluded
the error term O(h®) it is

Vi1 =V + AV. (5.9)

If combining Eq. (5.8) and (5.9) the new value of V41 could be written as

Vot1 = a+ bV, (5.10)
with constants
hA 219
a:hﬁ+ﬂ(12+4hA+h A%, (5.11)

"http://www.wolfram.com

5.1 Resolution dependent differences 41

and
b=1+ %(24 + 12hX + 40207 4+ h3)3), (5.12)

based on Eq. (5.8).

As V — V4, the membrane potential will reach a fix point. At this point,
and further on,

Yn+1 = Yn- (513)

The equation at this point, which corresponds to Eq. (5.10), is

V*=a+bV* (5.14)

The fix point value of the membrane potential, V*, could then be written
as

a

Vi=173

(5.15)

An exact representation of the constants a and b is possible with, for exam-
ple, a fraction with integers in both numerator and denominator. However,
a and b will be represented in a double data type in a computer. This data
type has only 53 bits of space, which means 16 decimals. The result is that
a and b not are represented exact any longer. The corresponding constants
to a and b are @ and b. They are as equal to a and b as possible when cut
to fit into a double data type.

The exact representation of the fix point value of the membrane potential
depends on a and b, as given in Eq. (5.15). The fix point value achievable
in a computer, V*, will therefore depend on the new constants @ and b as

— a

V* = =.
1-b

(5.16)

The difference between the exact fix point value and the fix point value
possible in a computer could then be defined as

AV* =V* - V*, (5.17)

When h — 0, which equals reducing the length of the time step, it could be
shown, based on Eq. (5.6), (5.11) and (5.12), that a — 0 and b — 1. This
influences AV*as well.

. Chapter 5 Stable states

h [ms] AV* = V* — 7*

—6 57 13
2 o | 1.52027 x 10

-8 683 13
2 TT2s62s 07366063 | 0-06774 < 10

—10 1707 1o
2 TTosssl moisas | 101621 x 10

—12 5467 12
2 12588227 1a056s | 4-89975 x 10

—14 43691 11
2 5oRTTo1 23 7agaod | 1-94028 X 10

Table 5.1: Differences between exact and numerically possible fix point value for
different resolutions h in the non-spiking regime. The differences are shown both

as fractions and decimal numbers.

Values given as

Tm =8, C =120, Ig =60, and EFr, =0,

was inserted into Eq. (5.10). Both V*, V* and AV* were calculated for
different resolutions. The results of AV™*, given both as a fraction and
decimal number, for different values of the resolution A are shown in Tab.

o.1.

The values in this table show that decreasing step size results in increasing
difference between exact and numerically possible fix point value, an effect
already seen in Fig. 5.1. The explanation of the phenomenon seen in this

figure is therefore as described above.

Chapter 6

Precision and error

The precision of the neuron models have been tested in different ways. Some
general aspects of simulating with large step sizes are dealt with in Section
6.1. Section 6.2 concerns simulations with external input from Poisson gen-
erators. This is a realistic system and recommendations for resolutions can
therefore be given. The membrane potential of the current based leaky
integrate-and-fire (I&F) model iaf_psc_alpha has been updated in two dif-
ferent ways. The difference and its result are explained in Section 6.3. The
effects of varying rates from the Poisson generators or varying synaptic time
constants are treated in Section 6.4.

6.1 Rough resolutions

The main difference between the original iaf_cond_alpha neuron model and
the new developed models iaf cond_alpha_ei and iaf cond_alpha_ei_step is
the change of method for numerical integration. The use of adaptive step
size control in the iaf_cond_alpha model results in good precision also for
large step sizes (rough resolutions h). The new models use constant step
size, independent of the fluctuations some eventual synaptic input causes.
If there are many variations in the membrane potential, as it is in the with-
noise test regime, this constant step size can lead to fatal errors.

Fig. 6.1 shows the membrane potential in the with-noise regime for all
three versions of the iaf_cond_alpha neuron model. The line which belongs
to resolution A = 2° ms for the new models should be mentioned. The
variation of the membrane potential in these cases is not as it is for finer
resolutions. A schematic view of how the membrane potential in the with-
noise test regime should vary for a iaf_cond_alpha neuron model is shown in
Fig. 4.1.

44 Chapter 6 Precision and error

-68
— 0
— 1
=70 — 2 H
— 3
— 4
-72 5 H
— -6
S — 7
%—74 — -8 H
z — 9
g — -10
S -76 — -11f]
v -12
2 — 13
£ -78 — -14[
[
=
_807 |
-82H)
_g4 ‘ ‘ ! !
0 100 200 300 400 500
Time [ms]
(a) Iaf_cond_alpha
-55
— 0
—
— 2
—60[- — 3
— 4
5
— -6
%-65— — 7 H
= — -8
-’é’ — 9
g — -10
8 -70 — 11y
© 12
2 — 13
£ — 14
s -75 d

-85 L
0

L L L
100 200 300 400 500
Time [ms]

(b) Iaf_cond_alpha_ei

Figure 6.1: Fluctuations of the membrane potential for the three different
cond_alpha neuron models in the with-noise regime. The figures show how wrong
results the resolution h = 2° ms gives. All figures show resolution h = 20 — 2714
ms. Fig. 6.1c shows the _ei_step model.

6.1 Rough resolutions 45

o

—60f

-80

o Udb A LN A
T

S ©

-
o
T

—-100f

=
N =

-
w

u
&
!

Membrane potential [mV]

-120f

~140}

-160

L L L
0 100 200 300 400 500
Time [ms]

(¢) Iaf_cond_alpha_ei_step

Figure 6.1: (Continued) Fluctuations in the with-noise regime for the iaf_cond._-
alpha_ei_step neuron model. All resolutions A = 2° — 2714 ms are plotted.

For the iaf_cond_alpha_ei model (Fig. 6.1b) some input in the first seconds
of the simulation causes a big jump of the membrane potential. It jumps to
V = —60 mV, which is the reset potential for the neuron. The membrane
potential keeps this value during the rest of the simulation.

The membrane potential in the iaf_cond_alpha_ei_step neuron model (Fig.
6.1c) fluctuates a lot instead of being stable as seen with the iaf_cond_alpha_ei
model. The membrane potential drops to about -85 mV during the first
seconds of the simulation. Throughout the simulation there are a lot of fluc-
tuations with a lower limit less than -100 mv and an upper limit at the reset
potential. The potential reaches this upper limit just a few times during the
500 ms of simulation. This seems to happen in the middle of an interval
with many fluctuations.

The iaf_cond_alpha neuron model also shows some unexpected behaviour at
the simulation with h = 2 ms. The line representing this resolution in Fig.
6.1a lies some millivolts lower than the lines for the finer resolutions. This
equals decreased length of the time step.

Based on the behaviour of the membrane potential in the with-noise regime,
shown in Fig. 6.1, it is recommended not to use resolution h = 2° ms for
the iaf_cond_alpha_ei model and the iaf_cond_alpha_ei_step model.

46

Chapter 6 Precision and error

:
10° > x 800.0
% X 8000.0 o e
10° H> x 80000.0 AP
Nid
% 200000.0 /X X
/
100 1<% 400000.0 / ’
600000.0 r
/7 N4
3 x .7
10 PRg's
- e o
o ®L L
5 10 LT %
€ R P
=t ¥ X X
5 10°F R 7
= s 0 - -
w X -
0-12 [)</ // < ® - ol
! L xT e
X7 - o
107 F KL T K
% P
X L7 KT
18 . 7 X X S
oy = 7 sl
L -7 - Z
o |- X7 - 9(;;%
107 ¢ P
< - ,
g ’
24 X L L L L L
0 -12 -10 -8 -6 -4 -2 0

Resolution (log, &)

Figure 6.2: The difference between the Runge-Kutta-Fehlberg method of the
fiftth order and the fourth order is plotted against resolution. The plotted value is
the median value for all measuring points. The simulation is done with the with-
frozen-noise regime (win) and the different lines indicate different rates used for the
Poisson generators. The legend gives the excitatory rate and the inhibitory rate is
one fourth of the excitatory. The red line indicates when the error, given the values
used, has reached machine precision. The line is plotted at y = ||Eyp,||10~1S.

Another aspect which makes it unwise to use large time steps is the pos-
sibility of missing a spike. This is due to threshold passing fluctuations of
membrane potential inside a time step of length h. Different number of
spikes registered will mean that the behaviour of the system simulated will
be different, and that is not desirable. A more detailed explanation is given
in Section 3.2.

6.2 Realistic simulations

In the with-frozen-noise test regime the spike trains from the Poisson gener-
ators are discretized to intervals of one millisecond. This ensures that every
spike is handled at exactly the same time of the simulation. The same input
is therefore given to the system independent of resolution h.

Data from simulations of the with-frozen-noise regime are used to create
Fig. 6.2. It shows the local error calculated in the iaf cond_alpha_ei_step

6.2 Realistic simulations 47

model. Every cross is the median value of this error over all measuring points
for a given resolution. The different lines represent different rates used in
the Poisson generators, and the excitatory rate is given in the legend. The
inhibitory rate is one fourth of the excitatory rate. Crosses produced with
the same rate, but with different resolutions, are connected with dotted
lines. The different rates are plotted in different colours.

The red line in this figure indicates when the error, given the values used
in the actual simulated neuron, has reached machine precision. The value
equals the product ||EL|| x 10716,

At some resolution the error is equal to the possible machine precision.
Decreasing the step size further will only increase the error. The reason is
as follows.

There will always be numerical errors caused by numerical calculation. These
errors grow linear with the resolution h. The error from the numerical in-
tegration routine decreases, in this case, with h®. This is because a Runge-
Kutta-Fehlberg method of fifth order is used to calculate the value of the
membrane potential.

The total error equals the sum of errors from both numerical calculation
and numerical integration. When the error from the numerical integration
routine has reached the possible machine precision, given the values of the
parameters used, it is not possible to reduce this further. Until now the
development of the total error has been dominated of the error from numer-
ical integration. Decreased error from the numerical integration has caused
decreased total error. Since it is not possible to reduce the error from the
numerical integration further, decreasing the step size, which equals using a
finer resolution, will increase the total error. This is due to the increase of
error from numerical calculations.

The standard rate used in the other simulation is the line marked with
red. For these firing rates the optimal resolution is reached at h = 279
milliseconds. At smaller rates the minimal total error will be reached when
simulating with larger time steps, and higher rates need finer resolutions
(smaller time steps) to achieve minimal total error.

Values from the iaf_cond_alpha_ei_step neuron model at resolution h = 279
ms is used as a reference solution in Fig. 6.3. The difference in mem-
brane potential between this reference solution and the three conductance
based models are plotted in this figure. The iaf_cond_alpha_ei_step model is
included in these three models. The simulations are done in the with-frozen-
noise regime. The interesting part of the simulation is when the membrane
potential is fluctuating around approximately -83 mV, and not the fast de-
crease in membrane potential in the first part of the simulation (see Fig.
4.1). Values for ¢t < 100 ms are therefore not plotted.

48 Chapter 6 Precision and error

10 le-11

Difference in membrane potential [mV]

—-0.5F 4
-1.0H u
15 ‘ ‘ ‘ ‘ ‘ ‘ ‘
100 150 200 250 300 350 400 450 500
Time [ms]
©p _9-9_o—14
(a) Iaf_cond_alpha_ei, h = 277-27"% ms
0glesll

— 9

— 10

— 1
0.6f — -12H

— 13

-14

0.4

Difference in membrane potential [mV]

4 L L L L L L L
100 150 200 250 300 350 400 450 500
Time [ms]

(b) Iaf_cond_alpha_ei_step, h = 27927 ms

Figure 6.3: Iaf cond_alpha_ei_step at resolution logs h = —9 is considered the
most exact simulation. These figures show the difference in membrane potential
between this simulation and the three conductance based models for resolutions
h =279-27 ms. Simulations are done with the with-frozen-noise test regime.

6.2 Realistic simulations 49

le-13

"

—
jn

% uﬂr i ‘d 4‘” Jm \

Difference in membrane potential [mV]
S o

e ik

L L L L L L L
100 150 200 250 300 350 400 450 500
Time [ms]

¢) Iaf_cond_alpha, h = 27927 mg
()

Figure 6.3: (Continued) Difference in membrane potential between the simulation
with iaf_cond_alpha_ei_step at resolution h = 279 ms and the iaf_cond_alpha model
at resolutions h = 279271 mg

Three interesting phenomena have been observed in Fig. 6.3. These phe-
nomena are commented, but an explanation of them has not been found.

The first phenomenon is the difference in order of magnitude of the differ-
ences. The differences for the original iaf_cond_alpha model have order of
magnitude 107'% mV. This is about 30 times smaller than the differences
for both of the new models.

The difference in amplitude for the different resolutions is a second obser-
vation. It could be seen in all three subfigures that the finest resolution,
h = 2714 ms, has the largest amplitude. It is, however, easiest to see it in
Figure 6.3a and 6.3b. The amplitude decreases when increasing the length
of the time steps. This means also a resolution more equal to the resolution
used in the reference solution, h = 272 ms. This might influence. It is also
seen that the iaf_cond_alpha model fluctuate around zero for all resolutions
plotted (Fig. 6.3c). For the other models, lines for different resolutions
fluctuate around different values (Fig. 6.3a and 6.3b).

The third phenomenon could be seen in Fig. 6.3a and 6.3b in connec-
tion. These figures show the new models, respectively the iaf_cond_alpha_ei
model and the iaf_cond_alpha_ei_step model. In both figures the mean value

50 Chapter 6 Precision and error

10 T T
% X iaf_cond_alpha
_ » X iaf_cond_alpha_ei
E 10° b » X iaf_cond_alpha_ei_step
3 !
€ /)</
g 107 ’/,
g Y
2 ,%/'
© .
5 10 .7
£ 7,/
g x * — 3
7 - X= - -
E o0 i
£ ¥,
o 7
v 4 4
5 i
et X
o 8 5% ’
£ 10 % ’
o X 7/
s ’, ></
-
[
2 g0 X,
© 7
> L />(’
.5 Al , . /X
Eel ~ X = - ’ 7 7/
O 1412 =X -x X ’
s 10 \ N />(z X
N X s 4 7
TRk - Ty X X
-14 !

Resolution (log, &)

Figure 6.4: Differences between the membrane potential at h = 272 ms for
iaf_cond_alpha_ei_step model and different resolutions at the three conductance
based models. The values plotted are the median value of the absolute value of
the difference, taken over all measuring points.

of difference changes sign when resolution changes from one to the next.
However, the mean value of difference has the opposite sign for these two
models when comparing the same resolution. The line for h = 2714 ms is
negative in Fig.6.3a and positive in Fig. 6.3b. For resolution h = 273 ms it
is opposite. This behaviour could be seen for at least the finest resolutions
h =2712-2714 g,

Fig. 6.4 is based on the same simulations as Fig. 6.3. The rates from the
Poisson generators are 80 000 Hz excitatory and 20 000 Hz inhibitory.

This figure shows the difference between the reference solution (iaf cond -
alpha_ei_step at resolution 2 = 279 ms) and all three conductance based
models for resolution A = 20271 ms. For every model the median value
over all measuring points is computed for each resolution. These values for
the three neuron models are plotted.

Fig. 6.4 shows that, for time steps larger than A = 27% ms and compared to
the new models, the difference for the original iaf_cond_alpha model is quite
small. The difference between having adaptive step size control and using
constant step size influences here. For large time steps this control reduces
the length of the time steps. This gives better precision.

6.3 Updating algorithms 51

For time steps smaller than h = 279 ms the original model has smaller
differences too. The step size control can not increase the length of the step
size further than the step size given by the user. The reason why the original
model is better also for small time steps is therefore unknown.

Fig.6.4 also shows something which could be seen in Fig. 6.3a and 6.3b as
well. For the new models, the general development for time steps smaller
than A = 272 ms is an increase of the difference. The decision to choose
h =279 ms as a reference solution is strengthened by this.

The iaf_cond_alpha_ei_step model at resolution » = 27 ms was chosen as the
reference solution in this testing. Simulations with other neuron models and
different resolution could of course have been taken as a reference solution.
They could have been used instead of the chosen solution, in addition to the
chosen solution or perhaps both. The results would hopefully, and probably,
have shown almost the same as with the used reference solution.

6.3 Updating algorithms

In contrast to the three versions of the iaf_cond_alpha neuron model, the
numerical integration of the iaf_psc_alpha model is most precise at the largest
time steps. The fact that large time steps increase the possibility of missing
spikes is not taken into account. In the conductance based neuron models
the updating of the membrane potential has to be done with the use of, for
example, a Runge-Kutta method. This is because of the non-linearity of its
equation. In the current based model iaf_psc_alpha, the membrane potential
is described by a linear equation. Exact Integration could therefore be used
for updating.

Fig. 6.5 shows differences between exact and simulated values for the
iaf_psc_alpha model for resolutions h = 20-2714 ms. The difference between
the two subfigures lies in the way the updating of the membrane potential
is done.

In the upper figure (Fig. 6.5a) the updating is done like this,

Vks1 =g+ efAth, (6.1)

where Iy is the external input of current to the neuron.

In the lower figure (Fig. 6.5b) the same updating is done, but it is written
a bit different,

Vk+1 =Ig — (1 — e_Ah)Vk + Vk. (6.2)

52 Chapter 6 Precision and error

le-11

o
5]

'Sgbéo'\:é»x';-&v.br'\u'—-o
T

0.0

o
W N e
T

|
[
5]

Voltage difference [mV]
L
(=]

KB
B
:

-2.0

3.0 . . ! !
0 100 200 300 400 500

Time [ms]

(a) Initial updating method

05 le-11

o

0.0

—-0.5f

IS I N VR R
——

—-1.0}

b s o
N e o
T

-1.5f

N
w
T

Voltage difference [mV]

—
'S

-2.0}

-2.5F

-3.0
0

L L ! !
100 200 300 400 500
Time [ms]

(b) Improved updating method

Figure 6.5: Differences between exact and simulated value of the membrane po-
tential for the iaf_psc_alpha model. Different updating methods for the membrane
potential are used in the two figures. For the improved method (Fig. 6.5b) the un-
avoidable errors caused by numerical representation dominate. Resolution h = 20—
2~ ms are plotted in both figures. The legend connects the resolutions and the
different coloured lines.

6.3 Updating algorithms 53

These two equations (Eq. (6.1) and (6.2)) are mathematically equal but not
computationally equal. When simulating, the same variable is just updated.
The equations could therefore be written as

V =Ig+c A, (6.3)
V=lg—(1-e "MV +V,

respectively Eq. (6.1) and (6.2).

The presence of V' at both sides of the = is as it should be. The reason is
because the = sign does not mean “equal” when programming. It rather
means “set to”. Eq. (6.3) is therefore not used to test whether V' is equal
(Ig + e=4"V), which it surely not is. It is rather the way of giving the
command “update V and set its value equal to (Ig + e*AhV)”.The right
hand side of the equation, I + e 4"V, is calculated first, and after that V
is updated with the result of this calculation.

The precision of the updating is higher when using Eq.(6.4) than Eq. (6.3).
This is because the properties of e=4",

For small values of h, for example h = 2714 ms, e=4" is close to one. It is,

however, a bit smaller, or more negative. Larger values of h will give less
positive values.

In the beginning of e~4” there are a varying number of 9s, depending on the
resolution h. The finest resolution gives most 9s in the beginning. All the 9s
are not interesting for the development of the system. The information about
the change in the system lies in the other decimals. But the 9s influence on
the precision of the different updating methods.

If using the finest resolution it is normal to have five 9s in the beginning.
When updating with Eq. (6.3) the maximal precision is therefore reduced
from 107'¢ to 107''. The errors seen in the beginning of Fig. 6.5a are
therefore of order 10711,

For rougher resolutions, for example h = 27 ms, the number of 9s in the
beginning have decreased to three. This will give an error of order 107'3,
if Eq. (6.3) is used. This is too small to be seen in Fig. 6.5a. Rougher
resolutions will in general decrease the value of e~4". This is the reason
why the finest resolution gives the biggest error.

If using Eq. (6.4) instead, the number of 9s is irrelevant. The difference
1 — e~ 4" gives a number with some zeros in the beginning, but they can
be removed. The result is a number where all decimals influence on the

54 Chapter 6 Precision and error

behaviour of the system. The precision of the updating is therefore inde-
pendent of the number of 9s in the beginning of e~ 4", In other words, the
precision is independent of the resolution h.

The updating of the membrane potential is in Fig. 6.5b done like in Eq.
(6.2)/(6.4). Due to this, the errors seen in the beginning of Fig. 6.5a are
removed.

6.4 Variations in firing rates and time constants

The different neuron models have been tested in the with-noise regime with
varying firing rates from the Poisson generators or varying synaptic time
constant. Fig. 6.6 and 6.7 show the changed behaviour of the membrane
potential due to these variations.

In Fig. 6.6a and 6.6b the membrane potentials, which occured due to all the
rates used, are plotted for the iaf_cond_alpha_ei_step model and iaf_psc_alpha
model, respectively. Resolution » = 274 ms is used in both cases. The
legend is the excitatory rate used, and the inhibitory rate is one fourth of
the excitatory rate.

As shown in Fig. 4.1, the membrane potential in the with-noise regime
will fluctuate around some value V. But with varying rates the mem-
brane potential for the two models, the iaf_cond_alpha_ei_step model and
the iaf_psc_alpha model, will fluctuate around different values, and in diff-
ferent ways.

The conductance based model in Fig. 6.6a start at Vg ~ -70 mV for the
lowest rates. When increasing the rates Vg will decrease towards Vg ~ -82
mV. For excitatory rates from 80 000 Hz and up to the maximal rate used
at 600 000 Hz, Vg will practically be constant at -82 mV.

The behaviour of the current based model in Fig. 6.6b is the opposite of
what was seen with the conductance based model in Fig. 6.6a. At the
lowest rate of 800 Hz excitatory, this model will fluctuate around Vy= -70
mV. When increasing the rates from the Poisson generators, the value of
the fluctuation potential Vg will decrease. At the highest rates used, which
means excitatory rate equal 600 000 Hz, Va~ -270 mV.

The same behaviour as seen with the iaf_cond_alpha_ei_step model also
occur for the other two conductance based neuron models, the original
iaf_cond_alpha model and the iaf_cond_alpha_ei model.

This opposite behaviour could be explained of the different way of modelling
synaptic input. In the conductance based leaky integrate-and-fire models
(iaf_cond_alpha and the new versions of it) the inhibitory synaptic input is

6.4 Variations in firing rates and time constants

55

-60

—65}

-70

-75

Membrane potential [mV]

800.0
8000.0
80000.0
200000.0
400000.0(]
600000.0

-85
0

100 200 300 400

500
Time [ms]
(a) Iaf_cond_alpha_ei_step, h = 27% ms
-50
— 800.0
— 8000.0
— 80000.0
200000.0
-100 — 400000.0]
600000.0
S
g
© —150f 1
€
2
o
Q
1)
f=
o
5 —200f E
€
[
=
250} E
~300
0 100 200 300 400 500

Time [ms]

(b) Taf_psc_alpha, h = 27* ms

Figure 6.6: Fluctuations in membrane potential caused by rate variations. Dif-
ferent lines are different sets of rates. The excitatory rate is as in the legend and
the inhibitory rate is one fourth of this.

Chapter 6 Precision and error

56

500

O oo ocoo oo o —

—

-68

-70

—===
———

p———

[Aw] [ei3usjod sueiqwiay

A

400

300

200

Time [ms]

274 ms

(a) Iaf_cond_alpha_ei_step, h

-65

=70

n
T

[Aw] |enuajod sueiquisiy

—-90}

95}

500

00

4

300

200

100

Time [ms]

(b) Iaf_psc_alpha, h = 27* ms

Figure 6.7: Fluctuations in membrane potential caused by variation of synaptic
time constant. Different lines indicate different synaptic time constants. Values are

given in the legend.

6.4 Variations in firing rates and time constants 57

a current modelled as a change of conductance. The inhibitory input is the
important one in this case because it reduces the membrane potential. It
could be written as

Iin = —g(V - Ein)- (65)

FEy, is the inhibitory reversal potential for the inhibitory synapse. This is
determined by what type of ion which influences the most. The value of Eiy,
is approximately -85 mV. g is the membrane conductance and V is actual
membrane potential.

Increasing the rate of the Poisson generators will increase the current I[i,.
This happens due to an increase of g. The stabilizing is caused by the lower
boundary of V at Ej,.

The membrane potential for the conductance based models will decrease
towards Fi,. At some input rate the membrane potential will have reached
this threshold. Further increase of rate of the Poisson generators will not
lower the membrane potential more, it will just stabilize at Ej,.

Eq. (6.5) is not valid for the current based leaky integrate-and-fire model
iaf_psc_alpha. Synaptic input is modelled directly as a current input. All
increase of the rate of the Poisson generators would therefore decrease the
membrane potential.

The development of the membrane potential with increasing rate from Pois-
son generators is very different for the iaf cond_alpha_ei_step model and the
iaf_psc_alpha model. This is due to the different ways of modelling synaptic
input, as described above.

The results of varying the excitatory synaptic time constants are shown in
Fig. 6.7. Both of the same two models, the iaf_cond_alpha_ei_step model and
the iaf_psc_alpha model, and the same resolution, h = 274 ms, are used. The
excitatory synaptic time constant varies from 0.1 ms to 1.0 ms in intervals
of 0.1 ms.

The excitatory synaptic time constant influences how long the ion channels
are open. At a large time constants the ion channels are open a long time.
This results in a lot of synaptic signals which either enter or leave the neuron.
For small time constants it is the other way around. The ion channels are
open a short time and few signals cross the membrane.

The synaptic input in NEST is modelled in a way that an increased synaptic
time constant will give more input in total. It takes longer time before it
reaches its maximum, but it lasts longer. The effect of this is seen in Fig.
6.7a. For low values of the synaptic time constant each signal will last short
and influence less. For high values of the time constant the individual signal

58 Chapter 6 Precision and error

influences a lot because the signal itself is more powerful. The effect is
almost not seen in Fig. 6.7b for the iaf_psc_alpha model. The differences in
the neuron models may be the reason for this.

Because the time of the maximum of the signal is dependent of the value of
the synaptic time constant, the lines for the different time constants should
also have been shifted compared to each other. This is not seen in Fig.
6.7. The little variation of the synaptic time constant, only from 0.1 to 1.0,
is probably the reason. However, it is not likely that it would have been
possible to see the effect, neither for the iaf_cond_alpha_ei_step model nor
the other conductance based models. The variation of signal strength, as
described above, would probably have dominated. On the other hand, this
shifting could perhaps be possible to see for the iaf_psc_alpha model. This
is due to the fact that the signals in this model seem to influence almost
equally, independent of the value of the synaptic time constant. In any case,
a greater variation of the synaptic time constants would then be needed.

Chapter 7

Effectiveness

It is desirable with a neuron model which efficiently delivers results with
good precision. Chapter 6 concerned the numerical precision and this chap-
ter will be about the simulation time. This chapter concerns the total sim-
ulation times. The new models are proved to be more efficient than the
original iaf cond_alpha model. The simulation time per step is also calcu-
lated. At the end of this chapter both an error that was found during speed
tests and its solution are described.

7.1 Simulation times

The work done during this master thesis was aimed to develop a faster
variant of the iaf_cond_alpha neuron model. Tests of the simulation times
have therefore been done.

Testing of the simulation times have been done for the different neuron
models. It is done as described in Section 4.2 and with resolutions h =
[272,274,276 2710 2=14] " Tab. 7.1 graphically shows the achieved sim-
ulation times. The values for each model and resolution are the median
value over three repetitions. For all models and resolutions, except the
iaf_cond_alpha model at resolution loge h = —14, three repetitions have
been made. For this simulation only one repetition has been made.

Fig. 7.1 shows how the simulation times increase with decreasing length of
the time step. The resolution is on a logarithmic scale and the time is both
logarithmic and non-logarithmic, respectively in Fig. 7.1a and 7.1b.

The results from the test of simulation time show that the new neuron
models, iaf_cond_alpha_ei and iaf_cond_alpha_ei_step, are much faster than
their origin, the iaf_cond_alpha model. The new models need only 25% and

60

Chapter 7 Effectiveness

10° ‘ ;
» = jaf_cond_alpha
=~ iaf_cond_alpha_ei
10* "~ %~ iaf_psc_alpha
. el < = iaf_cond_alpha_ei_step
13 SRR 1
= TSN
i: S ~ S ~ b ~ ~
10° b RIS N E
= ~ > ~ X ~
T~ :\\?\\ T N
YN~ ~ o
10tk SN -~
SIS~ _ 2
Tx -
<X
X< S <
Sl
3
100 L L L L L
-14 -12 -10 -8 -6 -4 -2
Resolution (log, h)
(a) Double logarithmic plot
18000 : :
\ * x jaf_cond_alpha
16000} *, = =« iaf_cond_alpha_ei 1
Y % - jaf_psc_alpha
14000F + ~ iaf_cond_alpha_ei_step/]
\
12000} Y]
\
\
"% 10000 N 1
[} \
£ \
= 8000 \ 1
\
\
6000} Y 1
. .
40001~ < > \ 1
~ b \\\\ ~ \
2000 T~o 0 SO \ |
\\\:\\Q \>@-_~‘
0 ! \SEEE===\;;“~—V -
-14 -12 -10 -8 -6 -4 -2

Resolution (log, h)

(b) Semilogarithmic plot

Figure 7.1: Simulation times for the four different neuron models. The value for
iaf_cond_alpha at resolution loge h = —14 is based on one repetition in contrast to
the other which are based on three repetitions.

7.1 Simulation times 61

Resolution (logz h) | -2 | -4| -6| -10 -14
Iaf_cond_alpha 7.1 1195|724 | 1104 | 17281
Taf_cond_alpha_ei 7.3 | 4.6 | 18.3 281 | 4464
Taf cond_alpha_ei_step | 2.3 | 5.7 | 22.6 340 | 5381
Taf_psc_alpha 1.8 | 341|126 164 | 2502

Table 7.1: Simulation times for all four neuron models. Simulated time is 1000
ms. Simulations times are median values and the unit is seconds. At resolution
h = 272 ms the firing rates for iaf_cond_alpha_ei and _step are respectively 215
Hz (excitatory and inhibitory) and 275 Hz (excitatory)/318 Hz (inhibitory). The
simulation times for these models are therefore not comparable with the other
models at the same resolution. Three repetitions of every model at every resolution
is done except for the iaf_cond_alpha model at resolution A = 27 ms. Only one
repetition is done there.

30%, for the iaf_cond_alpha_ei model and the iaf_cond_alpha_ei_step model
respectively, of the time necessary when using the iaf_cond_alpha model.
This statement is based on the simulation times for all resolutions except
h =272 ms.

The simulation times from the new neuron models are now also compara-
ble with the simulation times from the iaf_psc_alpha model. At resolution
h = 27% ms, the simulation times for both of the new models are almost
equal to the simulation time used when simulating with the iaf psc_alpha
model. The simulation times of the new models are still comparable with
the iaf_psc_alpha model when decreasing the time step to h = 276 ms, but
they are 1.5-2 times bigger. At finer resolutions the iaf_psc_alpha model is
approximately two times faster. The iaf_cond_alpha model is approximately
six times slower than the iaf_psc_alpha model and, compared to this, the
new models have made great progress in reducing the simulation time.

When comparing simulation times it is important that the activity in the
network is equal for all models and resolutions used. If it is not, different
networks are used for testing of simulation times. Wrong conclusions could
therefore be made.

The firing rates for both the iaf_cond_alpha_ei model and the iaf_cond_alpha_-
ei_step model were much higher than the expected 30 Hz when using reso-
lution A = 272 ms. The firing rates were 216 Hz (both excitatory and in-
hibitory) for the iaf cond_alpha_ei_step model, and 276 Hz (excitatory)/318
Hz (inhibitory) for the iaf cond_alpha_ei model. The simulation times for
these models at this resolution is therefore not comparable with simula-
tion times from the two other models, the iaf_cond_alpha model and the
iaf_psc_alpha model. This could explain the unexpected long simulation
time for iaf_cond_alpha_ei model at resolution h = 272 ms.

62 Chapter 7 Effectiveness

Simulation time per step

The focus in this section has until now been on the total simulation time.
Another interesting parameter to measure is the time used per step of the
simulation. This could also give an estimate of how efficient the different
neuron models are compared to each other.

The total simulation time Tio is the sum of the time used for doing the
numerical integration with all neurons, Ticp, and the time used for other
things, B. Time used for spike handling is included in B. The total simula-
tion time is therefore

Tiot = Tstep + B. (71)

The time used for numerical integration is equal to the product of the time
used per steps (fstep) the number of steps taken (n) and the number of
neurons simulated (V). The number of steps taken could also be written as
the product of the time simulated (T,) and the number of steps taken per
simulated time (1/h). Combining this gives the following equation which
describes the total simulation time Tiqt,

1
,Ttot = NtstestimE + B. (72)
When simulating with very small time steps, for example h = 274 ms, the

constant time B is very small compared to the amount of time used. It is
therefore plausible to assume B = 0. This gives a simple connection with
only tsep as unknown.

(7.3)

If using this equation, tsep for the different neuron models could be calcu-
lated. Using simulation times for h = 27 ms as given in Tab. 7.1, Ty, =
103 ms and N = 1250, gives simulation times per step as given in Tab. 7.2.
The table shows that, as shown earlier, the new models simulates about 3.5
times faster than the original iaf cond_alpha neuron model and about two
times slower than the iaf_psc_alpha model.

Initialization problems

During the testing of speed a problem occured. When using the origi-
nal iaf_cond_alpha neuron model, the simulation just stopped after having

7.1 Simulation times 63

Model Time
iaf_cond_alpha 840
iaf_cond_alpha_ei 220
iaf_cond_alpha_ei_step 260
iaf_psc_alpha 120

Table 7.2: Simulation time per step for four neuron models. Times given in 1077
seconds.

done varying number of simulations. The simulated network is described in
speed_brunel.py (see Appendix B). The problem did not happen during a
simulation, but when one of the simulations was to be started. There were
problems with running the first simulation too.

One idea was that this problem could be explained with the use of GSL in
the iaf_cond_alpha neuron model. It was tested that after the progress had
stopped, over 58% of the time was spent in the GSL. It was also thought
that the bit version of the operative system might influence. This hypothesis
was weakened after the error was reproduced at both 32 and 64-bits versions
of Linux Ubuntu.

An uninitialized internal variable caused the problem. This could result in
very high values of input current. GSL would then stop. Whether GSL
stopped or not depended on the value in the memory at the actual position
where this internal variable was placed. The error therefore seemed to hap-
pen at random. After the variable was initialized correct, the simulations
were carried out without any errors.

Chapter 8

Summary

The iaf_cond_alpha model in NEST (Neural Simulation Toolbox)! is a cur-
rent based model of a leaky integrate-and-fire neuron. Two new models
based on this have been developed during this master thesis. They are
named iaf_cond_alpha_ei and iaf_cond_alpha_ei_step. The aim when devel-
oping these new models was to reduce the simulation time of the original
iaf_cond_alpha model. The numerical precision and error should also be kept
at least as good as they were.

The neuron models differ in how the numerical integration is done. For all
models there are five equations that need to be updated. Four describe the
synaptic dynamics and the last describes the membrane potential.

The original model uses a Runge-Kutta-Fehlberg method of the fourth-fifth
order with adaptive step size control from the GNU Science Library. The
new models use Exact Integration for updating of the synaptic dynamics.
The membrane potential is updated with use of a manually implemented
Runge-Kutta method. In the iaf_cond_alpha_ei model a fourth order method
is used and in the iaf_cond_alpha_ei model a fifth order method is used.

The new models have been tested both on numerical precision and error,
and simulation time. Test regimes with only current input or with extra
produced noise from Poisson generators have been used to test precision
and error. Network simulations have been used to measure the simulation
times.

Both of the new models keep the numerical precision of the original model
iaf_cond_alpha. The simulation time decreased to approximately 25% for
the iaf_cond_alpha_ei model and 30% for the iaf_cond_alpha_ei_step model,
when compared to the simulation time for the iaf_cond_alpha neuron model.

"http://www.nest-initiative.org

66 Chapter 8 Summary

The convertion from use of GSL to use of Exact Integration and manually
implemented Runge-Kutta methods was therefore successful.

Further work

The new neuron models have proved to deliver as precise results as the
original iaf cond_alpha model more efficiently. They should therefore be
included in NEST. Before this could happen it is necessary, and desirable,
with some more testing of the new models. The source code has to be
controlled and adjusted, and it has to be well commented too.

This master thesis has shown that the combination of Exact Integration
and manually implemented Runge-Kutta method gives good results. Other
neuron models can therefore also be converted from use of GSL.

Appendix A

An introduction to PyNEST

PyNEST gives easy access to the models, devices and other things necessary
when simulating neural networks. This chapter will show and explain the
functions in PyNEST used in this master thesis. Hopefully, the basic func-
tions needed for not to advanced use would then be covered. All functions
are showed as nest.function, but are only referred to as function.

Further information about PyNEST can be found in the article of Eppler
et al. [2009].

Creating objects

The first essential thing to do is to import nest to your Python script with
import nest.
Objects could then be created with the command
nest.Create(’object’).
Creating an iaf_cond_alpha neuron could be done like
cond = nest.Create(’iaf_cond_alpha’).

Several objects could be created at the same time. The wanted number of ob-
jects is then passed as an argument to Create. Creating two iaf_cond_alpha
neurons could look like

cond2 = nest.Create(’iaf_cond_alpha’, 2).

Since just the name of the object, and the number of objects wanted made,
is passed to Create, cond and cond2 are created with standard values.
For neurons with non-standard values a dictionary of parameters could be

68 Appendix A

passed to Create as an argument. This dictionary should contain names of
parameters that exist for the actual neuron and the value this variable should
get. Creating an iaf_cond_alpha-neuron, change some of the parameters and
store it in the variable neuron, is done like this

neuron = nest.Create(’iaf _cond alpha’, params=
{"Cm": 200.0, "tau.synex": 0.5}).

In addition to different types of neurons it is possible to create measuring
instruments and generators. Voltmeters, multimeters, spike generators and
Poisson generators have been used in this thesis.

Both the voltmeter and the multimeter could measure the membrane poten-
tial. The multimeter could also record all other variables that it is possible
to record from the actual neuron type. The spike generator produces extra
spikes and the Poisson generator produces an approximation of spike input
from other neurons.

In the same way as neurons, measuring instruments and generators could be
created with standard and non-standard values or settings. The next two
lines show how to create a voltmeter with recording interval of 0.1 ms and
a multimeter which records the membrane potential V;, and the excitatory
conductance gex. The argument to record_from has to be enclosed by square
brackets ([1). This is also true if the argument is just one variable.

voltmeter = nest.Create("voltmeter", params =
{"interval": 0.1})
multimeter = nest.Create(’multimeter’,params =
{’record from’: [’Vm’, ’gex’] })

How to create Poisson and spike generators is shown in the next two lines
of code. The first line creates two Poisson generators, one excitatory and
one inhibitory generator. Their firing rates are set to 80000 Hz and 20 000
Hz. The Poisson generators created are of the type “poisson_generator_ps”
because these give more precise results than the “poisson_generator”. The
second line shows how to create a spike generator which should produces
spikes at 100, 200, 300 and 400 ms.

noise = nest.Create("poisson_generator_ps", 2, params =
[{’rate’: 80000.0}, {’rate’: 20000.0}]1)
spg = nest.Create(’spike_generator’, 1, {’spike_times’:
[100., 200., 300. , 400.1})

When passing more than one parameter to “params =",as done for the rates
with noise, it is necessary to enclose the arguments with square brackets ([
1). But the “params =" is not necessary itself. In the last of the code lines,
where the spg is created, the “params =" is excluded. Then it is necessary to

An introduction to PyNEST 69

pass the number of objects wanted made as the second argument to Create.
This is also valid if only one object is wanted, like for spg.

Values or parameters that are set in the creation could be changed with the
nest.SetStatus. The following two lines of code show examples of how
this function is used. The first one changes to membrane capacitance in
cond and the next changes multimeter so that it only records the excitatory
conductance. It is possible to use [] instead of “params = ” here too.

nest.SetStatus(cond, params = {’Cm’: 300.0})
nest.SetStatus(multimeter, [{’record from’: [’gex’1}])

Simulating

After the wanted objects have been created and before it is possible to
simulate, the objects have to be connected. There are two possible ways
of connecting objects, depending on the number of objects that are to be
connected. nest.Connect connects one sending object to one receiving ob-
ject. nest.ConvergentConnect connects every single sending object to one
receiving object.

nest.Connect (multimeter, neuron)
connects multimeter and neuron with use of Connect

An example of how to use ConvergentConnect is shown next. The two
Poisson generators noise are being connected to the iaf_ cond_alpa neuron
cond. The third argument describes the strength of the connections, where
0.50 and —4.0 is the strength of the excitatory and inhibitory connections,
respectively. The fourth argument describes the delay of the transmission of
signals. Because of technical reasons, the delay should be one millisecond,
but it is possible for the Poisson generator to have a delay which equals zero
millisecond.

nest.ConvergentConnect (noise, cond, [0.50, -4.0], 1.0)

The simulation is done with the command nest.Simulate(simulation_time).
The data type of the argument has to be a double.

After the simulation is done, recorded values can be picked out with nest .GetStatus.
The next lines of code show how to get the excitatory conductance, mem-

brane potential and recording times from multimeter, voltmeter and mul-
timeter, respectively. It does not matter whether GetStatus (multimeter,
"events") [0] or GetStatus(multimeter) [0] ["events"] is being used.

This is valid also for voltmeter.

70 Appendix A

g-ex = nest.GetStatus(multimeter) [0] [’events’] [’g_ex’]
v.m = nest.GetStatus(voltmeter, "events") [0] [’potentials’]
T = nest.GetStatus(multimeter, "events") [0][’times’]

GetStatus could also be used to show, for example, which values that could
be recorded with a multimeter. The command is given as the first code
line, and the result as the second one.

nest.GetStatus(cond) [0] [’recordables’]
[’Vm’, ’gex’, ’g.in’, ’integration step’, ’t_ref_remaining’]

Appendix B

Programming code

Programming code for the new neuron models iaf_cond_alpha_ei and iaf_cond_-
alpha_ei_step, declaration file (.h) and definition file (.cpp) for both, can be
found on pages 72-92.

e Page 72: iaf_cond_alpha_ei.h

e Page 76: iaf_cond_alpha_ei.cpp

e Page 81: iaf_cond_alpha_ei_step.h

e Page 86: iaf_cond_alpha_ei_step.cpp

Test scripts used to create figures included or data used in this master thesis
can be found on pages 93-104.

Page 93:
Page 93:
Page 95:
Page 95:
Page 97:
Page 98:
Page 99:

class_Params.py
define_objects.py
update_sizes.py
simulate.py
example_figs.py
wfn_error.py

wno_test.py

Page 100: comparison.py (speed testing)

Page 102: speed_brunel.py (speed testing)

Page 104: spike_pattern.py (Figure 2.5)

Appendix B Programming code

72

}

1o-eyd[e-puod~jeI SSB[D

/*

epoN~Suralyoay orjqnd

ow-eydie-puod-jer

Jo ‘sodA31-109deoe1 osn 03 19313199 o9 Pp[nom 1] *
‘1yStom

orydeuds oyl jo ulis oyl Aq sosdeudks omp oyz o3 sindur *
usomiaq

soysindurysip 21 3eY) SI SsSB[D SIY) JO ssauleoam ouQ *

csorweuUAp JIeLUI[UOU YIIm s[opow umo Inok Surufisep usym *
ERRERER ER

® s® GSVTID SIHIL °osnh oseoa[d -ulisop sse[d ojur siydisul *
jsomou

Ino 09 PposIAdI UddQ SBY SS®[D SIYY ‘LT—F0—600C 19 010Up *

sosdeuds
PosSeQ—o0URBIONPUOD OM) [YIJIM [9pPOW UOINOU OIIJ—puUB—o)RISOJUT *

* k[
¥

9sou odoedsoweu

/%

ow-eydie-puod-jer ‘dXo-puod-jeI :O0S[yo9S

19ssa|d ‘JIepeiyog :ioyjny

3senbeyeouejonpuopoijdeulg
‘gsenboayyierjusjog ‘jueaygiuariny ‘jueargeyqidg :soaledey

jueaygoeidg :spueag

‘yd ur jueirino jndur juejsuo) — o[qnop o 1
‘sw ur uorjounyg

eydie orjdeuds AL1031qIyul oyj JO ouwWI} 9SIY — a[qnop ur-nej
‘sw Ul uworjouny

eydie or1jdeuds AI103®II0X0 9y} JO owWI} dSIYy — o[qnop xa"nej
QU UI 905UBIONPUOD BT — O[qNOP -8

‘A ur jerjusjod [esIoaal KI0)IqIYyu] — o[qnop ur- g

‘At ur jerjuojod [esIoAaal AI03®IIOXF — O[qnop xo~§

AW UT dueIiquRW 9y} Jo [eljuajod 39say — o[qnop 19891 A
‘AW ur proyssiyi 9yrdg — arqnop UI"A

‘swt ur poriad A£iojdeIjor jo uoljeIn(— O[qnOp jo1-y

Ad ur suviquew oyj3 jo Ajroeden — a[qnop weD

‘Al utl [erjusjod [BSI9ASDI eAT — B[qNOP anici

AW ur Jerjusjod osuevIqWLN — °9[qnop wr A

- AI1eUOTI)DIP Snje)s oY} Ul 39s oq ued sivjowered Jurmo[[o] oYJ,
isIojoweIe J

ruks ney = 93 e

Su T jo juaxind yead ® Ur s3[nsaI (' 31YSIom JO JULAD UR jJRY)
yons poasijewiou s1 uorjounjy eydie oy, - uorjounjy eydie ue £q
poj[epow od2ue)dnpuod jJjo o3ueyd oijdeuds—3isod ® 9ONPUI SIUDAD
o)1ds Surtwoou] -sosdeudks pPoseq—oOURIONPUOD [YIIM sOIWRUAP JVI
Bursn uoainou Suryids ® jo uorljejuswajduwr ue s1 19-evyd[e-puood-jer

ruorydraiosag

‘[epow uoInau oJIlj—puUR—
ojei18ojur Ayeo| poseq oouejdonpuod ojdwig — 1o-eyd[e pUOD-JRI :oUWEN
uorjejuswWnOoquUIBag */

«J 108801 ejep-3o[rU® , O9pPN[OUIH
1ogowrgnuw jroddns sjepowr [[e® uaym Jieaddesip [[Im oul[j3xou //

U dew-se[qepIodor, o9pnN[OUIH#

(U 190880["ejep [BSIDATIUN , OPN[OUIH#
«J UOI}D0UUOD , IPN[OUTH

<y I19jJnq-3uri, opnloul#
«J-opou-3uraryoie , opnN[OUI#

(g judnd epunioulz

«q3seu, apnyour#

(U 81yuoo opniouH#

HIA VHdTV ANOD dVI °uljap#

HIA VHdTV ANOD AVI Jopuji#

/*

*

TS[teIep 103 HUSNWUDIT °11F °2Y3y 99g =*
oSN [BIDIDWIWOO—UOU I0J O[] SIY} *
Ajtpowr pue o[idwiod 03 PpPojuUeRIS8 SI UOISSIWIDJ *
*

TS[te19p JI10J SYOHLAV °11) °2Y3y 995 =
*

ealjelllul ISHN °4L *

£9 600z—900z (D) 3ySrrhdop

*

LSHN jo 31ed st o[ij sIiql =

*

y-eydie-puoo-jer

%/

‘1o eydpe puodjer

S[opoul UOJINdN]

73

Neuron models

senjeA jueIINd 21038 >i//

L1o3eyroxy juejlsuoy owly, o13deudg >j//

*
‘[epouw 9Yyj jJO sd[qerievAa 93e3}S *

*k [

sse[d so[qeriea oj3e1g //

o
A1eUO0}101P
{(zpwnjeL1eUOIIDI(PSUOD) 3}dS pPIOA
A1euorjorp ut
f9suoo (zpwnjeLreuor}di() 198 proa

wolj sanjea 13188 >i//

sonjea Iojowesed j[nejop 3195 >j// ¢ () sieojomivieg

yvd ur jueiinp jueisuo) >i// f9-] 31”9Iqnop
sw ur osdeudg ALiojrrqryuj

103 quejsuop owly, o13deudg >j// {Juds-nel 3-9[qnop
sw ul osdeudg

{quds-ne3 3-a[qnop
Aw ur ([erjusjod Surjysoux

eje) [eIjULlO0J [BSIDALI MearT >i// ‘T 3Te[qnop
AW

ur [erjuejog [esioasr KArojrqiyuy >i// fur-yg 9-e[qnop
AW

ur [erjuejog [esioadr Aiojreyroxyg >i// fxo~yg 9-e[qnop

Ad ur eouejroede) oueiquoN >i// furpy 3-e[qnop

Su ur eouejOnpuoy Neary >;i// {r1~8 3-e[qnop

sw ur poriad <Kiojowvijey >i// 32173 93-o[qnop
AW ur [erjuejog 3eseyg >i// {99801 A 9-o[qnop
AW ur [erjusjod proyssiyy, >ji// PITA 3Terqnop
} ~siejeowmeieg jomnils
siojowered [opolN |//

sse[d sidjoweieg //

togearad

‘< 1e-eydie-puod-jer>io88oTele([eSIDATU) SSB[D PUSIIJ
‘< 1e~eydie-puoo-jei>dRINSO[qRPIODDY SSB[D pualij
Ioquiouwr/ sse[d ~931%€)g
91} $S9D02® 07 SPUSIIJ O O PoOdU SOSSB[D OM) 3X°u oYy, //

spuotig //

suorjeie[doop uorjdounjy o3rerdiajrog qNd //

¢ (3-8uoy 3suod ‘3-8uo| 3suod ‘zp 3suod owly)ojepdn
f()esriqrren

¢()-sasyynq-grur

¢ (oj01d 290pON 93SUOD)-93®ISTIIUI

¢ (0j01d 299pOoN 1ISUOD)~-9pouU-JIUI

proa
proa
proa
proa
proa

togeatrad

f(29 wnj}e@AIRUOIIDI(] 9PSUOD)SNIBIS™ 39S
f9suod (7 wnjeAIRUOIIDI()SN)IRIS™ 303

(193owignu)

t(2p 9semboeyeourjonpuoporjdeudg)opuey
(193owig[n)

¢(29 3semnboyerjusjog)ojpueqy

¢(29 3sonboygSuiSSorgeieq)o[pury

{(29 judAaygiueIIN))o[pury

‘(% jueagesidg)orpuey

ieoddesip [rrm //

ieoddesip [rrm //

¢ (310d ‘73 g3semboyeourjonpuo)orjdeudg) I9PUSS~300UUOD
¢ (310d ‘2p 9sonboy [RIJIUSJ0J) IOPUSST3D2UUOD
js[jopow M

proa
proa

proa

proa
proa
proa
proa

j1o0d
jiod

ou //

Ul woeyj OpPN[OUl j0ou O ‘JIdjdwWIj[nwW yYiim osn 1oj poddinbs //
ueoq oAy s[opowr [[e odouo Ieoaddesip [[ImM soUI] omj) 31Xou oYy, //

¢ (310d ‘29 gsenboySuiS8ogeie()1epusas-joouuod jiod
¢ (310 JULAFIUDIIN I9puUDSTID2UUOD 310
! d ‘= q [°) P d
¢ (310d ‘29 gueaygexidg)aiepuss-gdoouuod jirod
¢ (310d ‘29u01900UUO)) UWOTI}DDUUOD~}{20yd jiod
fo[puey ::apoN Sulsn
{IopuUoOsT)O9UUOD ::9poN Suisn
/*
‘wygQQ/ m3o8/eo myo3 mmm/ /:dyry 99s %
‘uorjewiojul punoifyoeq JI0, SSB[D SIY} UI OPIIISAO0 x
om jeY) SUOI)OUNJ [BNIITA PpopeOo[Iiaso [[e jroduw] x*
%/
f()re-eydie-puoo-jer
f(2p1eo-eyd[e-puodo-jer jsuod)ie-eyd[e-puodo-jer
f()1e-eydie-puoo-jer
:o1pqnd

suorjeie[doeop uorjduny o3erdiojrog //

Appendix B Programming code

74

opnjrjdwe ‘lepow oy3 jo sioyyng x
—31un o3xoA® 03 ['Aliie oxIds uo OXHAOHJ ©} ppe 03 os[ndw] =x xx)
*x [

} ~so[qerie A 13omnigs

/% sse[o sioyyng //
‘9jeINWIG 03 [[eD yYodoeds uodn pozZI[eIIIUI—OI oI SO[QRIIBRA *
‘[epowr oY} JO SO[qEIIRA [BUIDIUT x* :ogearxd

*k [
H

sse[d> so[qeriep //

{ {(2g~s1e9joweIeg 3SUOD ‘zpwInie(AIRUOIIDI(PSUOD)3dsS ploa
18D £q pejepdn ¢ /*
dejls awr} uorgeafejur jusrind >i//i-dejguorjeifejuy aqnop . "spunoq 3o2eyo ‘88 ‘03 juowngie se -~siojeowreied solinboy x
sw ur ozis dejys >i// ¢-degs 93-o[qnop *A1eUOT1)DOIpP Ul SoN[BA WOIJ 93®IS 398 *
re10y yjoq oovid o3 ojes st 31 // EEY
‘¢ pojeald uaoq
oA®y sopou I93je o3uevyd jouued UOIIN[OosdI oY} pue ‘-deys // A1euorydorp ul
Yitm pozIi[eIjIUI son[eAa 3uU0IINd 91038 >i// f9suoo (zywnjeLIieuoIldi()1938 proa
ST 31 90uIg -uwoljeiqi[ed Surinp peSuevyoun urewal jnq //
¢ yromiloNIosoy W?M\mudum umEOovaoumkwmo 3~91®1g
uo uoInsu 9yl Yilm 19s91 o9q p[noys -dojguorjeifisjuj \\ wﬁwwwwudum umEOuv\wuduw

uorjezi[eIjrul j[neyjoq >i// {(29~s19joweIRJ 3ISUOD)-231%1g
f{-sodouelonpuod <j3sonboayoesoueionpuopHorydeudg>is83ogeiegiojeuy

f-syerjusajod <g3senbay[erjusjog>1e83ogeregloeuy H 3 gur
jsjopow mou // Sururewoaxr sdejls A1o031d®Ijor jo requnu >i//
Ul weyj OPN[OUI j0ou o "dIdjdwWIj[nwW yYim osn 1o0j poddinbs //
usaq

oaey s[opowr [[e odouo ieaddesip [[ImM soUI] Oomj 31Xou oYy, //
Pouejonpuod Lrojrqryuy >j// f-ui—gL 3-erqnop

{~sjuerino iojjnglury 2AI3RAIIOP ‘oOue)ONPUODd AIojriqiyul >;j// {-ur"1&k j3-a[qnop
f-qui-exids iejjnglury
f-oxoe-oyids u1eojjnglury eouejonpuod Kiojeyroxy >i// {~xe-ghk 3-aiqnop
/% sjueiino /sexids Surwoour dn swns pue siI9jjng skx/ 9AT3BAIIOP ‘odouelONpuOd Aro0jewyIdoXy >j// {~x0" 1L 3-9[qnop
{-10830] <1o-eydie-puoodo-jeIi>io830Triv[RSIDATIU) [erjuejod ouviquwoly >i// (A 31-o2[qnop

eiep Soreue [[e i0j 198807 //
} ~e3eig 3omnigs

0 01 saisjurod iejynqg :orpqnd

s19g>i// ‘(zp1o-eydie-puodo-jeI ‘29-SI9JJNg 9JSUOD)-sidjjng /*

0 03 siojurod 19jyynq s39g>j// ‘(zpro-eydie-puood-jer)-siojing s Aeire o1K3s—) aYyjy jo *
} ~siejyng 13omnigs asnedoaq

/% perinbox oixe 10j3eisdo juowulisse pue 109doniysuod Adop 9joup *

cIesn oY% *

wolj uLpplY S[lej}ap uoljejuswoldwWl oI1® 3jNg ¢ JIOMIONIOSOY 10 * s19A10s HAO TISO Yitm orqriedwoo aq o3 Leviie o[L3s—D *
[ouIa31959Y e

I99je [[eO oj3e[nwig 3si1j uodn A[uo pozIi[ej)IUl ‘-9 1 =* 9 9Jsnuw I10900A ©93®YS OYJ, ‘JuUN0Od AI030®IJOI OY} pueR SOIWRUAD *
¢ eoueagsisiad pioyselrygqns

JO swIe) Ul sa[qeriea 9je3s yYyrm Ied uwo oIe sI9Fyng * 973 JI0J I03D09A 93®)IS OY) JO JISISUOD SO[qRIIBA 93BIS *

75

Neuron models

suryul

{
{0 uanjoux
¢ (()oweu-308 ¢ odAy-103deoor)odL 101dedoyyumouyun MmoIyy
(0 =i odAy-1o03dedox) jJI

}

(odA&3-109doeooax
j1od ‘zgqueargeyidg)iepusas-yosuuod :1e-eydie-puodo-jer jiod
surjut

{

¢ (od4&3-109dedo1 ‘o)iopussTjoouuoo<—()jroe8ie3~3098 0 uwinjes
HEDELEVERS BER: I

f(s1y3*)Iopuoas~ios - o

‘o jueagoeyidg

}

(odA3-103doeooax
110d ‘D 2UO[9D09UUO()) UOI}D0UUOD-D0Yyd :: 1o-vyd[e-puod-jer jiod
surjur

suorjruijep uorjouny ourjur oje[disjrog //

{-dejyNserqepiooer <te-evydlie-puod-jei>deNse[qepPioddy OI13®IS
SuOI32UNJ SS8D20® 03 saweu sajqepiodoxr jo Surdden i//

‘g “s19jjng
fTA Tseolqelrie A
‘=g “91®lg
=g ~sIejoweleJ
oourwaiojiod
1s9q 9AI18 03 swods ‘ souI] 9s9Yy} Jo I9pio oyjz deoy //

sioquow eyeq //

¢ ()deys-jrey-osdeuds proa
1o1ganjg
degs owrg [euorljeyndwod Jrey ' seduevldONpuod oYy soyepdn j//

f9suod (urp j-92[qnop) IPAP 21-@[qnop
rsonjea 3311 oy} s908
poyjew wejiyny[—o8uny oyj os [erjusjod ouviquwow oYy3 sojepdn j//

{ {-dejguorjeirSegug

‘g uinjax } 3suod ()-dogs-uorjeiSoejui-398 31-9[qnop
19880rerR(RSI9AIUN £q

posn ‘degs owrgp uorjeifojul JuU9O9I j3sowr jo yiSuo| 3no pesy //

{ f17s * O

sw-3108 ' () uorynjosar-398 ::owr], uingar } g3suod ()-1-398 3-9[qnop
19880reiR([RSIDATIU

Aq pesn ‘owr} A109owijor Sururewar jno pedy i//

souwlONpuod Arojrqiyut

suinjey >i// {{-ur"gA--g uwinjea} j3suodo ()-uri~8-308 3-a[qnop
2ou®IONPUOD AKI03IBIIOXD

suinjoy >i// {{"xe"gA--g uwinjei} 3suod ()~-xo-8-308 3-o[qnop
Jerjyuojod

ouriquow suinjay >i// {{"A°~S uwinjei} 3suod ()" A"198 3”9[qnop

19880relR([RSISATU I0J suoljdunj ssaddy //
H

f-urtggd 3TeIqnop
f-ur1gd 3"elqnop
fTurird 3"eiqnop

tTxeTggd 1Terqnop
PTX0T1gd ¥Terqnop
PTXOTITd jTerqunop
Lrojrqryur pue
AL1o3e31oxe Yjoq ¢ seorijewr ioje3edoad oYy I0j sopqeriepn j//

fwrgsTp 3Terqnop
Eomuuﬁﬂm
sotweudp 03 9[qeIreA® jJua1ind jindurl [vUILIXD ofew |/ /

f{sqpunopAiogorijey 1-jut
sdegs ur awriy ALirojdevijyoxr j//

fIT3tUIuopDgd 3Te[qnop
/%
S UOISINDXO 9DUBIDNPUOD *
opnjrjduwe
—jiun a3o0ad® 03 [evAlII® oxids uo HPNI'OJ ©2 ppe 03 osindw] =*

*x)

‘HTjuuoDSd 3Tolqnop
/*

TUOISINDOXd 9OUBIOINPUOD *

Appendix B Programming code

76

/%

*

Ts[telep 103 USNHUDIT 2113 924y 995 *
©9SN [eIDISWWOD—UOU I0J S[IJ SIYY) *
Ajtpow pue o[itdwod 07 pojuevid SI UOISSIWIDJ *
*

TS[te3iep 10) SHOHLAV o113 943y 995 =+
*

oatrjellluUl LSHN °UL *

£q 6005—¢00% (D) 3IuStaddop =«

*

LSHN jo 3ied st o1y siqL *

*

ddo-1e-eydie-puoo-jer *

*/

ddo e eyde puoojer
HIE VHATY ANOD™AVI// Jipus#

soedsoweu // {

{
{0 uingoux
f(10s)901A0p-3uI880[~322UUOD ' ~S8OURIOINPUOD "~ ¢
f(()owreu-308 ¢ odAy-10gdedour)adL10rdedoyyumouun MmoIyy
(0 =i odA&3~-109dedax) jJI1
}

(e@dA£31-103deoo1 j1od ‘ 1ds 2gpysenboygoedouerionpuoporjdeudg
)iopuos~3oouuod ::1o-evydie puoo-jer jiod
suljur

{
{0 uanjoux
¢(ad)eorasp-8ur88o[-300uuod - ~s[erjusjod ‘-g
¢ (()oweu-3038 ¢ odAy-103deoor)oadL 101dedoyyumourun moIyy
(0 =i odA3y-xo03deodox) jJI

}
(edA3-103deoe1 ji1od
‘1d 2g9senboyy[eIjuslog) Iopusas-gdouuod ::19-eydje-puooso-jer jiod
sutput
jsjeopowr mou //
Ul way} 9pn[oul jou o "JI9jdwWIj[nmw Yiim osn 10j poaddinbes //

uoaq
oa®y s[opow [[e odouo ievoaddesip [[ImM suoIljduUNj omjy j3xou oyl //
{
fdurys = -g
fdungd = -g
so1qi1adoaxd
JOo 39s juo3sIsuod urejuod sorierodwoay ‘oiroy 398 em j1 //
t(p)snjeys-39s ::opoN-SUIAIYDIY
‘quagsisuod //
Alleurojur o1e sse[do juaied oYy ur g3es oq o3 sorjiadord oYy //
1€} oIns os[e aIe am o10joq (S ‘~g) 01 oeq woyjl ojram //
j0u oOp opp - juoysisuod oie (dwrys ‘duryd) eyl Mmouxy mou op //
Ayradorgpeyg Ju smoxyy // ¢ (duryd ‘p)aes - -durgs
si1oxia jo osed ur Adoo AKrerodwoy // {-g = dugs “93®lg
Lyiedorgpeg jir smoiyy // t(p)3es dund
sioi1io jo oseo ul Adoo Aierodwoey // (g = durgd -siejowreieg
(pzz winje@A£I1eUOI}DI(3SUOD)sSnie}s~99s ::1o-rvyd[e puUOd-JeI ﬁmow
surput
{
f£()as11398 -~deNso[qepi0ooor = [so[qepIodol::soweu] (px)
t(p)sniegs—3198 ::opoN~SuUIAIYDIY
f(p)3e8--g
f(p)3e8--d
}
jsuod (pzp WNj}eAIRUOIIDI()Sn3e)s~393 ::1o-vyd[e-puod-jel PpIlOA
surput
{
{0 uingoax
¢ (~dese[qepiodoox ‘iyp)ooraep-Surd8oy 3oouuod - -10880[g
¢ (()owmeu 3108 ‘odA3-103deoor)odL103dedoyyumousuyn) MmoIyy
(0 =j odAg-103doedo1) JI
}

(od&3-103deoox ji1od
‘arp zg1senboySurs8oreje() 1opuss-idoouuod :: 19-eydje-puods-yer jiod
surput

{
0 uinjoex
¢ (()oweu108 ¢ odA3-103doedor)adL 103dedoyyumounu) MoIy}
(0 =j @dAg-103dedox) jJI

}
(edA&3-103deoaux
j10d ‘29jueAgjiuLIIND) I0pPULST4d0UUOD :: 19" vyd[e-puod-jer jirod

7

Neuron models

f(-17108 ::
‘SururewoaI-jyor-g i

ro-eydie-puod-jeizy

f(-ur-8-3198 ::1o-eydje-puoo-jeIzy

soweu) ~3I9SUI

‘ur-8::soweu)-jIosul

¢ (~x9-8-9908 ::10"®vydje-puoo-jeIzy

¢ X9-8 ::soweuU) - jI9SUI

$("A"198::10"®ydie-puodo-jeIzy

‘U A i SewWRU) TjI9S UL

j £ouegsisuoo

10j ued NoOA I9A99IOYM SdwWRU pIepuels oasn //

}

()o3ea10::< 1o-eydie-puod-jer>de\sSa[qepPI0daYy PIOA
<> oje[dwoy

*pepioda1 aq o3 Ajrjuenb yowo
() "r1esur:
dejysa[qeprodsay o1

{2 2uo {Yitm poyzow ()o3e210

/%

10} *

23l OPplIIaA(*

*/
}

ooedsowreu

ur pooe[d oq jsnw uorljezi[eioads ojejdwoey //

{-dese[qepiooar:
:ig3seu < 1e-eydie-puod-jer

jsou odedsoweu

:1o-eydlie-puod-jel
::gsou>deNsSe[qepI0odaY i }So U

/%

{
¥
(1-8)x
‘(-urghrs)-urgk
C(turt1L-s)"urt14
‘(~xo gLk s)"xo g4k
C(~x0 1L s)"x0 T4
CCATS)A
(s 29-03®)g JSuU0D)-0jeIG ::-0)eIG ::(o-vyd[e-pUOD-JRI ::jsoU
{
}
(0) 1
‘(o) ur g4k
f(o) ur 4k
‘(0) xog4k
‘(o) x0T 14
(T d)TA
(d zg~s1ojoweieg 3IsuO0D)-93®Ig ::~938Ig 19" eyd[R - pUOD-JRI ::}SoU
{
¢ ()oreoaao - -deysa[qepiodal
}
vd /) 00) o1
s // ¢ (02)Juds-ney
s // ¢ (Z2'0)Huds neq
Aw /[0°0L—) T4
Aw /[0°g8—) ur g
A /) 00) X0~
ad // 0°08%) wp
su // (L999°9T) T3
sw [/t 0'c) 3eiTy
Aw [/ 0°09—) ?39s0I"A
Aw /) (0°6¢—) 1A
() "si9joweieJ ::-siojoweied :: 19" eyd[@ - pUOD~JRI ::3SoU
/*
*
o9e9s pue siojowered j[nejop SUIUIJOP SI0JDNIYSUOD J[NBJI((*
*/

¢(~degs-uorjeafoejur—9e8 ::
¢ doegs-uorjea8oegurl

1o-eydie-puUOD~JRIZY
1isowWRU) T4I9SUI

{

*

dewr so[qepI0daYy *

<OoIp3so>
< wWeaI}sOI>
<druewor>

<sgprwip>

U 1dwi-ie88o0[-ejep-[eSIaAluNn
Uy jdwi-1eo880(-erep-Sojeue .

LU sorrewnu

4T STIAINGDIP

4T wnyeparqnop

L wnjepasgojur

«4TA2TP

«Upromgau

(' suorgdeoxo

(U reTeydie-puod-jer,

*/

opniouI#
opniouIH#
spunour#

epnyour#
apnyour#
apnyour#
apnyour#
apnyour#
spnour#
opnioul#
opnioul#
opniouIl#
opniouIl#

opniouI#

Appendix B Programming code

78

(- ‘ur A ¢ soweu ¢ < orqnop>oenieAojepdn
A A P rqnop TeA P
}
(zp-siojoweieg j3suod ¢
P zpwWN}eAIRUOIIOI(ISUOD)3ds::-093®)GS :: 109 -vyd[e " pPuUOD~J®BI :: 389U PpIOA
{
[erjusjod ouviquoly // (A ‘W A::soweu ‘p)<o[qnop>jop ,

(pzy winjeAieuorlor) 908 ::-93wyg ::

1su0d
1o-eydie-puodo-jer

ii1seu proa

C(urp furp
S(urg furg
f(xommg fxOTH

(1| ‘1™

f(T1°8 ‘178

f(301719 ‘ye1-y
f (99801 A HEETER SN
(U A CUPTAC

(pzy winjeA1euor}or() 498 ::-“sivjoweIeJ ::

ro-eydje-puoo-jer

1:soweu ‘p)< @[qnop>jop
1:soweu ‘p)< @[qnop>jop
:soweu ‘ p)< d[qnop>jop
::soweu ‘p)< 21qnop>Jjop
::soweu ‘p)< 2qnop>Jyop
::soweu ‘p)< 2qnop>Jop
::soweu ‘p)< 2[qnop>Jyop
:soweu ‘ p)< d[qnop>jop

1suo0o

}

1:3seu proa

{
¢ (. oa191s0d /%
A130119s 9q jsnW sjuUEISUOD dWIY [[V) Ljredorgpeyg moiyy
(0 => Juds-ne3 || o => guds-ney) JI *
suorjounjy uolje[ndiuvwW puUB SUOI}OBIJIXD ©3BJIS PUR IdjdWeRIRJ *
(. @a13e80u oq jouued owry) Arojowiyoy .)ALrredorgpeg Mmoiysg
(0> g30173) 31
x/
oargrsod A7130113s oq 3snw oduwjroede)) Ljiedorgpeg moiyl
(0=>wp) jr {
©I1030NI3sUWOD j[neIJIP 119U} Aq posijerjrur Ajreosrjewoslne //
(. PIOUYSQIYY 9I® I0 posI[eI}IUIUN 3JO] 9I® SO[qRIIBRA IdqWAw I9yjo oYy //
uey) I9y[ews oq jsnw Jerjusjod j9soy ,)ALrisdorgpeg moiyl }
(U3 A =< 30s01"A) J1 (u)-198807
(u 2g1o-eyd|e-puoo-jer
t(o 1 ‘o-]::soweu‘p)<o[qnop>anjeAajepdn ‘729-sI9jjng 9suo0d)-siojjng ::-siajjng ::1o-eydie-puod-jer ::}sou
{(Juds—ney ‘ur-uds-nej::soweu‘p)<o[qnop>oanieparepdn {
f(Huds-ney3 ‘ xo-udks-ne)::ssweu‘p)ajqnop>anjeAsjrepdn ©1030NI)sSUOD j[nejop 119Yyg Aq posri[eryrur A[jesrjewolne //
2I® IO PposI[eIjIUIUN 3Jd] 9I® Sd[QRIIBA JoqUWLAW JI8Y30 °YJ, \\v
¢ - Cr-gs ¢
(1738 -8 ::seweu‘p)<ajqnop>anjeAajepdn
¢ - CarA ‘ -
f(wrp WD seweu ‘ p)< a[qnop>anjeAajepdn (u)-108807
(u zg1e-eydie-puod-jer)-siojjng ::-siajjng ::1o-eveyd[e " pPuUOD-JRI ::}SdoU
f(ur—g ‘urg ::seweu‘p)<ajqnop>oanjeparepdn
¢ - Cxo-ry :: ‘
f(xo g Xo~ff ::soweu ‘p)< a[qnop>anjepsrepdn {
£SIYl* uInjoux
N auici ¢y ::soweu ‘p)< o[qnop>anjeA2iepdn
f(301 9 ¢ 39171 ::soweu‘p)<a[qnop>anjeA9drepdn f1s = 1
£(39891" A ‘19891 A ::soweu‘p)<o[qnop>anjep9jepdn f-ur-ghs = ~ur-g4k
C(UImA ‘U1 A ::soweu‘p)< o[qnop>anjepdrepdn ftur-7Ls = “ur-14
[erjusjod oueiquow oyjz Suriies moyye // f-xo-ghk's = ~xo0 gk
} {-x0-TA's = ~xo-[4
(p zpywnjeLieuoryorq (TATS = A
1SU0D) 198 ::-sId9joweIRJ :: (9" eyd[R - pUOD~JRI ::4S0U PIOA
£SIY3* uanjed
{ jios o3 juowuS8isse proae // (sz == siyy) JI
(o 1 ‘o~ ::soweu‘p)<o[qnop>Jjop }
¢ (Judsney ‘ur-uds-neg::seweu‘p)a[qnop>jop (s 2p~@3e31g 3suod)=ui103eiado
f(guhs~ney ¢ Xxo~udsTney ::soweu‘p)a[qnop>jop t:-ojeyg i 1oTeyd[RTpUODTFRI 1 3soU 2pTo3eIS i 10”eyd[RTPUODTIRI i }sSdU

79

Neuron models

cIopio oyjl oSueyos j0ou Op oseoa[d ~oA0qe oyl uo puadep osoyyl //
$(1udsTney -g/y—)dxe::pys = -ur"ggd ‘"TA = "UI'ITId TA
f(gudsney -g/y—)dxo::p3s = “Xo ggd A = "XO ITd "A

juspuadepur sxe g 9sayy //

tg/ ()sw9e8 - () uorgniosai~g4e8 ::0wl], = Y 3~9[qNOP JSUOD
rdogs

owiry 3xou Y3 jo SJuruur§eq oYy e wWeyl °'g/y pue Q 3e ouop sr //
¢ deogs owig w®

oprsur ‘Surjepdn oyj3 osnedaq omj Aq poplalp sI uorjnjosax ayy, //

}
(0301d zgopoN 3su0dD)-93®}S-3IUI ::19-evyd[B®-PUOD-JRI ::3S9U PIOA
{

f-grad = -g

ftgrad = g

¢

(ojoxd)< 1e-eydie-puod-jer>jseoumop = id 2g1eo-eyd[e pUOD-JRI JSUOD

}

(o0j01d 299poN 3suo0d)-opou-griur::io-eyd[e PUODTJRI ::}SOU pPIOA

/=

IUviS ()o3eiqrieo - eydie-osd-jer woij ————————————— //

1o011o ur [rej A[uo
ued sIiyy ‘Q =< jJoi~3 oaodurs // (0 =< sjunopAiojoeijoy "~A)1Iosse
f()sdoegs=108 ((Jo173 ~g)sw::owWL],)owWI], = S1UNODAIOIDRIIOY "~A

fJuds-ney g / 9::sdmrownu x ('] = [3IUJUODSd A
fudsne) g / o::sdmrownu x ('] = [3IUTUODSJ "A

()oreiqri[eo ::1e-eyd[e-pUOD-JeBI ::}S0U pIOA

SUOI}DUN] UWOIJRZI[RIJIUI OPON *

*/

{
¥
()reo~eydie-puod-jer _::1o-eyd[e PUOD~JeI::}souU

-

(stys* ‘~g-u)-g
‘(s u)"s
‘(tdru)Td

‘(u)epoN~-Suraryory :
(u 23

1o-eydie - puod-jeI 9suod)ie-vyd[e puOd~JjeRI:: 10 RYd[BR PUOD~JRI ::}S0U

{
}
(stqa*)-g
‘(-d)-s
“0O-d
¢ ()epoN-8uraryory

ti1eo-eyd[e-puUODTJeRI::}sou

/%

()re-eydie-puoo-jer

{
f0°0 = WIIST[A
¢-degs —g = ~dejguorjeildejul--g
¢ ()sw 398 () uorynjosei~94e8 ::owr], = ~deojs —g
1eoddesip
[ITM ——— 9zISd1 sopnyour // {()®3BP I®O[D ~S90UBIONPUOD "~gg
1eaddesip
[IITMm ——— 9zISdI soapnjyour // ¢ ()ejep-ieold - ~sjerjusjod g
¢()arrur--1988o01°-g
oz1so1 sepnjour // ¢()1es[o - ~sjusiind - -g
oz1se1 sepnjour // ¢ ()aearo - ~yuri-oyids —g
oz1se1 sepnjoutr // ¢()aeao - -oxe~oyids '—g
£()£L109S1Y-1RA[D 11 9PON~SUIAIYDIY
}
()-s1ejynq-grur::1e-eyd[R " PUOD~JRI ::3S8U PpPIloA
{
f—grad = -g
¢
(ojoad)< 1o-eydie-puoo-jei>jseoumop = id zpro-eyd[e PUOD~JRI }SUOD

*
1090N13se9p pue ‘epou J10j J0j30onijsuod Adodo pur j[nejog *

*/

Appendix B Programming code

80

f1731uguoDSd ""A * (Ser)enyea-31e8 - -qgur-eyids g =+ "ui"14£°-g
fTrujuoDSd A * (Ser)enyea-31e8 - -oxe~oyids g =+ "x0"[L°-g

\\\\\ dOLs ddo-eydie-puoo-jer woly ——— //

{
¢ (8ey ‘os ‘siyyx)puas<—()jiomjou
fos jueaggeyidg

¢ ((1+8e1+()sdegs—308 - ur8r1o)doeys ::owl],)owijoids jos
epoN~Suratyory yjim oxids Sor //

£19801°"A ""d = "A°"S
fsqunopHAI090vIJOY ""A = I°°Q

}

(WA "d =<"A""s) 3!

A1030®ijo1 93njosqe jou sI uoinau //

as[o

{
[erjuojod dwerd // £99891°A ""d = "A°"S
fr1r-g—

AL1090®1391 93njosqe s1 uoinau //}

(1-s) 3t

uorjeiouss oxrds pue sssuriojoeijor //

\\\\\ I¥viLs ddo-eydie-puoo-yer wory ——— //

PTA®IPP + TATTS = TACTS

9/% + €/€1 + €/8X + 9/1 = ~A®I[PP 3”°[qnOp 3suod

[e1juajod oueiquew ul oSueyod oy3) Suryewriysy //

(e + TATTS)IPAP * U = Y 170[quop 3suod

¢()deys~jrey-osdeuds

spiemiojy g/y sosdeuds oyjy Suryepdpn //
‘(g/ed + TATTS)IPAP * Y = €3 179[qnOp 13suod
$(g/1% + TATTS)IPAP * Y = g¥ 179[qnOp 1suod
¢()deys-jrey-osdeuds

spiemio)y g/y sosdeuds oyjy Suryepdn //

(“A""S)IPAP * U = I 3-°[qnop 3suod
}

(Ser++ ¢ o3 > Sey ¢ woay = 8el 3~Suol) i0j

f-degs g = Yy j-o[qnop 3suod

¢ (03 > woijy)jiosse
£(()Aerop -urtwi-308 :: 19 npoaydg > woiy (Ae[op) 2379 0 =< 03) 3I9sse

}
(03 3-8uo] 3suod ‘woiy 3-Suoy
1suoo ‘ uifrio zp 3suod owly)orepdn::1o-eydie-puod-jel::}SoU Pploa
/%
*

suorjouny Surjpuey oxids pue ojepdn x*

*/

PTUITIId CTA =% "ulT1d--g
fturtghTg x Turtged A + TUWITIACTS x TUITIgd TTA = Tuitgh-oTg
soouejonpuod Aiojrrqiyur Suryepdpn//

PTXOTITd TA =% TXo 1L -g
f-xo-ghk -9 *x “X07ggd "A + "X9"1L°"g * ~“X9"[gd "A = ~Xo-gL-'-g
soouejonpuoo Aiojerroxos Suryepdpn//

()ogepdn ::eydje-osd-jer woijy oie opod jo soaurlg // }
()degs—jrey-osdeuds ::1o-eyd[e " pPuUoOdD-jeI ::}SdU pIOA

surput
{
(wpemd /o
9] '"d 4+ WIS I "A + yur-uks-] — OXo-uks"] — HeO[T] —)) UWINjlal
(0 TH Td — WA) * 1"8'~gd = qeo["] 3°9[qNOpP 3sSUOD
£(" '~"d — WA) % "ur-gdk--g = yui-uds-] 3"9[qNOpP 3sSUOD
£(T Td — WA) % "X ghk'"g = 0ox9 " uds”"] 3-9[qnop 3suod
¥
3suod (urp 3-9[qnop) IPAP::Io-eyd[B pPUOD-J®I::}SOU 3-9]qNOP ::3sSdoU
surput
{
JdOoIs ()esjeiqries eydie-osd-jer wolj —————————————— //
PTUITITId CTA Ok Y = Tuitied A
PTXOTITA CTA ok Y = TX97I1gd A

81

Neuron models

uorjejuswnooquiSog x/

<y 1988o0[-eiep-8o[eUue , OpN[OUIH#
19rowijnw jroddns s[epow [[e uaym isesddesip [[Im oul[gjxou //

«Jrdew-se[qepIodol , opN[OUIH#

«J 10330 ejep [ESIoATIUN , OPN[OUIH
«J UOI309UUOD , OPN[OUIH

(U I93ynq-Suts, opn[our#

(4 PpOouUTSUIAIYOI® dPN[OULH

WU 9uLAd opnouUlH

LU sou opnyoulHf

«q°81yuod . apunyour#
H-doeis-1o-eydie-puod-jel oUIJopH#
H-dojs-te-eyd[e-puod-zer jopujl#

/%

*

TS[te3lep 10j USNUDIT °I113 243y 995 =+
*OSM [BIDISWWOD—UOU I0J S[1J SIYY} *
Ajtpow pue o[tdwod 09 pojueid SI UOISSIWIdJ *
*

TS[te39p 103 SHOHLAV o113 °Y3y 995 =+
*

oatjeljTuUl ILSHAN °UL *

£q 600¢—¢00z (D) 3usStahdop =«

*

LSEN jo 3ied st o1y siqL *

*

y-deys-ie-eydie-puodoTjel *

*/

y-dejs 1o eyde puodjer

¢ (o)orpuey - -~10880] " ~g
(o zpysenboeyS8ur38orgese()a[puey::1o-eyd[B~"PUOD~JRI ::31S0U PpPIlOA
{
(@ ‘SIYj)*)o[pPUBY ~SOOUBIONPUOD "~ g
¥
(

o 2g3senboyeourjonpuoporjdeudg)ojpuey :: 1o-eyd[e puUOD~JeBI ::)SoU PIOA

{
(o ‘siyyx)orpuey--sierjusjod - --g
}
(o 2p9senboyrerjusjod)o[puey:: 1o-eyd[B-pPUOD~JRI ::1S0U PIOA
{
f(()gusrino-398 -9 *x ()yy8rom-9108 -0
‘(()ur8tio-eo1[s 108
<—()jiomysu)sdoegs-AIoAI[opP [217398 "9)oN[RAPpPR " " ~SjULIIND ‘g
¥0—01—200% JHH ‘3ueiino pojySiem ppe //
£(0 < ()Aerop 108 - 9)j10sse
}
(o zp3udAafjuerIny)ojpuey ::10-eyd[e " PUOD JRI ::}S9U pIOA
{
aa1j1sod s1 oouwjOonpuod ainsus //
f(() ALyrorpdignw-998 -9 * ()3ySrom-398 - o—
‘(()ur8rio-oo11s~ 398
<—()jiomgou)sdors-AioAaI[op-[91-398 "9)onjea~ppe ~yui-oyrds ' —g
as[a
$(() 4Lgrorpdrgnw-308 -9 x ()3ySrem-398 -9
‘(()ur8rio-eo11s 9308
<—()sj1omgou)sdogs-AIoAal[op [01-308 "9)onjea~ppe ~oxa-oxrds ' —g
(070 < ()3uSrom=308:9) 1
f(0 < ()ALeiep~9098-9)3110sse
}

(o 29 yuoaygoexidg)ojpuey ::1o-eyd[B " PUOD~JRI ::3S0U PIOA

\\\\\ dJOIs ddo-eydje-puoo-jer wory —— //

f((-ur-gh--g ‘-xo gk
-g)< 31 9[qnop ‘3-orqnop>uared:: p3ys
¢ 8el+()sdogs~308 - urS110) eI P-PIODDI " ~S9OURIONPUOD "~ g
$("A°"S ‘8el+()sdegs~308 - urSrio)ejep-pirooor--sjerjusjod g
po3alep
9q Pp[noo soul] SUIMO[[O] MO} OYJ JI9jdwWIj[nwW Jo asn YIp //

1eaddesip [[I1m soui] omj 3xou —— Sur88o] oSejijoa //

¢(8e1 + ()sdegs~3e8 urSrio)ejep-prooar--1a8So0[g
®jep o3e3gs Soy //

¢(8er)eniea~398 " ~sjULIIND "Tg = WIIST] ~A
juoirino jndur meu j3os //

Appendix B Programming code

82

{(zp wnjeAIRUOI}OI(3ISUOD)SNIBIS™319S PIOA
{3suod (7zz wnjeAIRUOI}DI(])SN3IeIS~ 398 proa

(193owrIgn)
¢ (29 31semnboeyoeourjonpuoporjdeudg)o[pury PpIloa
(193owrIg[nur)
1esaddesip [rim // ¢(29 31senboy[erjusjog)o[puey proa
¢ (29 3semboySuiSSoryereq)o[pury PpIloa
f(29 jusAgiIuULIIND)S[PUBRY PIOA
{(z jueagoyidg)o[puey Pploa

1eaddesip [rim //

¢ (310d ‘29 gsemnboyeouwjonpuoporjdeudg)repusas-yoouuod grod
¢(g10d ‘23 3senboy[eIjuL)OJ)IopuUdST)d9UUO0D jr0d

isfepowr moau //

Ul wey} S9pnN[douUl jou o "JI9jdwIjnw Yjim osn I0j poaddinbs //
uoeoq oaey s[opow [[e odouo JIeaddesip [[Im sSouI] oM} 3xau oYy, //

¢ (310d ‘29 g3senboygSui8Sorgejye()IepuasTidoouuod jiod
¢(310d ‘7z jueafgiluUeIIn))iopuoas-idoouuod jiod
¢ (310d ‘79 juoagoyrdg)iepuos~jdoouuod jiod

¢ (310d ‘zguorjoouuo))) uorjoosuuod-}doyo jiod

f{ojpuey ::opoN Sursn
{I19puas-1d09uUUO0D ::9pON Surisn

/%

cwyygoQ/ mro3/eo mjoS mmm/ /:dyyy 99 %

‘uorjewiojur punoi8yoeq 104 - SSB[O SIYJ Ul OPIIIDAO *
om j®Y} SUOI}OUNJ [eNjila popeolisao [[e gjrodw] *

-/

¢ ()degs-1e-eydie-puod-jer _
f(2¢doegs-1o-eydie-puod-jer gjsuod)dogs-1eo-eydie-puod-jel
¢()degs-1e-eydie-puodo-jel

/
}

corpqnd

suorjeie[doop uorjdouny ojeidisajrog /

spoN-Suraryory orjqnd dejs-re-eyd[e-puodO-jel SS®[D

/*
row-eydie-puodo-jer

Jo ¢ sodA3-109dedor osn 093 193399 ©q p[nom 13| *
*3ySrem

orydeuds oyy) jo ulrs oyl Aq sosdreuks omy oyjz ojp sindur *
usomiyaq

soysIn3SuUI)SIp 31 3BY) SI SSB[O SIY} JO sSsaulevam oUQ *

Surwooufg

csolwRUApP IvouUl[UOU YjIm s[opowr umo inok SuruIisep uoym *
ERRERES E-R

® s® SQVTID SIHJI ©osn osedo[d -ullsop sse[do ojur sjiySisul *
jsomau

Ino 01 PoOSIAdI U09q SseY SSB[D SIYl ‘LI—F0—600% I9d 910Up *

*

‘sosdeuds
Pos®Q—90UBIONPUOD OM] [IIM [9POW UOINSU OSIIJ—pPuUR—9l1RIIOJU] *

sk [
¥

jsou odevdsowru

/*

ow-eydie-puoo-jer ‘dxe-puodTjel :0S[yeag
19ssa[d ‘JI0peIyog :Ioyiny

jsenboaygeourjonpuopnorjdeulg
‘9senboeyieijuejog ‘jueaygiusriny) ‘jusaygoedqrdg :soaledoy

juaagoeyrdg :spuag

‘yd ur gueirind jndur juelsuo) — o[qnop -1
‘Sw Ul uworjounjy

eydie or13deuds ALiol1qiyur ayy Jo ouwl} 9sIy — o[qnop ur-nej
‘sw ul uorjouny

eydie orjdeuds AL103®3I0Xd 9y} JO LwWI} BSIY — o[qnop xo-nesj
fQU Ul 20U®IONPUOD NBAT — S[qNOpP 1-3

‘Aw ut [erjusjod [eSIaAadl AIojlqIYyu] — Lo[qnop ur-yg

‘Aw ut [erjusjod [eSIaAd1 AI03®IIOXH — o[qnoOp xo~ 5

AW UI eueIqWLW 8Yj3 JO [eIjusajod 39sa8y — o[qnop EEEER RN

‘Aw utr proyseuyy oxidg — s[qnop RERVIN

‘sw url potied AI03d0®IJoI JOo uoljeIN(g — O[qNOp Joui—y

Agd ut eueviquew oYy} jo Ajroede) — a[qnop w)

A ur f[erjuojod [BSIDADI AT — O[qNOP anici

AW utr [erjuosjod ouUBRIqWDN — o[qnop A

AIeUOI)OIP snjels oY) Ul 99s oq ued sisjowered Suimol[[o] oYT,
i sIojowele J

‘uks-ne) = 9 3 QU [JO jULDIIND

jyeod ® ul sj[nsol (' 1YySrem JO IJU9AD UR 3JBYJI [YONS posi[rRWIOU

st uorgounj weydie oyJ, -uorjdounjy eydie ue Aq po[[opow

oouejonpuod jo o8ueyd orydeuds—gisod ® osonpur sjusasd oyids

csosdeuds poseq—oOoULRIONPUOD [YIIM SOTWRUAP Jy] Sursn
uoinsu Suryids ® jo uoljejuswojdwr ue st dojs-ie-eyd[e-puod-jer
ruorydrioseq

‘[opow uUOINAU dIlj—pue—o9jRISOJUTL
Axeoa] poseq odourjonpuod oajdwig — doejs-1e-eyd{e pPuUOOD~JRI :owWRN

83

Neuron models

i
{(7p-s10joweIR g 3ISUOD ‘zZpwWIN}e(JAIRUOIIII(2ISUOD) 39S Pploa
/*
. 'spunoq ¥oeyo ‘3o ‘03 juownIie se -~sivjowried sarlinbay *
*A£IRUOI}OIP Ul SON[BA WOJIJ 23®}S 398 *
*x [
A1euorjorp ut
senjeA jua8IINd 21038 >i// f9suoo (zpwnjeLreuor}di() o8 proa
¢(29-@23e3g 3suod)=io03eiodo 2pT93®Ig
f(29-@23®3S 3suUOD)~931®Ig
uorjezIi[eIjIUl j[neijeq >i// {(2p~siojowieIRJ 3SUOD)~93®IS
£ 37jur
Sururewoa1 sdoajls Ki1o03dwvijor jo requnu >;//
oouejlonpuod Lrojrqiyuy >i// {-uri-gd 3-9yqnop
oATjRAIIOP ‘9duelONpuOd Arojrqiyuyl >i// {-ur-14L 31-9[qnop
eouelonpuod Aioj3eyroxyg >i// {-xe-gk 3-9[qnop
9AT}RAIIOP ‘odu®IONpPUODd AI0jeIIdOXY >i// {~xo~T[L 31-o[qnop
[erjusjod ouerquopNy >i// ‘“A 31°9[qnop
} ~e3e3g 3onigs
corpqnd
/%
cAerie o[L3s—H oY3l jo *
asneoaq
poirnboi oie 109viodo juowuIisse pur 10310nI13suod Ado) o9j10upy *
*
csIoAfO0S OO TISH YItm oqriedwoo aq o3 Lerre o[Kys—D x
e
9q JsSnW I10309A 99j®IS OYJ, ‘juUNod AI0)dBIJOI O} puUE SOITWRULpP *
pPloysaiyjqns
23 J10j 10309A 93®3}S 2} JO 3SISUOD Sa[qeIIBA 93BIS *
*
‘[epow oY} JO sSo[qeII®A 93BIS *
*k [
sse[o sajqeriea oa3eyg //
;

A1eUO0}ID1IP

woij sonjea 398 >i// {(zpwnye@ALIBUOIIOI(ISUOD) 3dS Pploa

ALieuor)dip ut
son[ea jusaIind 91038 >i//

sonjea isjowered gj[nejap 131985 >i//

fqsuoo (zywnjeLieuorldi(y) 198 proa

¢ () siojowereg

vd ur jueriny jueysuo) >i// f9-] j-eo[qnop

s ur esdeudg AKLiojrqiyuj

10j jueysuo) owry, o13deudg >i//

st ur osdeudg

A1o3ey1oxyg jueysuo) owry, o213deudg >i//
Aw ur ([erjuoejod Surjlsoux

fJuds-ne) j3-e[qnop

fgudsTnel j3-o[qnop

eYe) [RBIj}UD3}O0J [BSIoADI ¥eoT >i// T 3Te[qnop

AW

ur [erjusjlod [esi9ad1 Aiojrqryuyl >i//
AW

ur [erjusjlod [esio9a91 Kiojerroxy >i//
Ad ur eouwejioede) oueiquoly >i//

furtg j"e[qnop

X974 3-e[qnop
fwwpy 3Te[qnop

Su ur oduwjonpuo) NeaJ >i// ¢r1-8 3-2[qnop

sw ur porisd Kiojowviyey >i//
AW Uy [erjuslod 1esey >i//
AW Ul [erjuejod proyseiqyy >i//

{30173 3Torqnop
£39801°" A 3”o[qnop
‘YA ¥Te[qnop

} -siejoweiedg 310onI3S
s1ogjowered [opolN |//

sse[o siejowered //

cogeatad

‘< degs-1o-eydie-puodo-jeI>I108307RIR([BSIDAIU[) SSB[O puUdII]
< dogs~1e-eydie-puodo~jei>dRNSO[qRPIODDY SSB[D PpuUDIIL]

Ioquow/ sse[d ~93®1g

97} SS9D20® 0} SpPUDIIJ 9q O} poIdU sSdsse®[D omj) 31xou ayy, //

spustayg //

suotrjeie[oap uorjouny o3ejdrajrog qNd //

£(9-8uo] 3suoo ¢ 3-3uo[3suod ‘zg 3suod owlL],)erepdn
¢ ()egeaqrieo

$()"s1oyynq-grur

¢ (o0r0xd 2p9pON 9SUOD)~ 04®ISTJIUIL

¢ (o0j301d 299pON 3ISUOD) -OpoOUTIIUT

proa
proa
proa
proa
proa

togeatad

Appendix B Programming code

84

¢
H
$1Td 3"e[qnop
‘Igd 3"elqmnop H
} 1sH £q pejyepdn ¢
103e8edorg 3onigs dogs owry uorjei8ojur juerind >j//i{-dejguoriei8Sejuj arqnop
(sorweudp orjdeuds sw ur ozrs degs >i// ¢-dojys 3-21qnop
jo Surjepdn) uorjeiSejur jdoexs ur posn xrijew rtojeedoig j// ‘e19Yy yjoq oov[d o3 ojyes s1 31 //
‘ pejeauid ueaq
{09 < 379[qnOp >10309A ::P3s saey sopou 193je o8uevyd jouUURDd UOIIN[OSOI oY} pue ‘-doys //
poyjew ej3jny—e3uny JI9pIo Yijlj UM pozi[erjrur
pue [Y31INnoJ UO9M)}d] ©DUDIBJJIP OYjl 9je[no[ed o3 pasn i// ST 31 9dourg - uorjeirqi[ed Surinp peSueyoun urewsr jnq //
¢ jqjromieNIesey
£93 1-9[qnop uo uoInau aYj3 Yim jasal aoq pinoys -dejguorjeidisjuy //
tgy 3Terqnop
£ 1"elqnop f{~sedouwjonpuod <<j3senbeysouwionpuopoijdeudg>1a33oeiegsoeuy
fe 91-erqnop f-sierjuoegod <g9sonboyireijuejog>1e83ogeiegloreuy
fgd 1"e[qnop isjepowr mou //
1Y 3-o[qnop Ul way) o9pnidul jou o "JI9jowrjnmw Yiim osn I0j poaddinbs //
de3s Jeuorjeindwod ® Surinp poyjlew elny—oSuny i// uoaoq
X R oa®y s[opow [[e odouo ieoaddesip [[Im souUI] omj} 3xou oYy, //

£q poje[noled sanfea oYy3 jo Suraes KLieiodwol 10y posn j//
f~sjuerino ioyyngSury

fwrys-] 1-9[qnop f-yur-eyids aeyyngSury
uorjounjg f-oxoe-oyids aoyyngSury
sorweudp 031 9[qe[iea® jua1ind jndur [vUILDIXS oew |// /* sjquoxrind /soyids Surwoour dn swns pue sI9jjng kx/
fsjunopAiojorizey 3-jut {-10880] <dejs-1e-eydie-puoo-jer>isd3orJereesiaalun
sdegs ur owiy KLrojgoeijer j// ejep Sojeue [[e i0j 198807 |//
f1T3ruIuopngd jTe[qnop 0 03 sidjurod 1ejynq
/* syog>i// ‘(2¢deys-1e-eydie-puod-jel ‘29-sIejjng 9JsuUOD)-siajjng
CUOISINDXO 9D0UBIDNPUOD % 0 o1
opngrjdwe sisgurod u1eojjnq sj98>j// ‘(zpydegs-re-eydie-puod-jel)-siejjng
—9j1un ooAa 03 [®vAlIle o)ids uo HNIOHJ ©01 pPpe 03 osinduy x* } ~siejjng 3onigs
cIesn ayj}
{fgTirujuopnSd 1-°[qnop wolj uepply s[Ievj1op uorjejuswojdwl oI Ing ‘ JIOMIONI9s9Yy I0 x*
/* [PuIo3[1080y
CUOISINDXO 9D0UBIDNPUOD x* 1913® [[®O oje[nuwIg 2si1] uodn AJuo pozZI[eIIUI ‘- 9 1 =
opnarjdwe ¢ oouagysisiad
—J1un 9)o0Ad 01 [®AlIxe o¥ids uo DXHHJ ©1 ppe 03 osinduwy] x* Jo swi9) ul so[qelieA 931®IS Yrim 1ed uo oI si9jing x*
**\ ‘[epow oyj} JO sIojIng *x
} ~solqeriep 131omnigs *x [
/%
c9je[nWIg 03 [[eD yYdoes uodn pPOZI[RIJIUI—OI 9I€ SO[QRIIBA *
‘[opow 9Y) JO SO[QBIIBA [BUIDIU] * sse[d siojjng //
*k [
teg3eatad

sse[o sa[qeriepn //

85

Neuron models

}
(od4&3-103deoo1 ji1od
farp
799sonboyySurS8oryeleq) 1opusas-1oouuod :: degs-1o-eydie-puod-jer jiod
surjut
{
{0 uangoux
¢ (()oweu-308 ¢ odAy-103dedor)odL 101dedoumousu) MoOIYy
(0 =i odA3~-10gdeoax) jI1
}

(e@dA&3-109dedoax
j10d ‘2p4ueAfluULIIN))Iopuss-jdoouuod ::dejs-ro-eydie-puoo-jer jiod
surput

{
{0 uingjoex
f(()oweu 3038 ¢ odA3r-103dooor)adL 101dedoyumouyun moIyy
(0 =i od&3y-1o3doeoox) JI

3
(ed4&3-109doeooax

degs-1e-eydie-puoo-jer jiod
sutjut

{

110d ‘zgqueAagoy1dg)I9pPUSST)O0UUOD

¢ (od4Ay-109dedor ‘o)iopuss-ydouuod<—()roe8iey-3098 0 uIngex
¢ (@)3usaa~300Yod "D

f(s1yy*)Iopuas-ias -

o jueagexidg

}

(edA&3-103deoo1 j10d
degs-1e-eydie-puodo-jer jiod
surput

¢D 29UO0I1109UUWOY)) UOI}D0UUOD~}IDYD

suorjrurjep uorjduny oeulfur oje[dierrog //

f-deyNse[qepiooer <dejs-te-eydie-puoo-jei>deNsa[qeplioda)y OI13®3S
suorjounj sso90d® 09 soweu so[qepiodsr jo Surddep |//

‘g “siejing
A Tselqelie A
‘s REELCEES
{~d ~siejeowieieJ
eourwiojiod
1seq oAI18 03 swoes ‘ soul] @soYy} jo JIopio oyjz deoy //

sroquow ejeq //

¢ (uks-nejzy 3-9[qnOp 34sSUOD ‘ YwI[OP 2§ 1"9[qNOP
1suod ‘1g 279 10je8edord ::-so[qeIie A)XIIjew-sosdeuds-39s PpIloa
cpoyjewr ejlyny—oeSuny oy3} Lq uoxe) dejs yYoes I10j [[€D LU
csoorrjewr 1ojeSedoxd oyy ur senjea orydeuds oyy soyeai)n j//

¢()sosdeuds-Surjepdn proa
A103e)10X0
a2y pue AKrojrqiyul ayj yjoq °soasdeuds oayy seajepdn j//

f(urA 3Terqnop ‘1 373ur) JpAP 3"e[qnop
csonjea 9311 o1} s308
poyjlew ®iny—oSuny oY) os [erjuejod ouriquow oYyj3 sajepdn j//

{9 "A*[9]20 "A + @1 "Ax[g]oo-
A+ P TA*[P]00 A 4+ e TA*[€]99 TA + TN TAx[T]99°"A uwinjex
}asuoo ()-10119-A-398 131-9[qnop
1983orrereesioatun Aq posn MY JI9pio yairjij
pu® [3Inoj 0omj)doq 9OULSISJJIP OY} INO peol pue aje[nd[R) |//

{ fa7s * O

sw-108 () uorynjosar-3e8 ::owr], uingar } g3suod ()-1-398 3-o[qnop
19880 elR([RSIDATIUN

Aq pesn ‘owr} A109gowijer Sururewoar jno peay i//

souejlOonNpuod Arojrqiyut

suingey |>// {{-ur"gh--g uwinjea} j3suod ()-ur~8-398 3-a[qnop
20u®IONPUOD AKI03IBJIIOXD

suinjoy j>// {{"xeo"gA--g uwinjei} 3suod ()~-xo-8-308 3-o[qnop
Jerjuojod

suriquow suinjyay |>// {{"A°~S uwinjei} 3suod () - A"198 3”9[qnop

1988o0relR([RSISATUN I0J suoljdunj ssaddy //
f

furprw-gd 3-eyquop
{xo~prw-gA j3-9[qnop

dogs owry [euoljeindwod ' Surainp sdojys
1s99 @yj surejuon >i// ‘y-ei[ep-y <3 9[qNOP>I03}D9A :: P3s

X1Ijew

103e8edoird AKiojzrqriquyl >j// {~ur"g <iojeSedoig>10300A ::p3s
X1Ijew

103e8edord Liojerroxy >j// {~xo~g <iojeSedoig>10300A ::p3s

Appendix B Programming code

86

«q ' 1dwi-103801 " eiep-So[eUu® , O9pPN[OUI#H#
(U sorIowinu , 9pPN[OUIH

4T STIIN3OIP opn[ouly#

«U wnjepa[quop . apnoul#

U wnjepiol8ajul, opn[oul#

WU 32IP opnioul#

«Uromiau, epnioul#

<Y suorjydeoxoe, opn[oul#

(U doys ro~eyd[e-puooTjer, SpN[OUIH

/%

*

TSIte39p 103 USNUDIT °11F °Y3l 995 =+
oSN [BIDIDWIWIOD—UOU JIO0J O[1] SIU} *
Ajipow pue o[1dwod 03 PpojurviI8 SI UOISSIWIOJ *
*

Ts[re39p 103 SHOHLAV °1'J °2Y3l 995 *
*

oaljelllul LSHN °UL *

£q 6005—¢00% (D) 3ustrddop =«

*

LSEN jo 3ied st o[ry syl *

*

ddo-dejs-te-eydie-puoo-jer *

*/

ddo-deys 1o eydie puoo jer
H-doejs te~eydie-puod-yer// jrpus#

ooedsoweu // {

{
{0 uanjoux
¢ (10s)901A9p-8uI850[~109UUOD - ~S90URIONPUOD "~
¢ (()oweu-3038 ¢ odAy-103deoor)oadL 101dedoyyumourun moIyy
(0 =i odA3y-xo03deodox) jJI
}

(od4&3-109deoo1 j1od ‘ 10s 2g3senbeyyecouejonpuoporjdeudg
)1opuss-9oouuod :: degys-re-eydie-puods-jer jiod
surput

{

¢ (()owmeuq08

{0 uingax

¢ (ad)eoraep-SuiSSo[~300uuod - ~“sjeijuajod ‘~g

1d 2p3sonbo} [RIIU9I0J) I9PUSST3JD9UUOD

ur weyj epn[dur jou o

oA®y s[opow [[®

¢ 9dA3-103doeoo1)adLJr03dedoqumouyun) MoOIY}

(0 =j odAg-103doedox) JI

(od&3-103deoox jrod * !
::degys-1e-eydie-puodo-jer 1j1od
surput

jsjopow mou //

cIojowrjnuw Yjyrm osn 1oy paddinbs //

usaq

souo 1eaddesip [[Im suorjdounjy omj j3xau ayy //

{
fdurys = -g
fdungd = —g
so1yxaodoad
Jo 3j9s jue3sisuod ulejuod soriviodwoey ‘oioy 308 em j1 //
¢(p)snjeys~30s ::9poN~SUIAIYDIY
‘quogsisuod //
Alleurojur o1e sse[d juaied oYy ur j3as oaq o3 sorjiadoxd oyy //
1ey} 2Ins os[e oIe 9m o210j9q (S ‘~g) 01 ¥oeq woyjl 9jraim //
j0u op 9p\ - juoysisuod oie (durys ‘duryd) eyl mouy mou op //
Lyiedoxrgpeg jr smoiyy // ¢ (dund ‘p)aes - duys
sio11o jo osed> ur Adoo Arerodwoey // f-g = duwgs “93®elg
Lyiedoxgpeg jr smoiyy // ¢ (p)aes - dunnd
sioi1io jo osed ur Adoo Arerodwoay // (g = durpd -siejoweied
}
(
pzp wnjeAI1eUOI}dI(3SuUO0D)snjeys—3os ::doegsre-eyd[eT pPUOODTJRI pIloA
surjut
{
f£()3s117 398 - ~deyNso[qepioder = [so[qepPIodol::soweu] (pP*)
f(p)snie3s™3108 :: 9poN~SUIAIYDIY
“(p)ae8--g
f(p)aos -g
}
1suo0d
(pzz wnjeAieuor}or()snieis-3198 ::dogs 1o eyd[e-puUoOd-jRI pIOA
sutjut
{

¢ (~depsejqepiooar
£ (()owmeu-303

f{0 uanjeux

‘ayp)eotasp-8ur8fo[-j30suuod - -~19830[g
‘9dAy-103deoo1)odL T,103dodoJuUmMOU U] MOIYY

(0 =i odAjy-109dedox) j1

87

Neuron models

21®9)s pue siejloweied j[nejeop SUIUIJOP SIOIDNIISUOD jJ[NeJd(*
*/
{
{
f(-10119-A"908 ::degs-1e-eyd[e-puUOD~JRIZY
¢ LI0II8” A) 3I0SUlL
¢(-1-398 ::doegs-1o-eyd[e-puUOO-JRIZY
¢ SUITUTIRWOITJOI~) ::SOWRU) " JIdSUT
f(-ur-8-308 :: doeys"1eo-eydie-puod JeIZ
‘ur-g::soweu)-jIosul
¢(~x0-8-398 ::doys"1o"eydie-puod-JeIzy
¢ x9~8 ::soweuU) - jI9sUL
f(-A798::dogys-1o-eydie-puoo-jJeIzy
‘WA SOWRU) T JISSUT
j AouU9)1SIsSUOD 10J U®D NOKA I9A99I9YM SdWeRU pIlepuels oasn //
¥
()o3eou10::< dogs-1o-eyd[e-puodo-jer>deNso[qepI0oda} PpIoA
<> ojeidwoey
/%
*pepiodax aq 03 Kjrjyuenb yows I10j x
() "2r1esur
dejyNse[qepioddy 03 [[BD QU0 [YIIm poyjrowr ()o4eaId 8Y) OPIIIDA(Q *
*/
}

aoedsaweu

ur peoe[d oq jsnw uorljezi[eioads ojeidwoy // jsou odedsoweu

¢-dejyso[qepiooor:: degys-1eo-eydie - puodo~jel
::i9sou < doegs~ro-eydie-puodTjel::1sou>de\NSa[qRPIODddY :: }SoU

/%

f-ur-7Ls = “ur-14k
f-xo-ghks = ~xo gk
f-xo-TAs = “xo 14
ETATS = A
fSIygx uwingel
jios o3 juewulisse proae // (sz == siy3) JI
}
(s 29~99®3g 9jsuod)=i103eiodo ::-0je)g ::
dejs-1e-eydie-puoo~jel::jsou zp~o3elg ::dojs-re-eyd[e-puod-jer::jsau
{
}
(x-s)x
‘(Turgh-s)-urgh
C(rurtrhcs)turk
¢ (~xo7ghks)"xo g4k
f("xo 1L s)"x0 T4
CCATS)A
(s 29~93®3g 93suod)-93®)g ::-93®elg ::dogys-ro-eyd[e-puoOd-JeI::j}sSou
{
}
(0) 1
‘(o) urg4k
‘(o) urr4
‘(0) xog4k
f(0) xoT14&
(1TEd)Ta
(d zp~siejowereg 9suod)-o3e)g ::-099e1g::dogs-ro"eyd[RT-pPUODTJRI ::jsoU
{
¢()o3eo1o - ~deyso[qepiodal
}
vd /[00) o7 1
sw // “(0°¢)Juds-ney
s /) ¢ (Z'0)Hquis-neq
A /) 0°0L—) Td
A /) 0°68—) Randct
Aw /) 00) Ect
ad /7 0°082) wr)
su // < (L999°9T) T3
sw /) (0@) years
Am /[(0°09—) 10s0I"A
Aw /) 0°6¢—) A
() siojoweie g :: “siojowere g :: dojs 1o eyd[e - PUODTJRI ::}souU
/*

*
dewr sojqepioooy *

*/

< OIpP3sSO> opnjldoul#
<WeDIISOI> O9pPNOUIH
<diuewor> apnoul#

<sjrwr[> opunyour
- 1dwi-10330["elepT[RSIDAIUN , 9PNIOUIH

Appendix B Programming code

88

f(TA ‘urpc::seweu ‘p)<ajqnop>anjepojepdn

[erjuejod ouviquoewr oYy Suijlas moyie //

¥ }
(729~s10jowereg 31suod ‘p puwnjegLieuoridiqg (p zpwnjegALieuorydiq
1suod)jos::-oge)g ::dojys 1o-eyd[e pPUODTJRI::1SOU PIOA 1SuU0D) 99s ::-sIojowered :: dojs-1o-eyd[e pPUODTJRI ::4SOU PIOA
{ {
[erjusjod ouriquoly // (A ‘W A::soweu ‘p)<o[qnop>jop (o1 971 ::soweu‘p)<a[qnop>Jop
} f(Juds—ney ‘ur-uds-nej::soweu‘p)a[qnop>jop
}suoo ¢ (fguks-nesy ¢ xo-uds-nej::soweu‘p)a[qnop>jop
(pzy winyeAieuoryorq)98 ::-93eyg ::dogys-1o-eyd[e-puod-JjeI::J3SouU pIlOoA f(wrp ‘fur) @ soweu ‘ p)< 9[qnop>Jjop
f(urtg ‘urTy ::seweu‘p)<aqnop>jop
f(xo g ¢ xo~f ::soweu‘p)< o[qnop>Jjop
{ (Td CTTW i sewRU p)<B[qNOp>yop
¢ (" sjuejsuod (178 ‘-3 ::seweu‘p)<a[qnop>jop
swIl) uasoyd 9Yyj I0j YSnol ooy uorynjosay) Lriedorgpeg Mmoiysg (30179 ¢ JoI-3 ::seweu‘p)<a[qnop>jop
((Tuds—ney f (19801 A ‘919891 A ::soweu‘p)<a[qnoOp>jop
< neg-saI-orgeIxsaI) || (guds™ne} < NB}~SOI"OI}RBI*SOI)) JI (U A CUYTA CsewRU‘ pP)< D[qNOP>JOp
f()sw 308 () uo1}N[0s0I~398 oW, = S0I 3}~9[qNOP 3SUOD }
peejsur pasn oq 1suoo (pzy wnjegAIeuor}oi(
p[noo o[qeriea [eqols Vv // ‘00T = Ne}~S9I-0IjRI 3~9[qNOP 3JSUOD)308 ::-s10jowered :: dojs-1o-eyd[e pPUOD~JRI ::4S0U PIOA
¢ (4 oa131850d /%
A119119s 9q JsSnw S)UBISUOD oW} [[V ,)Lriodorgpeyg moiyy
(0 => Tuds-ne3 || o => guds-ney) JI *

¢ (. 9a13e80u oq jouued oswil Ai103doeijey ,)ALrisdorgpeg moiyl
(0> 30173) 31

¢ (. 9a19150d A[30119s oq 9snw odouegridede) ,)LAy1odorgpeg morysl
(0=>wp) jr

‘(« Proyseayy
uey) JIo9[[ews oq gjsnw [evIjusajod j3asay ,)Ljyredorigpeyg moiyjy
(U A =< 320801°A) I
(o 1 ¢ 9-1::soweu‘p)<ajqnop>oanieAorepdn
{(Juds ney ‘ur-uds-nej
{(gudks nel ¢ xo-udsTney

1:soweu ‘p)< oaqnop>onjeAaiepdn
1:soweu ‘p)< aqnop>onjeAajepdn

(178 ¢r1-8::sowreu‘p)<oqnop>anjeA2iepdn

H AE\O hE\O””mem:hﬁvA a[qnop>onje A9repdn
f(ur-g ‘urTg ::seoweu‘p)< oqnop>anjeAarepdn
f(xo g ¢ xo~f ::sowreu‘p)< o[qnop>onjeAarepdn
(1A ‘7t seweu ‘p)< a[qnop>anjeAejepdn
f(3e0u179 fJo1-3 ::seweu‘p)<a[qnop>anjeAejepdn
f(99s01" A ‘3@s0I" A ::soweu‘p)<a[qnop>anieAajepdn
(YA ‘YA iseweu ‘p)< o[qnop>anjeA9repdn

suorjounjy uolje[ndiuerwW puR SUOI}ORIIXD 91BIS puUR JI2j9WeRIRJ *

*/
{
©1030NI)sSUOD j[nejop I19Yyg Aq posrjeryrur A[[esrjewolne //
2I® I0 PposI[eIjIUIUN 3Jd] oI® Sd[QRIIBRA Joquwaw JI8Yjo oYy, //
}
(u)-1088o07
(u zgdegs-1o-evydiR-puUOOD~jRI
‘zp~siojjng 3suod)-siojjng ::-siojjng ::deojys 1o eyd[e PUODTIRI ::}soU
{
©1030NI3sUWOD j[neIIP 119U} Aq posijeryrur Ajreosrjewoslne //
9I® I0 posI[eI}IUIUN 3JO] 9I® SO[qRIIBRA IdqWaw I9yjo oYy //
¥
(u)-1088o0]
(u zgdegs-1o-eydie-puod-jer
)-siojyyng ::-siojjng :: dogys-1eo-eydje-puUOODTJRI ::)souU
{
£SI9d*x uIngeul
f1's = 1
f-ur—gh-s = “uitg4k

89

Neuron models

¢(sdegs)ozisoxr -~uIi-g ~A

¢(sdoegs)ozisor ~xo" g ~A

f0°T = [gluTerep A
f0°€1/0°21 = [p]lu-errep 3 A
‘0°g/0°T = [g]luTerep A
‘0°8/0°¢ = [g]uTerep A
f0°F/0°T = [T]uteirepTy A
‘0 = [0]u e3tep 3 TA

t(sdegs)ezisor Yy -el[op - "A
Yy ygj8uoe] jo sdogs
awry [euorjeiyndwod osuo opisur usaqe) sdoajls 3sog 10j soenyep //

}
(o301d zgopoN 2suo0d)-93®e3s-3rul::dojs 1o eyd[R - PUOD~JBI ::}S9U pIOA
{

f-grad = -g

ftgrad = g

¢ (ojoxd)< degs-1e-eyd[e - puod-jel

>gseoumop = 1d zpdejs-re-eyd[e - pPUOD~JRI 3SUOD

}

(o0301d 2gepoN 9suod)~-epou-jrul::dejs-re-eyd[B - PUOD~JRI ::}SoU PIOA

/=

{9 = sdogs 3~3ul 3suoOd

1o011o ur [rej A[uo
ued sIiyy ‘Q =< jJoi~3 oaodurs // (0 =< sjunopAiojoeijoy "~A)1Iosse
f()sdoegs=108 ((Jo173 ~g)sw::owWL],)owWI], = S1UNODAIOIDRIIOY "~A

fJuds-ney g / 9::sdmrownu x ('] = [3IUJUODSd A
fudsne) g / 9::sdmrownu x Q'] = [3IUTUODSJ ~A

()ereaqri(eo ::doegys-1eo-eyd[e-pUOD~J®I ::}S0U pIOA

SUOI}DUN] UWOIJRZI[RIJIUI OPON *

*/

{
}

()degs-te-eydie-puods-jerl dogs-1e-eyd[e-puUOd-jeI ::}SoU

-

(stys= ‘~gru)-g
“(-s-u)-s
“(-d-u)-a
‘(u)epoN~Suraryoary :
u dogjs-1o-eydie-puodo-je1l
7z ! ydre-p jel
jsuoo)doeys-1eo-eydie-puoo-jer:: dogs-1o-eyd[e PUOD~JRI ::}S0U

{
}
(stqs*)-qg
“(-d)-s
‘0a
‘()epoN-Suraryory :
:deys-1e-eydie-puod-jeI ::)sau

/%

()degs-1e-eydje-puoo-jer

{
f0°0 = WIIST[A
¢-degs —g = ~dejguorjeildejul--g
¢ ()sw 398 () uorynjosei~94e8 ::owr], = ~deojs —g
1eoddesip
[ITM ——— 9zISd1 sopnyour // {()®3BP I®O[D ~S90UBIONPUOD "~gg
1eaddesip
[IITMm ——— 9zISdI soapnjyour // ¢ ()ejep-ieold - ~sjerjusjod g
¢()arrur--1988o01°-g
oz1so1 sepnjour // ¢()1es[o - ~sjusiind - -g
oz1se1 sepnjour // ¢ ()aearo - ~yuri-oyids —g
oz1se1 sepnjoutr // ¢()aeao - -oxe~oyids '—g
£()AL109S1Y-1RA[D :: 9PON~SUIAIYDIY
}
()-saojyynqg-3rur::degs-ro-eyd[R " PUOD~J®I ::3S2U PIOA
{
f—grad = -g
¢ (ojoad)< degs-1o-eydie-puoo-jel
>qseoumop = id zpdogs~1o-evyd[R puUOD~JRI 3SUOD

*
1090N13se9p pue ‘epou J10j J0j30onijsuod Adodo pur j[nejog *

*/

Appendix B Programming code

90

f0°0G08T9L/0 SELGG8E = ¥ 2[qNOP 3sU0D DdIje)s
f0°0S08T9L/0°F799€G6€E = €2 °[qNOP 3SUOD DI3®IS
£0°0G08T9L/0°088G06 = I 2[qnOP 3sUOD DI3®3S

0 GyyNI/[eAYIUI—OPO/gT T~ [$8 woig —— //

t{-degys —g = Yy 3-9[qNOpP JSUOD

¢ (03 > woay)jriosse
$(()ALerop-urw-908 :: 19 npayosg > wouxy (Le[op) 7y 0 =< 03) 3I9sse

}
(03 9-8uo] g3suoo ‘woiy 3-Suo] 3IsuUOD
‘ur8rio 23 jsuod owry)oejepdn:: deys-re-eyd[e puoOd-jeI::}S0U PIOA

/*

*
suorjouny Suijpury oxids pue ojepd) x*

*/
{
STTd [g] "urtd TA =% "ur-1L--g
f-ur-g4k
TS x TId (gl urtd TA 4+ Turt14:-g x 1gdc[g] "urtgd TA = “urtgd--g

seouejonpuod Aiojrqiyur Suryepdn//

STTd C[G] "X d TA =% "xe"14°-g

f-xo-gA
TS o+ TTd[G]TXeTd A + TxeT14L°Tg x 1gd[g]xeTd A = “xeTgh g
sedouejonpuod Kiojejioxe Suryepdn//

()ojepdn ::eydie-osd-jer woij @i opod jo seurg //}
()sosdeuds-Surjepdn :: dejys-1o-eyd[e " pPUOD~JRI ::3SoU pIOA
sutrut

{

f(upa /(
9" 1" "d + WIS T A + Yul-uks~] — OX9-udks~] — YeI['] —)) UWINISI

S TAE Td - WA) * T8 "d = qea[~[379[quop 3suod
f(urgrtg — WA) % urrpru-gdc-A = Yui-uds-] 3°9]qNOpP 3SuUOD
f(X Td — WA) % Xo~plwgATA = 0X9 UAsS~] 3°9[qNOpP 3SUOD

t-urtgho-g
* ITT1d [1]-urd "A + "ur1£°°g % Igd [1] urrd-cA = urprwugk oA
{-xe~gAh- -g

* TTd [1]"%0"d""A + "x0"14°"g * Tgd [1] X0 d "A = Xo prw gk A

}

(urp 37o1qnop
‘1 373ur) IpAP::dojsTieo-eyd[e PUODTJRI::JSOU 379[qNOP :: }sSdU
our[ul

fT1did * U = 1ed id
¢ (udks-ney/y—)dxe::prs = 114" 1d
tyegepx*()sw908 - ()uorynjosei-3e8 ::owIl], = Y 3}~ 9[qNOP 3JSUOD

}
(
uks-nesy
%
3-e1qnop
1SU0D
‘yeliep zp 3-9[qnop j3suod ‘i1g 2y i1oze3edoiq ::
“so[qerie\)xrijew-sosdeuds-jos:: doejs-ro"eyd[e pPUOODTJRI ! }S0U Ploa
sur[ut
{
‘o'ge / 0z =[9]°0° A
‘0'0¢ /o1 =[g]oe A
‘0°0¥gg9L /0°2616— =[v]oe A
‘0'gLzv /o'gel— =[g]oo A
‘0°0 =l[g]oe A
f0°09¢e /0T =[1]20 A

GMY PU® PO USOMIDq ODUDISJJIP oje[ndo[ed 093 pasn //
‘g1 ISD woij sonfea yyrm 00°-A Surgepdn //
¢ (L)oz1801 20 A

¢ (, sjueisuoo
sw) uwosoyd oY) 10j YSnoxr ooy uornjosay .)Lriodorgpeyg Mmoiyl
((1Tuds—mey g
< mej~sor-orjerxsoxr) || (guds ney ~gJ < NBI~SOI"OI}BI*SOI)) JI
¢ ()sw-398 () uorynjosair-398 ::oWL], = S9I 3-9[qNOP 3SUOD

»OOH = mnej-saIr-orjeura 17e[qnop 3suod
(Tus !
f(Juds—ney
g [ty eaep A ‘[1] urg--A)Xrijew-sosdeuds-yos
f(gudhs ney

g ‘[t]yTearep A ‘[1]"x0"g "A)Xrijew-sosdeuds-jos
}

(1++ fsdesys >1 g = 1 3-3ur)iog

91

Neuron models

f£(()rusaino-398 -9 * ()3yStom-398 -9
‘(()ur8rio-oo11s 308

<—()iomjou)sdols-ALIoAI[oP~[217398 '9)on[eA~ppe " ~sjuULIIN

Y0—01—200% JJH ‘jueiindo pojySrem ppe //

(0 < ()Aerop 9108 -9)91

(o 2gjusafjuariny)ojpuey :: deys-1o-eyd[{e puoOd-JeI ::Sd

aa131sod s1 @du®)ONpPUODd oinsus //
$(() A3rordrignw-398 9 x ()3ySrem~908 - o—
‘(()ur8rio-eo1[s 308
<—()jiomjou)sdols-KioATI[op~[01-108 "9)onjea ppe "yui~oxrds
£(() ALyrordignwm-398 -9 * ()3yStom~3198 -0
‘(()ur8rio-eo1[s 108
<—()jiomiou)sdols-LI9ATI[oP~[91-998 "9)on[ea-ppe ~0xo-oyI1ds
(070 < ()3uySrom=393 -

(0 < ()4Lerop 3108 -9)191

(o 29 juoaygoexidg)ojpuey:: degs-1o-eyd[e-puUOD-JeI :: 983

f((~ur-gh--g ‘xo gk
‘Tg)< 3 erqnop ‘j-orqnop>ated:: pgs
¢ 8er4()sdo3s~ 308 - urS110)B}BP - PIODDI " “SPOURIONPUOD

f("A°"S ‘8Sei+()sdeys 198 - ur8rio)ejep - piodooi- ~sjeijuajod -
pojefep
9q Pp[noo sour] SUIMO[[OJ MO} OY) IOJOWIJ[NUW JO SN YIIA\

1eoddesip [[Im soul] omj) 31xou —— SuidSo] o3ejjoa
(8%l + ()sdegs~3098 ur8rio)eyep-piooair--i1983071"

elep 91els So0]

¢(8ey)onjea-198 - ~sjuerind ‘-g = WIS "
juerino jndur meu 39S

fITrupuopSd TA x (Ser)enjeaTge8 - -quiteyids tg =+ “ui-p4-
fgTytujuonSd "TA * (8er)enjea-j3e8 - -oxe~eyids g =4 "X~ [K-

{
¢ (8ey ‘eos ‘siy3lx)puas<—()fiomjeu

fos jqueagoexidg

{ $((1+8e1+()sdegs-198 - ur8rio)doegs::owly)owijoyids-3os
epoN-Suraryory yytm oxrds Sor //

£99891°"A ""d = “A°"S
f{sjunoHALi03ovIFeyy ""A = I°°8

2°'7g

}

osse (Uv¥A "d =<"A""S) 3!
} AL1090®I1yo1 ojnjosqe jou s1 uoinau //
u proa as|e
{
{ [erjuajod dwep // £99801°A ""d = “A°"S
[i p—
AL1090®ije1 ojnjosqe s1 uwoinau //}
(a8) 31
g uorjeiouoas oxyrds pue ssouriojdeijor //
os|o
¢ ()sosdeuds-3urjepdn
cspiemioy dojs owiy [eurjeindwod ouo sosdeuds oy3 soqey //
<
2) 3t $TA®IPP + TATTS = TATTS
L9 TTA*90 + G TA
osse , %GO + P TAXFO + €N TA*ED + I TA*IO = TA®I[GP 179[qNOp 3Isuod
u proa g/t // (e TAx[v]oa + v TAx[e]loa + e A
[2]lod + 2 "A[1]199 + T "A*[0]99 + "A""S ‘€)IPAP * U = 9A "A
T // Sy TAxlelea + eX A
{ «[zlgd + 21 "A*[1]199 + T "A*[0]6d + "A°"S G)IPAP * U = GA A
{ er/zt // f(e1 A
[2]Pa + 21 "A[T]79 + U "A*[0]9%4 + "ATS ‘F)IPAP * U = FA A
8/¢ // ‘(21 "Ax[1]leqa + A "Ax[0]€d + "ATS ‘T)IPAP * U = €1 A
i ¥/1 // (U "Ax*[0]Ue + "A°"S ‘T)IPAP * U = TA TA
1 0 // *(CA°7S ‘0)IPAP * U = I A
~dogys owry [euorjeindwoo oYl
// jo SuruurSeq oyj3 je oseq YIm [[y -~sdojrs 3se3 oyy Suryey //
}
// (8er++ ¢ o3 > Sey ! woiy = Se] 3-8uoy) 10}
-g ang —— //
// ${0°02502/0°€v9¢— ‘0°02502/0°G626 ‘0°0250%/0°TGERT—
£0°02902/0°0701¥ ‘0°02902/0°0809— } = []99 @[qunop 3suod odr1els
A {ovorv/0°¢v8— ‘0°'¥0I¥/0°0¥¥6¢C
// ‘0°v01¥/0°2€82€— ‘0°F0T¥/0°1¥e€8 } = []lgq @21qnop 94suod or3ess
‘{0°2612/0°96¢CL
s ‘0°L612/0°00TL— ‘0°.61¢/0°2€61 } = []¥a °1qnop 3suod orjesys
-s { 0'ze/0'6 ‘0°ce/o0°¢ } = [leqa e1qnop 94suod orjeys
{ 0g/o1
‘0T ‘o°gr/oer ‘0°8/0°¢ ‘0°%¥/0°1 } = []ue erqunop j3suoo orjeys
‘0°0G0819L/0°0C0LLT = 99 9[qNOpP 3sSUOD DI3e3s
‘0°0G08T9L/0°6%CTLET— = G2 2[qNOP 3JsuUO0Dd D13e)s

Appendix B Programming code

92

¢ (o)orpuey - -108307"

(o 2p3senboyS8urSSorgesreq)ojpuey:: dogs-ro-eyd[e - puUOD~JeI ::j)souU

(9 ‘sIylx)o[pury ~"S90UBIONPUOD *

(o 2g3senboygsdouejonpuoporydeudg
)orpuey :: degys-1o-eyd[e - puUOD-JRI ::}SoU
(o ‘siyjpx)o[pury - ~sjerjusajod

(@ 2g9senboeyerjusajoJ)ajpuey:: dojys-1eo-eyd[e " pPUODd~jRI ::}S0U

93

Test scripts

(siojeiousal oyids
) poonpoxd oq pinoys soxids ®il1xo j1ey) sojedIpuy :[g]dse #
[T ¢ads ¢[g]8ex] = dso
[roo¥ ¢ -00e ‘'00g‘ ‘00T1] = 1ds
s{eu8Is Jo uoIlssiwsu®i} 9yl jo Aev[op oOYJ, :[F]xXum #
A1ogrqiyur pue Aio0je)ioxs A[oarloodsour #
‘suoInau 9Yj YPIM SUOI}DOUUOD oY) Jo yiSuoaigs oy, :[g]xXum #
s1ojeiouaf uOSSIOg JO JIoqunu oYJ, :[g]xXum #
siojeiaueld uossioJ
A1oj1qiyur pue AI03®HIDXS I0J S93®I JOo 4SIT :[T]Xum #
S[BAIQ)UI SW] UI PoazI}aIdsIp SI osiou oayj ‘jum JI #
s10jelIauol3 uUOSSIOJ
y3tm poeonpoid oq Pp[noys osiou 3eY} s23®OIPU] :[Q]Xum #
[-Ae1op ¢ -13s-uuwoo ‘-ua8-d ‘-ejez ‘[g]S8e1] = uwm
[-Aejop ¢ -13s"uuwoo ‘-ua8-d ‘-e3ez ‘[1]S801] = oum
0'1T = ~Lerop
[oov— ‘(1TH ~d/7 8 -d)sqe-du] = -13s-uuood
g = ~—uead-d
[0°0000z ‘0°00008]= -o1ex
owi8el 93s99 UJM puUR OUM IOJ Son[eA PpiepuevlS #
owi8oeu1
Surjrds—uou ur ST uolje[NWIS °9Y} eyl sojedrpul :[g]dsu #
[[0] 821] = dsu

()sodAjowi8ei-uingar = Sox

(rdw--d ‘xewy--d) % ("J0'S0% I0°G0% . = rdurxewy,
(guds ney ‘#(-10300A=00A ‘~OoWIjWIS

—owrjwrs ‘~ydw=ydw ‘ [g¢]s[opow=[pw)sweieg g = deojs-ro-d
(Huds ney ‘#(-10300A=00A ‘~oWIjWIS

—=owrjwrs ‘-jdw=jdw ‘ [g]s[opow=[pw)swreied " J = osd-d

(Huds—ney ‘#(-10300A=00A ‘-owWIjWIS

=owrjwrs ‘-jdw=jdw ‘ []]s[opow=[pw)swreied " J = 1o-d
(Huds ney ‘#(-10300A=D9A ‘~owWIjWIS

=owrjwis ‘-jdw=jdw ‘ [g] s[opow=[pw)swreied " J = -d

Sen[eA [YjIM S[OpPOW UOINSU INOJ 2donpoig #

() seweu[opow-uIN}al = S[opow

:(g8o17q

d ="10900a ‘xew], d = ~“ewrjuwrs ‘9dw-d = “9dwr)sjoalqo-surjep jop
H

il

19s 1ojowered paiepuelg # ()swereg g = d

d se sweieJ-sse[o jrodwr

so giodur

En

913o1go jiodur
du se Adwnu jrodut

Ad-syoelqo-auygep

1o-eydie-puod-jer

#
#
[, 101107 A, ¢, ur-8, ¢, x0"8, ‘,urp,| uinjex
i, degs-1e-eydie-puodo-jer, == [pw JI
[ur-8, ¢, x0"8, ‘ ,urp,]| uanjozx
(== [pw 10 ,eyd[e puood-jer, == [pw JI
[urA,] uwanjox
i, eydie-osd-jer,== [pw JI
(pw ¢ yros)-sweiedoslr jop
#
(jpw) ~sweiedoor- jyos = sweiedosr- j[os
[PW = [epow "’ j[os
29A =g8o[Y- j[os
jdw - yyes / xew," J[os = [Le}[opP J[OS
jdu = 3dw - j1es
QWIWIS = XeuL],” J[os
Z2'0 = JudksTney- jies
=8 j1os/wp jres = wney jros
0°0L— = TH JI1°s
T"8 - j1os*y = o-1 J[os
0CT = Wwrprjres
GT = T8 j1es
:((1—‘gr—‘0)o8ueie du = osoa ‘(@ QQg=owWIjWIS
‘00g=3dw ‘ eydie-puodTyer =[pw ‘ J[os) "31uI" " jJop
isweleJ Sse[d
#
#

ERCER K

du se Adwnu jrodut

I9gsewW Ul SN I0J Sse[D #

Ad-surere g sse[o

sydraos 9)saf,

Appendix B Programming code

94

©pojeold oq [[IM 31 jouw soo0p 31 I - s3sixo yyed Jr yoseyp #

:(yred)oejeoro-sysixa-yred

jop
e

N uinjioax

()osoro>-apryut

(orrgur)peor o[321d> = N

+yjed-swreusary)usado = oyrjur
us8uei8uery J'H

1oy Suridiiog uoyihd, ‘9°g'y YD woig##

:(ysed-oweuajry)ojrj-L1eurq-peo]

(cquefaep,

f

«ooua1dg [euorjeindwop

il

3op
A+

()esoro-oqrjsno

(er13ano ‘N)dwnp-a[d21g0

+ yjed-osweusry)usado = o[1j3Nn0
uo3uej3ue] J H

103 Surjpdriog uwoymkd, ‘9°¢'y UD wWoigH#

: (N ¢ ysed-owreuoa[rj)o[rj-LAieuiq-aaes

(cam, ¢, 3ep-,

¢ P0ud10g [rUOIjRInNdWO))

Kl

jop
e

qisuoag
uo[~mou = yjz3uaj
:qi8ua] < ua[~mau JI
‘[1]sedLy)us] = usa[~mou
:((sodLy)usy)e8uer ur 1 103
T = y3Susj
s[epow uoinau
I9qWINU WNWIXeW 9} PUl] #
: (sedAy)sweredosr xew

uinjoul

(sweiedooax

jueiejjip ur sweied o9[qePIOddI JO

jop
s

o3ueie Adwnu ® ST D00A # D20A*x%x()'g UIN}OI
:(o9a)o0a-gromod-uingax

il surry

jop
e

[9 ‘¢ ‘0] uwingez
oY) pue ooIyy 3sIry oyl H#
suorjnjosex jo(d o3 posn #
:()ooAaso1-uwingox

XIS 9sI1]
273 popnixe

‘olez 3suI1]

yred uaingoux
(ysed)oegeosrn-sysixa-yged

owreu+ /soin81,/s1SoY,,10,J9P0D
/Xo1e1/AA0IsoN/ose8ddospeiSiagseyN /siepue /owoy/ ., = yyed
Surlsioxe jou Jr 31 sajeoid pue yjred uinley #
: (owreu) yged-uingox

Clugm
jop
e

f1'0)o8uere -du uinjgox
Y1 jo uorjerivA #

(t'o ‘10°1
juejsuod oawriy d1ydeuds A103e)10X0

:()uds nej-uinyar jop
g
#
s91®I ‘UII ‘Xd9I UINYdI
0I~S@31®I % (QQ0T = S9jel
([gz ‘0g¢ ‘gz ‘01 ‘01 ‘1-0])Aeiie-du = gy-sojes
0% /X901 = urx
0'8 = Xxo1
S9j®eI JUSIBIJIP YIIM 93S03) SS9I13s I0J sojyel Suliarg #
:()sejei-uwingyar jop
A
T
T qg'd uinjeazx
TH JO on[ea piepueyg #
:() T @ uwinjiex jop
H
17
qudAs ney-d uinjoax
quAsTne] JOo onjeA piepurilg #
:()Hguds nei-uiniai jop
#
z8o01~"y - d uanjoux
10109A UOIJN[OSdI plepuels #
:()10309Aa-uIngar jop
4
il
xew,'d ‘q9duwr-d uanjgeus
uorje[nuwis pue sjurod Surinsesw jJOo JI9qWNu piepuelg H#
i ()ewrjwrsTydw-uaIngar jop
#
uym so oum su uIngox
[(upm, ¢, dso, ,oum, °, dsu,])
posn sowISol 3S9) JULIDJIIP OUJ, #
:()sodAjowmr8ea-uwingoai jop
#
[, deis-1e-eyd|e-puoo-jer, ¢, eydie-osd-jer,
¢, 1o-eydie-puoo-jyer, ‘, eydie-puoo-jer,] uwinjor
pesn S[opowW UWOINdU JUSIdDIJJIP OYJ, #
:()soweulopow-uIngal jop
4
il

jdwr-xeur],

‘dse ‘oum ‘dsu]‘[dejgs-1a-d ‘osd-d ‘r1o-d ‘-d] uingerx
s1ojerousa8 o3xids jo requnu oyJ, :[g]dse #
sowrty oxrds yiim ALerry :[1]dse #

95

Test scripts

sjeu8Is Jo uolssiwsuei} oyl 10J Kedoq :[¥]|IN #
L1o3rqriqur pue Kiojejioxos ‘ yr8usiys uorjdeuuo) :[g|IN #
s1ojeiouel uossrod jo roqunN :[g]IN #

seojexr Ai1ojrqiyur pue Arojeridoxy :[T]IN #

omwri8e1 9s99 oum oY) 03 ‘UL UOSSIOJ WOIJ 9SIOU $IONPOIJ #
:(uoInau ‘J\) 9SIOU~9}®IID JOP

A+

#

10BX9T A UWINJDI
((wney
rd/p—)Twdxe -du —)x(wp-d/(wney -d«o-1-d)) + anic ! =9}0eX0~ A\
owi8e1 9so3 Suryrds—uou oY} JI0J sdnN[BA (0BX0O 093B[NO[RD F#
(1 ‘d)dsu-seniea~jdoex0o jop
o

F

I ‘X uinjax

(sweiedosi-ua]
‘[f]sowri8ox ‘[1]sadAy)egenuis =T, ‘[[][r1]X
:((sowr8ox1)usay)e8uer ur [10j
:((seodAy)usp)e8uer ur 1 I10jJ
(((g8o1~y " [0] sedAy)usg
‘1—9dw ¢ sweredosr-uo] ¢ (sewrSer)usal ‘ (sadAy)us[))sorez - du =¥

(sodAy)swreredosr~xew * [qojop = sweredodai~ua]
ydwr - [g] sedKy = 3dw
sowriSel 3so) [[® PuUB S[OPOW UOINOU [[® Sdje[NWIS #
:(sewiSox ‘sodAy)[[e-ejre[nwIs jop
H

Kiad

sowr8ox ‘soadAy ‘I ‘N uinjoex
(sowr8ox ¢ sadAy)yre-ore[nwis = T, ‘N
([:1]()10300A-wangoux-
fqojop = -103009a)s3oafqo-aurjep [qojop = sowry ‘sowr8ax ‘sod4y
1 u®Y) JI9UIJ SUOIIN[OSdI JIOJ] SON[BA UOIIR[NWIS SUINIdY F#
:(1)sonyea-198 jop
A+

H
#

fqojop se sgooalqo-osurjop jrodur

rsogessowr ojul
jou ‘s8uruiem pue so3essowr J011o Aeidsip o3 jurad gsnl JTSHN MONH#

(«£11soqraages DNINHVM N) UNITI[S " 3S0U
3sou gioduar

du se Adwnu jrodur

Ad-oyernuurs

Rin

(swered)ojepdn - sweiegor qeidd

{osreg 1, X939SN ' 9X09
‘0T . @zIs[eqel qOI3L,
‘0T . @zIS[Oqe[qOIIX,
‘ozispual3e] :, @zIsjuoj pualof,
‘ 9Z1S)IX09 1, 9ZISjUO]J " 1X097,
‘01 1, 9zIs[oqe] sox®e,} = sweied
0T°€0°9T ‘ao1ddyg urjrey uwaydor worg #
9z1s puo8e] oyy) "3-o ¢ sozlis Auew sisnlpe soul] Surmo[[o] oy, #
:(@z189x03 ¢ ozIspuoa8ey)xoe3~sozis~ejepdn jop
#
() meap
(syruwry
)sarwijfiomod-99s - ()i193jewroj-1ofew-108 - sixek ()eod
1 K, == sixe j1
(s3rwrg
)sarwifiomod-9os - () I193jewrroj-1ofewr-108 - sixex ()eo$d
DoX, == sixe JI

[0] satwrp 01 uweyy JIofjews pue [[]sgrwi| o1 #

uey) I08Ie][son[eA I0J SIX® OY) JO UOIJBIOU OIJIJUDIDS soinsuy #
S([2L—]=s3yrmrip ‘sixe)sixe-jsnlpe jop

-

41
% giodwt joydAd - qrijjordjewr woaij

qerdd jiodwr qriyjojdiewr woaij
qrryordjew jrodurt

Ad-sozis ajepdn

Rl

(19s)apyyw - so
rosjeg==(19s)s3sixo yjyed- -so pue ,/, == [1]ysed jI
[1]uyed =+ 13s
:((yyed)uoy)e8uea ur 1 ioj

(. = 198

Appendix B Programming code

96

(xew,"d)eje[nuwig - 3sou

owi8ex 9soq dso oYy I10j soids ®I}XO soIvOID H#
(uoineu ‘) soqrds-ei}X0~93®OID :(uoinou ‘IN) so1ds " ®I}X9"93BOIO JOp
todso . ==[0lN #1 #
(xewy,"d ‘uoineou ‘N)OSIOU-UDZOIJ~938DID s{eu8rs Jjo uolssrwsuevi} oy} i0jy Kepoq :[¥]IN #
L ugm ==[0]IN I AL1o31qiqur pue A103®310x0 ‘ yi8uosils uorydouuo) :[g]N #
([¥]N ‘[g]N ¢ uoinsu ‘osiou)31d9uuo)jusa8isauoc)) 3sau
(uoinau ‘) oSIOU-93®IID uoInau 03 sI03vIDSUSS 100UUOD H#
ooum ==[0]IN 31
({(
(uoInau ¢ I939WI[NU)JD0UUOY) " }SdU ()wmswno - sxyds) 190 *du :, sewry-exids, } ‘[Su])snjyegyeg - isou
(sw 09
swered-ww = swedled‘ 1999 WII[NUW)9JBIIY *3SOU = I9}2WIJ[NU dn pepunor wns oArje[nWND Yirm I03eIausS oxi1ds 19s mou #
{sweredoor-d :, woij-pioosor,
¢ Leiep-d :, [eaiejur, ‘eniy :,owWI}YIIM, } = swered wuw (rstu ¢ syds)puadde -du = syds
(3seo-u ‘sw~ojer/ 1) [erjusuodxe wopuer du = 1s1U
(sweied-puodo =swieied ‘[opow d)e3}RoID " }S9U = UOINOU Aeiie o093 sowrg oxids olow ppe #
{ rwrsy, > (syds)wns olrym
quis-ney-d: xo-udks-ney, ‘7TH'd : TH. ([]) £e1ae -du = syds
foT sonjeA 12®X9 0I09)S #
d 1,071, ‘wrp-d: wp, ‘18'd :,71°8,} = sweied puoo wis], Yoeol om [I13 s[eAIdjul oyidsisjur yrim ALeiie [[1] #
:(, dogys-1o-eydie-puod-jer
==1epow-d 10 1o-eydie-puod-jer (sw-99eI % wWIST, * G T)3ul + QO] = 3Iso-Uu
., == [epowr-d 10 , eydje-puodo-jer, == [epow-d) JI wis], ur so)ids jJo 93eWI}SS® SNoIduUal #
‘0001 / @21 = sw-ojel
sw/T 09 ZH WOIJ 99®I JISAUOD F#
(sweied-osd = sweied ‘[opow-d)ejeaI) " 9S9U = UOINSU
{ seojer Aiojrqiyur pue Aiojeyioxy :[T]IN #
quds ney-d: xo-udks-ney, ‘T Hg-d T H, L([rlltlm “[1]estou) ¢ ([o][1]IW ‘[0]@stou)] ur sjzexr ‘Su 1o0j]
fo-1-d s1ojeroua8 uossrod jo roqunN :[g]IN #
1,97, ‘wrprd: ury, ‘wney-d :,wney,} = swered-osd ([2]IN ¢ (10geiouaS-ox1ds ,)o93e0I) " 3sdU = oSIoU
. uoued-eydie-osd-jer
., == [opowr'd 10 eydie-osd-jer, == [epowr-d jJI (poos) poos wopuer du
({xeirep-d :, [eaI0juUT,} ¢ I0j0W}[OA)S}[NBII(IOS }sS0U ONY I10J Pods poxIj asn ‘j[nejop £q :poos
({([t]g8or"y-d)**0'g :, uorynjosax suwily uolje[NWIS [BIOF UWIST,
. ‘PI**0°'g ¢, sw-10d-sd1},})sSn3eIG[OUILI)OS T }soU 09 129UWUOD O} UWOINDU :UOINDU
() 1ouie3f19s9y " 3sou ZH ul [93®i-ul 93evi~xo]| sT [T|IN N
:((g8or"y-d)uoay)a8urr ur 1 10j] 9stou A1ojrqryul pue AI01®IIOXD SB UOI}R[NWIS
([(g8or"y-d)uos] ‘T— 3dw-d ‘sweiedosi-uoy])soioz du = jea 01 ppe
owrSel 3s99) puUR [9POW UOINSU [BNJIDE djR[NWIS # pue S[®AIS23UI SW] O} PazI}dIdSIp sulei) o3xids UOSSIOJ 931eaI)
i (sweiedosr-uo] ‘N ‘d)oje[nwis Jop -
19ss9]d PpIeyayNy suvH Aq Po3eaId uwoljouUN
:(8L9GVECTI=Poos ‘wls], ‘UoINOU ‘JN)OSIOU-USZOIJ"94®IID JOp
(uoinsu ‘8ds))o0uuo0)juafIoAuU0)) 3o U #
siojeroua8 oxrds jo requnN :[g]IN #
sowty oxidg :[T]|IN # ([¥]N ‘[€]N ¢ uornsu ‘osiou))d0uuo)jua8isAuo)) 1sau
C 1L [l C LI lTIw < orea} < {lo][1]
W :, sewry~exids, }] ‘[g]IN ‘. 103eisusS-oxids,)oegesr) ysou = Sds W :.o%ex,}] ‘[g]IN ‘«sd-103eious8-uossriod)93l 3sduU = 9sIoU

97

Test scripts

:([0] (331p)odeys-du)e8uesr ur 1 10J

poexe — [:¢0‘ 0 JIN = JIIP

suorjniosax [[e ‘sjurod Surinseow [[e F#

¢ lerjusjod ouviquew ‘owi8ei—dsu ‘S[epowr [[® 19A0 20UdI9jJI(H#
(I ‘[0]sodLy)dsu-sonjea-30eXo WIS = 10BXD

9 = sou1

‘s[epow uoINdU [[® JI0J

#

SON[BA PoOJR[NWIS pPUB $OBXO USOMIO(©DOULISJJIP JO oI1nSi) sodeN #
:(yzed ‘sodAy ‘1 ‘IN)Jjip-dsu Jop

Rih S

(.
jpd-, + 1opow - [[1]iu pow]sadAy + ,“oum IN"A, + Yyred)Sijoawes
(.
sdo-, + (opow - [[r1]iu"pow]sodAy + ,“oum IN"A, + Yyred)Sijoaes
(. [Aw] (erjusjod oueiqualy,)[oqelL
(. [sw] owny.)ieqerx
(g8o1~q " [0] sedK3) puasaj
(fo ‘1 *[r]auwpowm]w ‘1)so1d
()sansyy
:((1u-pow) uosy)s8urr Ul 1 I0j]
swr8e1 9s9) osiou—y3Im 9yjg ur [erjusjod ourviqWLW j0[d H#
s[epow poseq oduej)dONpuod AuQ H#[g‘1‘Q]=1u"powr

SUOIJN[OsSaI [[® ‘sS[opowr poseq oduejidonpuod A[uQ #
owiSor 93s99) oum jo soingrj oeonpoig #

:(ysyed ¢sodAy ‘7, ‘IN)sSrj-oum jop

H

R

d- + I13s-soax1 + sowrr8oI- + yjed)Srjoaaes
cipdr ¢ ! Iv. q 13
sdo - + 13s-soax1 + sowrr8Sox- + yjed)Srjoaaes
f f ‘ ! V. q 13
(. [Awm] [e1juejod eueiqudIN,)[2qe[L
(. [sm] owry,)1eqerx
(. 3y81x 193ued, =d0])puagoj
([o][v]sewiBox = yoqer ‘[1]A ‘L)3rord
:([o] (A)odeys-du)os8uer ur 1 10j}

()oins8r1y
SOI % (JO'E0+YSOIT, = I3sSTSol
[sex “:p‘:‘Q]IN= A

sw(g—)*xg UOIIN[OSaI F#
‘1erjuejod oeurviquoew ‘evydie-puodTje] #
9 = soi1

sowi8e1 93se3 Inoj [[e Yitm oinJrj ojdwexs seonpoid #
:(ysyed ¢ sowrSex ‘soadky ‘I, ‘N)SijTxe~exew jop
A

sowi8ox ‘soadAy ‘I ‘N uinjox

F

(sowi8ox ‘sodAy)y[e-oje[nuwis wis = T, ‘N
() s3oalfqo-surjep (qojop = sowry ‘sowr8ox ‘sod<Ky

sowri8el 9s99 [[® pUR S[OpOW UOINSOU [[® [IIM UOI}R[NWIS oY) uny #

:()suorje[nwris-op jop
4

#

(ysed ‘sodAy ‘T, ‘IN)Jjip-dsu
(ysed ‘sodAy ‘1 ‘IN)sSrj-oum
(yged ¢ sowr8ox ‘soadAy ‘I ‘IN)S1j-xe-eoxrw
(./sean8rj-ajdwexa,) yjsed-uinjoar- [qojop = ysed
()suorjenwis-op = sawriSaa ‘sodAy ‘7, ‘IN
3draos ygzim o[qissod soeinIiy [[e oonpoid pue odj3e[NWIS #
:()3ord-ejenofeo jop
-

F

(0T°0T) X93-sozis-9jepdn - pdn
pdn se sozis-eojrepdn jiodur

wis se o9j3e[nuwis jroduwr

fqojop se sj3oolqo-ourjep jrodur

* qiodwt go1dAd - qrijojdjewr woaj
du se Adwnu jroduwt

Ad-s3y ejdurexs

#
-
H
#
J uingox
[r]"z = [0 ‘rt]x
(1— 2dw-d)oe8uer ur 1 10jJ
([T ‘1—3dw-d])soiez du = J,
(-1 ‘d)-g-9zIsax jep
4
#

L‘lea uinjeai

(~1¢d)-1-eozise1 = T,
[, sewry, | syusae = —7,

[[f]sweredosr -d]sjusas = [1°:][[][ea
:((sweaedoosa-d)uay)efuer ur [103
[squeaa][0] (103owWI}[NW)SN3RIGIO * }SOU = S}UDAD

Appendix B Programming code

98

([T ‘1— 3dw-[g] soedA3])odeysea-[g ‘: ‘g|A = 601
UOIJN[OS 9DUDIDJOI ® S #
- = So uorjnjosar je dojs-1o-eyd[e puoOdO~jeR SOS
6 U gseol nng ! ydre-p] n
[erjuojod ouriquow A[juo ‘owiSor—jum A[uQ # [‘:‘0°0°‘:]IN= A
(-sewri8o1 ‘soadAj)[[e-9je[nuwis wWIis = J, ‘IN
z8o1 "y ' [0] sad&y = ooa
(sweiedoosa-[g] sadLy)usay = d-ooaux
9sIouU UDZOI JIM owr8or—uym ¢] sowi8e1] = -sowi8a1
E 3
()sioalfqo-aurjep [qojop = sowry ‘sowr8oxr ‘sodAy

owidel 9soj) ujm #

‘S[opow puUB SUOIJN[OSdI I9Y30 [[® Ppue #

UOIIN[OS ©9DOUDIDJOI B UDIMID(Q ODUDIDJJIP oY} Jo so2ingij soonporg #
:()sodAy-10110-uUym jop

Wk H*

jpd - 10119 A-ujm-3serorey-dors-1o-evydie-puod-jer, + Lwdmvmﬁcm:/dm
sdo- 10119 A-ujm-9s990rey-doers-1eo-eydje-puod-jer, + Lwdmvmﬁ:m:/dm
(. [Aw] 1011y,)19qerk

(. ($ug $z-¢So0[) uorInjosey,)[eqe[x

(. 9391 1addn,= o0] ‘ x9-99ei)pusaloj

(=, “[dow ‘dow] <[[0]o0a [1—]o0a])01d

uoirsioexd aulydeW 3B OUI] POy #

(,——x, ‘(0o=sixe ‘[1]x)uerpew- -du ‘od9a)ALSo[rwes
:(px)e8ues ur 1 103
()oansiy

(0] (x)odeys du = ox
(,/1oxre-ujm ,)yjed-uingor- [qojop = yjed

i (dowr ¢ xo-@93®I ‘0oAa ‘YX)X“301d jJop

4

dowr ¢ xeo-e3®l ‘0DoA ‘I ‘¥ uingai
(dowr ¢ xo-93®x ‘ooa ‘Y)x-301d

S993RI*xX9I = Xo9~913®l
((91—)**0T * T ®H'[0] "sedL3)sqe du = dow

dogs-10
103 ,10119- A, = [g]sweredoor sewnssy # [g]lea = [1]X
(d-oe1 ¢ [p]-sewi8ox ¢ [g] sodAjg)eje[nwis wis = T, ° [€A
[[t]sogeaxura ‘[1]sejerxxor] = [1][0] sowriSax

:(px)o8uer ur 1 JI0jJ
([gx ‘1x ‘0x])soioz -du =x

(o9a)uag x
T—idw - [g] “sedLy = Tx
(se3ei)us] = Ox

z8o1 "y ' [0] ~sed&y = ooa

(sweiedoosr-[g] ~sedAg)us] = d-ooa1

()sogyei-uingoex-[qojop = sojer ‘urxr ‘xoar

dejgs-te-eydie-puoo-jer A(uQ # [[g]sedAy] = -soad4y

9sI0U UdZOI RPN owrSor—ujm ¢] sowi801] = -sowr8oaux
! 3 Ut ! 3 ! !

()sioalfqo-ourjep - [qojop = sowry ‘sowiSoxr ‘soadAy

siojeiouoald uossiog oY) worj sojrer Suriry SuiSueyo jo #
seouanyjur dojs-1e-eyd[e puUODd~JjBI WOIJ IOIIdD OY) MOY SISOJ, #
:()e3ei-101I0-UIM JOp

o

#
sodAy-10110-uym = sodA3 ‘ooa * ¢ ¢ 1
3 L A " 633lP
()orer-1or1o-ujm = dowr ¢ xo-93e1 ‘o9a ‘T ‘Y

() rre-ugm yop

#

4

il

(0T ‘0T1) x93~ sozis"ojepdn -ojepdn
ojepdn se sozis-ojepdn jroduwl

wis se oje[nuwis jrodul
fqojop se s3oelfqo-surjep jrodur

du se Adwnu jioduwt
* grodwr jordAd - qrpjordiewr woaj

Ad-1o0110 UM

#
#

(¢3pd-. + repow - [r]sodAy + dsutwA~3Id. + ysed)Sigoaes
(¢sdo-, + pepow - [r]sodAy + dsutwA~3IA. + ysed)Sigoaes
(. [Aw] oouoexejjip o8e3[oA,)[oqelL

(. [sw] ewry,)1eqerx

([:se1]gSor"y [0] sed&y) puafog

([:sex “: “rlzgrp ‘1)9o1d

()eansyy

99

Test scripts

sowr8ox [[®

103 ,urp, = [o]sweiedosa sewmssy # [o]1ea = [[][1]X
((swexedoosx [1]-sad4Ky

Yuoal ‘[0]-sewi8ex ¢ [1]-sodAg)eje[nuwis wis = T, ‘ [€A
[[]uks = guds ney - [1]-sadLy

:, uhks ney, ==oadLy jJi[e
[[f]sogeaxurx ‘[[]sorerxxor | = [1][0] sowrS8azx

1, 99e1,==odAy J1
(9 uoay)eSuer ur [103
:((~sedAy)uoar)e8uri ur 1 I0j]
([(g8o17u-[o0]
“sadAy)uey ‘1T — dw-[Q] "sedLy ‘3 -uwey ‘(-sodAy)uoer])soiez- -du =Y

(uks)usp = 3-uoaj
i, uhks"ney ==odAy jJI[°
(seo3ei)usay = 3-uo9j

911 ,==odLy JI1

T

()uds-nej-uinyei- [qojop = uds

()soger-uingoax-[qojop = sojer ‘urr ‘xoax

sodAy = -sodAy

[[1] sewi8e1] = -sowr8aux

()sioalfqo-aurjep [qojop = sowry ‘sowr8oxr ‘sodAy

*seogel JUIIl] jJULIDJJIP JI0] H#

s[opow uoinau [[® J10J [erjusjod ourRIqWLW °YjJ ojye[ND[C]) H#
:(odAy)gsoy)~ssarys"oum jop

H

(odA&y ¢ 10300A ‘sodhy ‘sowmiSex ‘T ‘YX)3so3~ssoiys-jold
z301 "y " [0] sodAy = 103004

(odA3)3so3-ssorys-oum = sowrSoex ‘soadhy ‘I ‘X

ufs-neq, 10 91e1, :sodAhy o[qissog #
:(odL3)qord-e3e[noyeo jop

#

H

¢

(00T ‘0°01)x93-sozis"arepdn ajepdn
o3epdn se sozis~ojepdn jirodur

wis se oje[nuwis jiodur
fqojep se sj3ooelqo-eurjep jroduwr

* j1odwr gordAd - qrpjordjewr uwoij
du se Adwnu jrodur

Ad-)s91 oum

‘. + 13s-08a + [epow

#
#
#
(cgpd-,
+ 13s-0ea + |, s[epow-puod-[[e-jjip-pow-8o[8o, + yjed)Sijoaes
(,sde,
+ 13s-08A + , s[epow-puod-[[e~jjip-pow-80130r, + yjred)Sijeaews
([t=100a <[0]924) % (JO'€0+%I0E0+%S21™, = 1357204
(el
AW [erjusjod suURIqWLW Ul 9DUSISFJIP JO oN[BA URIPIN,)[2qelk
(. (ug $c-¢So[) uworynjosey,)[oqe[x
() puosor
(1epow " [1] sedAy = [oqer‘,——Xx, ‘[1]pow ‘0oa)ASojrwos
s;opoiN # : ([0] (pow)odeys -du)eSuesr ur 1 10j
()eangyy
:(yyed ‘ooa ‘sodky ‘powr)jyjipSoySoi-joid jep
#

(. 3pd

.+ 13s7o0a + [epow - [1]sedAy + X + ,Jjrd. + ysed)Srjeaes

(,sds
t]sed&y + x + (Jyrd. + yred)Sijoawes
(. [Aw] [erjuejod ouvIqWLW UI 90UILDIJI(,)[oqe[4

(. [sw] ewry,)1eqerx
(oea) puadag
([r]331p ‘1)901d

()eansyy
:([0] (33rp)odeys-du)oSues ur 1 10§
([t—]20a “[0]204) % .30'€0+%F0'E0+%S21", = 13s7004A

:(yged ‘sodAy ‘x ‘oea ‘3 ‘3jip)sedA3-ioxie-jrord jop
-

d'
sodAg ‘oea ‘I ‘A ‘6JJIP uInjoauz

(yzed ‘ooa ‘-sodAy ‘powr)jyipSo[Sor-3ord

(1=s1xe ‘(puod)sqe du)ueipow du = pow
eydie-osd-jel

sopnjoxy # [[g]sedAy ‘[1]sodLy ¢ [p]sedAy] = -sod4Ay
eydie-osd-jer

SOPNIOXH # [[el633tp ‘[1]633tP ‘[0l 6331P] = puod

(ysed * sod<Ky

‘.76 ‘[:e]oea ‘[:001]L ‘[:6 ‘:00T ‘:]633ip)sedLy-iorie-jord
(yged ¢ sod4Ky
o760 ‘[r9]oea ‘[:oo01]L ‘[:9 ‘:001 ‘:]633ip)sedLy-iorie-jord

(./1oxxe-ujm)ysed-uinjax- [qojop = ysed

6321 — A = 63F'P

Appendix B Programming code

100

[(xeN, © wiN, ¢ (PPN, ¢ UBOIN,] uanjgox
:()sedAjdwoo-uiniax jop
#
I3s-sol uinjal
13}s =4 J13s-soul
([r]oea-ser) % 3J0'€0+%. = 135S
:((o9a-sex)usy) o8urr ur 1 I0j]
 SeI-, = 13s-so1l
:(ooAa-so1)8uri1s-031-294A Jo
3op
#
N ‘1ea uingeux
dox ¢ s[epowmr ¢ ooa~sox ¢ sjnsoa-jurad
Pp A 1 !
s[opowr ¢ o9a~sox ‘prea ¢ SOOII}BRWI-9ARS
°p 1 A !
sojnulw ¢ . CER £ ¢ oW} uoIje[NWIS [BIOTU\U utad
(sejnurur, 0°09/%®3ep ‘. £} rje[nuls [ejorul\ul, jur
9I0Joq—1I1993je = ®I[OP
()owry - owiy = 103j®
(ooa-sox ‘sopow ‘dox)oredwod = N ‘[ea
()owrg - owry = 210J9q
P1S~09A~S9I = DOA~SOI
[:1] pas~sjopowr = s[opow
dogs-1e-eydie-puod-jer ‘eydie-osd-jer ¢ i1e-eydie-puod-jer
! ydre-p jel qdr el ! ydre-p et
:os[o
1 = doax
(p1—).2=Y AuQ # [[1—]P3s~2oa-sa1] = doa-saux
[[0] pasTs[epow] = spepow
uorjnjosax jsourjy je eydie-puod-jer A[Uo ovjrv[NWIS #
T== 3se[jI
(¥1—).z=Y 31deoxo [[y # [I—:]pP31s 20Aa~sd21 = doA~soI
[[0] pasTs[epow] = spopow
uorjnjosor jsourjy jsdexe wvydie-puod~jel A[uo ojre[nWIgS #
0== 13se[JI
i puodo-Ajuo Jt
[opow pue uorinjosair iod suorrrlyedor # ¢ = doux
() seoweulopow-uingai- [qojop = pjs-s[oapouwr
[v1— ‘01— ‘9— ‘#[r— ‘T—] = pis-ooa~seu
:(p = 3se] ‘Q = puod~AJuo)[[e-UNI JOp
#
A+
T

qs se [euniq-poads jiodur
fqojep se sj3ooelqo-eurjep jrodur

% qiodwrt jo7dAd - qrijjojdjewr woaj
du se Adwnu jroduwt
owry jrodur

Ad-uosrreduod

eHF

(«3pd . + o1313813 + ysed)Sijoaes
((sdo-, + o1313813 + yjed)Sijoaes
([1]steqer)1oqer4
(lo]steqer)1eqerx
(ufks)puoaSar

:, ufsTne) == nejl-ajer JIr[eo
(so3eixx01)puasal
i, 9101, == nej-ojer JI
so1 + , sox-[[e-, + nel-91eI 4 , -oum-, 4 [opow - sodAy) = o[11181]
[1u]20A % (30°80+%, = so1
([au “:][1]x)901d
:([0] (xX)odeys-du)e8uear ur 1 ioj
0310
()oin3siy
() uds~ney-uingar- [(qojop = uds
()soyer-uingoer-[qojop = soger ‘urr ‘xor

2I1nJ1rj euo UI UOIIN[OSdI dUO H#

I0J] S3U®B)ISUOD OWI} IO Sa9j3®I [[® ([opowr ouoO sj0[d #
:(neg-o3ea ‘syoqey ‘au ‘oea ‘yged ‘sodAhy ‘Y)Srj-euo-[[e jJop
H

#

(nej-e3e1 ‘ syoqeq

‘[q]sox ‘a1o3o0ea ‘re-yred ‘[1]sodhy ‘[r]x)S1j-ouo[re

:([0] (x)odeys -du)e8uea ur 1 1i0j
:((seox)usar)o8urs ur y iojg
[8°%] = soux
‘[epowr yoeo
103 9ang1y suQ -oIn8IJ ® UI UOIIN[OSdI SUO I0J S$231®I [[V F#

Ar\amwu\mmogawrv:uaa\:«:ﬁog.hﬂowwvH:m\r:da

[[Aw] [eriuejod suviquop, * [sw] ewry.] = s[oqel
:(neg-eger ¢ 10900a ‘sodAy ‘sewrSex ‘I, ‘X)3isejr~ssoigs-gord jop
A

“sewi8ex ‘-~sadA3 ‘I ‘X uinjeix

101

Test scripts

(I lrIm % (32 %
] xew-urw-pow-uesw ¢ 3\, ¢ oy1y << jurad
sod&y~dwopy # : ([g]s)e8uer ur | 103
[3] owreuadAy ¢ u\, ¢ oy11] << gurad
siojowered popiroooy # : ([g]s)e8uevr ur ¥y i0j
[[]oea-soux

% 30 1+%.T. ‘. 3\[sw] uworgnposeygul, ¢ oy << jurad
suotgnjosay # : ([1]s)e8uer ur [103
dex ¢ 3\suorjrgedoy, ‘ or1y << jurad

[1]stepowr ¢ 3\ PPON . ‘ o11) << jutrad
«SIINSHY DONLLVIANWISU\« © 2113 << jurad

(e, “.3x3°, + oweuory)uedo = oI}
(ooa~-so1)8urijs-o03-20a + [I]s[opowr = owWRUII]

sjopoN# : ([0]s)o8uri ur 1 103

(W) odeys 'du = s

()sodAydwod-uiIngor = XeW UIW PIUW URIW
[. :[zH] o3ex
‘quy, ¢, :[zH] °3ex -oxy,‘,:[s] owry uorje[nwig,] = sweuadA)
:(dex ‘spopow ‘09A~so1 ‘) s3y[nsoi-jurrd Jop
A+
(W “IW-13s)eqiy-Areurq-eaes [qojop
(1ea ‘[ea-x13s)oqrj-LAieurq-aaes - [qojop
s+ SN = JAREER
13s 4+ —1eA, = [eAa-19s
S9ITI}S + pow~I})s = I3S
(—¢ =t powriys
- (spepow)usl > 1§t
[:%][1]siepowr =4 pow~i3s
:((sropow)uay)o8uri ur 1 I10j}
. = pow-ijys
(09A~s01)8UrI)1s-03-20A = S9I-I3S
:(s[epow ¢ 209A~S9I ‘JeA ‘JN)S9DII}RW-9ARS JOP
#
A+

N ‘[ea uingeux

]1ea)xew - du * ([

t]rea)urm-du ¢ ([1]rea)uerpew-du ¢ ([1]7ea)ueew-du] = [1]|
:([o] (1ea)odeys- -du)sSuesr ur 1 10j
([uej~dwoo ‘aea])soiez du = N

o= [r][g]rea

ox = [r][1]rea

jurs = [r][o] 1ea
dex ‘ 3o ‘I+1 ‘ riu uorjryedos poystulg, jurid
(e3e ‘8 ¢ sox ‘jopowr)Adwnu-eydle-[ouniq- - qs = 11 ‘o1 ‘juIs

:(dex)e8uea ur 1 ioj

[1] —e3e = ®3o

[1]-8 = 8
:os[o

[0] —e3o = ®3yo

[0]-8 = 8
. eydie-osd-jer, == [epouwr JI
[¢100°0 ‘gL 9] ="we3o
lorz ‘go61] = -8
(Sor~sex1)*x%xg = sox
([dex ‘u1ea])soiez du = [ea

(ur) y'8g pue (x°) L°87

1e 99e1 Suriry soal8 G100 0="®2° ‘0'c=98 ceydie-puod #
(ur) v gz pue (x0) L°8¢
je 99e1 Surir] soal8 G100 0="®3° ‘0'z=8 :degs-1o-eyd|e-puOd #
(ur) 6°8z pue (x0) L°8T
je 99e1 Surirj soal8 G100 0="w3° ‘0'z=8 t1e~eydie-puoo #
(ur) $'8z pue (x0) z'8¢
je 99eI Suriry soalS gL 9=w®39 ‘gQ'61=S9 ceydie-osd #
:y— = (y)gSo| uorjnjossr 10 #
:(8o1"se1 ‘repowr ‘wus["dwod ‘iea ‘der)eredwod-eje[nWIS JOp
H
#

N ‘1ea uinjozx

(sojnurw, ¢ 0'Q9/ejep ‘., ur poje[nuig, jurxd
[1]siopow ¢, Surjeinwis poysturg, jurad
210j9q I99je = ®1[op
()owry - owiy = 193j®

[[]oea-sox1 ¢, uworjnjosax poaysiurg, jurad

([f]o9a-sox ‘[1]s[opouw

‘90 -uoa] ‘aea ‘dex)eredwoo-ojeinuis = [[‘T]|N ‘[[‘1]Tea
:([1]s)e8uer ur [103
()ewry ouwry = o10j0q
[t]srepow ¢, Surjernuigul\u\, jurad

:([o]s)e8uer ur 1 10j3
(N) odeys du = s

([dex ‘uxea ‘(oea~sox)us] ‘ (sjopowr)usy])sorsz -du = [ea
([9o-uay ‘aea ‘(o9a~-sor)usa] ‘(s[opow)usap])sorsz du = N
(()sodAjdwodo-uingar)usa] = 30" U]

pepiodoai aq pInoys
93e1 Ai1ojrrqiyul ue A109®PIOX0O ‘OWI} UOIJR[NWIS # ¢ = Ieva

:(29Aa-so1 ‘spopowr ‘dox)oaredwod jop
H

il

Appendix B Programming code

102

(®/o1 — (e/(e/0 1—)dxo—)Tmmpque]—) * q/0' T = xew
wnuwixew Jo ouwily #

(woNney / o1 — udgney / 0°1) = q
(udgney / woepne}) = e

(vd 1)

sopngrjdwe jrun jo juorxind jndur odrjpdeuds e 10j]

[erjusjod orjdeudsisod jo wnwixew oYj3 91ndwo) ..
:(udgney ‘uLpD ‘woNne)) wrioudgdoynduo) jop

H
il

«

A uinjyeua
()dod-r1[s "3seu=K ! (JWMILBqUWeT,) uni-I1(s - g3sou ¢ (x)ysnd-I[s - jsau
s (x) TupsIequIey jop

Riah s

son[eA PpIepue)S [YIIm UOINLU ® 931edID 03 a[qissod 91 soe|N #
d se sweleg-sse[o jrodumr

‘so8essow ojul
jou ‘s3ururem pue so8essow J0ixd AKejdsip o3 jurad 3snl JTSHN MONH#
(«4£31s0qi0a19s DNINHVM) UNI-I[S ")sou
3sou jroduwr

owrty jrodurt
dxe j1odwr Adwnu wouaj
Adwnu grodurrt

H
il

0T°'70°9T ‘udsuyer D'y #

s3d1Ios 9se) I9Yjo 03 sonfea puas 03 o[qissod uoayy ST 9] #

91 JO UWOIJdUNJ ®BIIXD OUO opeW oA®Y [jBY} SI oSueyd urew oyJ, #
Ad - Adwnu

—eydie—1ouniq /sojdwexs /gsoukd /o1s /ISHN uwo poseq st 3drios siyJ, #

FINAININOO #

Ad-pounaq-peoads

H
H
K

(.3pd

‘o + [1]801801 + [~Pwrjwis—sepow-anog, + yjyedSiy)Iiyeaes
(. sde

‘o + [1]801801 + [“ewrnjwis—sEpow-anog, + yjsedSiy)Siyeaes

(,/uorstaedwoo,) yjed-uinyai- [qojop = yredSij

(. [s] euwir,)1oqer4
(. (4 $g~¢8o1) worynjosey,)[oqelx
(sropow) puea8a]

((—=x, ‘[1°0¢:“[]"IN ‘ooa-so1)ASojrwas
sos|e
(i—=x, ‘[1°0°:“[]"IN ¢ ooa-sox)gord
i Bofrwes, ==[1] 801301 31
:([o]s)e8uer ur [103
("IN)odeys-du = s

((—=x, “[1°0°:°0]X ‘ooa~sox)ASo[rwos
:os[o
(——x, ‘[1°0‘:°0]X ‘o20a-sox)jord
1, Sortwes , ==[1] So[80] I
()eansyy
:((8o[8o1)uar)o8urs ur 1 10j}
[. 8018071, ¢, 8ortwmes,] = 801807
soweuU[opow-uiniai- [qojop = s[opowr
P tqojep ep
[FT—‘01—‘9—‘%—‘g—] = ooa-soux
[ofo]rmpuco v = [1— ‘o0]x
[o] puoo~IN = [1—:‘0]X

([lels “lels ‘1+[1]s ‘[0]s])sorez -du = ¥
(puoo~y)odeys du = s
[TPUOD™JN PuU® PUODTJ]N QUIquO)D #

((#PT—01—90—%0—¢0— se1-doys-ro-eyd[e puod—

eydie-osd—r1e-eydie-puodo—y, + ysred)ojrj-Lieurq-peo] [qojop = "IN
T—

sox"eydie-puoo—N,+ Yred)oyrj-Lieurq-peol - [qojop HAFW\ﬁ:OU\E
(0T=90—%0—20—

sox"eydie-puodo—N,+ Yied)oejrj-Lieurq-peoy- - [(qojop = puod Iy

osip woay sorry peordn #

(01—‘9—‘v—‘z—)
:Omuﬂ,—ﬁOm@h }e mﬁwﬂvOE HWJGO W@hﬂu WQG .HO.* Gﬁﬂ.w GEO u\{u
(y1—) uorjnjosar je eyd[e-puod-jel I0J OJl] duQp H#
(0T—‘9—‘p—‘g—) uorinjossr e eyd[e-puod-jJel 10J B[1] dPUQ H#
c.yred, ur uoar8 AI10920IIp oY) UL SO[IJ S S9ISIX0 S[Opow JINoj #
[[® JI0J san[eAa uol}R[NUWIS
YIIM SOODIIjRW USYM Ppodsn 073 4y3noyl pue uUs9)jIIm SI uoIlldunjy siyJ, #
i(uysed)oqry-813-8or8or jop
-

Kl

103

Test scripts

Jyiomiou Furjoauuo) #

(4 AL103®r10X0

(=[opow ‘¢ soyidst‘ (201" N+THAN‘T+HAN) 28uer)1090uuo)juagioauo)) * 3sau
((AL103e310X0

«=1opow ‘ saxidse ‘ (4001 "N ‘T)o8uri))douuo)jusafioauo)) - 4sau

(.£103®110X0 ,=[0POW ‘ UI"SOPOU ‘ 9SIOU) 309UUO0)JUSFISAI(] " 4SO U
(.£103®110X0 ,=[0pPOW ‘ X0~ SOPOU * 9SIOU) 109 UUO0)JUSFIBAI(] " 9SO U

({Aepop: Aerop

‘urtrp:1ySrem (}¢ Lrogrqriyur ¢ esdeuds-oriess) [epoNAdoD) - 3seu
({ Lerop: Aerop

¢ osdeudks-orjesys) [opo]NAdoD - 3sou

«

« ‘xoTri ySrem (}¢ A1ogeyIoxe

soo1A@p Surjoouuo)) #

([{eonay : pr8uysrm
fonay i ewriylIm
fqur—Ad—pouniq, : 1oqel (}]¢ [sexyidst])snjesgeog - ysou

([{om1y :.pPr8usim,
fomiy, i ewWIIYIIM

¢ Xo—Ad—Jeuniq, :,[9q®] . }]‘[sexqidse])snje)gyog - isou

(,1090030p-ax1ds ,)ojea1) - 3sou=soxrdsr
(10900309 p-oy1ds ,)o3ea1) ' jsou=soxqrdsa

(. 103eI0uUa8-uosstod ,)93eaI) " }JsPU=dSIOU

({o3ea-d : e3e1 .} ,103evi0u08-uossiod ,)s3}[neIO (39S " }soU
(swered-uornau = sweled ‘IN‘[OpPOW)o)ROID) ")SOU=UI"SOpPOU
(sweied-uoinou = swered ‘FN‘[opOW)0d3®OID }SOU=XD"SopoU
{Huds ney-d : ,xo-udks mey, ‘7H-d: TH,
foryrd i o1, ‘wrp-d: wp, ‘7°8'd :,7°8,} = sweied-uoinsu
. deys-1e-eydie-puod-jelr ==[opow 10
. 1o-eyd|e-puodo-jer,K == [opow 10 _eydie-puod-jel, == [opow JI
{Huds ney d: xo-udhs-ney , ‘T g-d : T H,.
Co-p
d i, 0971, ‘wrprd: wp, ‘wney d : wney, } = sweied-uoinsu

:, uouedo-eydie-osd-jer, == [epowr 10 , eydie-osd-jel, 6K == [epow JI
odAq [epowr jo juepuodep sisjowreied Aiessedou jJno s)OIJ #

(1epowr = [pw)swered dJ = d
sanjyea

plepue)s pue [opow [BNJ)d® [YIIM 39s JIojowered e sojeoI) #

Siomjou oyjy Surpring #

«

1p :,uo0rjnjosar, ‘FI*k*kQ°g :, sw-I19d-sdI}, })sSn1eIG[OUILIIDG T 1soU

HO*Xo"nu*x(Q 0001 = o3ea-d

Yy nuxel® = XOTNU

(udgneyxwoned* (1) dxe - AdwmuxygOxxo-r) / (WD * ®IL2Y3) = Yy nu
pioyseaiyyz o3 [enbe juerino gjndul uevew oARY F#

03 Ppepeeu sjueAd Jo o3vI juajeainbe ‘ojer proyseiyy #

X9 [*3— = ui-p

(udgney ‘wepD ‘weNne})wioudsdgeindwoy / [= Xo

f st JdSd ® jo oepnjijdwe 3ey)l os juarind drjdeudls ozi[ewriou #
Aw ut opniyijdure o1y3deudsysod # 10 = r

0°0c = ®31a43y

0°0¢ = wWaNne]}
0°09¢ = WAND
G'Q = udgne)
uoinou 9I1] pue 93vIBo9juUl 9yl Jo siojowered oyl ozIi[vIIIU] #

uoinoau 1od sosdeuds jo Iequnu [ej03 # (FOFID)IUI = 3103°D

uoIinau

1od sesdeuds AKirojrqiyul jo JIoqunu # IN*uojisde = 10
uoInau

1od sesdeuds A103®310X0 JO Joqunu # gN* uoyisde = [cre)

SuUOINA9U (g WOIJ PIODddI # (g = 2017 N

IN+AN = suoinau~N

I9pIO*] = IN
I9pIo*y = AN

00T = {opio

Ay111qeqord uoOI}dQUUOD # 1'0 = uojisde

0'c = ®e19 ‘Q'g = 8 :sonjea [RUISIIQ #

“elo = 2T

-3 = 3

Suriry 1e[n3oirr snouoiydoudse I0] sislowrievd H
sw ur Avep o1jdeudls # g = Kejop
sw ur ow) uolje[nWig # 0°000T = Pwljuwis
Sw Ul UOIIN[OSdl oYy # uorjnjosar = 1P

() [puia3[gosay - 3sou

:(~ege ‘-8 ‘wuorgnjoser ‘epow)Adwnu-eydie-[ouniq jop
H

((udgney/xew 3—)dxexxew 3 — q / ((udgney/xew 3}
—)dxe — (woayne}/xew—3—)dxo)) x (qiuweND*udgnes)/ (o 1)dxe uwinjox
opnjrjdwe jI1un Jo JULIIND I0J JSJ JO wWnuIrxew #

il

Appendix B Programming code

104

(.jpd- Aousnborj-owmes-surejyjed-juaiajjip, + ysed)Iijoaes
(,sde- Aousnborj-omes-suroyjed-juaiajjip, + ysed)Iijoaes

(ysed)oejeoiao-sysixa-yjed [qojop
(,/uisgged-oaids) yred-uingar- (qojop = yjed

() mons

(v 0°0) wri£
‘0°0]) wirx

([1) s3or34
((v'0 ‘geg ‘0)oBuere -du)sydor1x

([z ¢

(.x8, ‘g& ‘gx)gord

¢
[e'0o ‘€0 ‘€°0 ‘€0 ‘€0 ‘€0 ‘€0 ‘€0 ‘g0] =¢k

[zre ‘0'e ‘8¢ ‘z2'¢ ‘9°1T ‘v'1 ‘21 ‘970 ‘0] = ex
[[ews 901y} ULy}l ‘ [BAIDJUI oW} [uO[U #

(cxq. ‘g& ‘gx)rord

[0 ‘2’0 ‘20 ‘2'0 ‘20 ‘20 ‘20 ‘20 ‘zo]=¢cgk

[cre ‘00¢ ‘¥'¢ ‘2¢c ‘9T ‘FT ‘80 ‘90 ‘0] = gx
[[ews omj} uayj ‘ [eaIsjul owi} Suol auQ #

(¢xx, ‘14 ‘1x)g01d

[T'0 ‘10 ‘T°0 ‘T°0 ‘T°0 ‘T°0 ‘1°0 ‘1°0 ‘1°0] = 14

[cre ‘8¢ ‘ve ‘00¢ ‘9T ‘2T ‘80 ‘%0 ‘o] = 1%
soy1ds ueomjloaq oduelsip [enbyg #

()sansyy

4

uisljed oxids juoiojjip pue ojer Suriry [(enbe yytm #
arqissod st 31 jey3 moys yoiym oinl1y ojdwexe sednporg #
H

H#

fqojop se sj3ooelfqo-eurjep jrodur
* gioduwr jo1dAd - qirjordjewr woaij
du se Adwnu jrodur

Ad-uroyyed-oids

4
#
4
H#
#
ur-a93eI ¢ Xxo0-9jeI ‘owWI) WIS UINYIDI
291N /0°000T*oWIjwWIsS/UI~SjUDAD = ur-oger
sjuoaa-U ¢ so1dsSI)sSnjie)gler) 389U = UI~“SJUDAD
0] (« « At ! S19D !
29I"N /0000 *9WIjWIS/Xd"SJUIAD = Xo~013®l
0 sjuoAd~Uu ,‘ so)1dso)snie)gior) 30U = XO"SJUSAD
« « A S1°D
91B[NWIS)IBIS—OJR[NWISPUD = QW) WIS
()owrg - owI} = 9j3e[NWISPUd
(owrjwrs)ogeINWIG * 35S0 U
()owry owWI) = 93B[NWISIIRYES
({en1y, :, owrig-yurad, }‘[p])sniesgiog - 3sou #

ros op 91 jJ1 sdojs Surje[nuis
2yl uaym o0s 03 o[qissod 11 soBJ]N " ssoi8oxd owi) oY)l smoysg #

(«&ao3rqryur
(~—[epow‘[T+4u]‘ ([u] ur-seo0Ino0s) 3sI[)109UU0DHJUISISAUOY) * }SdU
: (suoinsu-N)oSueix Ul u I0jJ

(. L103®310%0
(=[epow‘[T+4u]‘ ([u] Xx0~-s92IN0S) 3SI[)109UU0DHJUISISAUO) * }S°U
: (suoinsu-N)oSueIX Ul U I0]

rsuoinau AKi1ojiqigul oy3 doo] puodes oy} pue #
suoinau AIO03®IIOXD

2yg) sjpoouuod doo] 93si1j oYJ ‘AvII® INO WOIJ S0OINOS oYJ #
(e}

uoIineu oY} 9420UUOD pue ‘S] UOINDU [[B® IDAO0 OJBIDIT MOU I #

((1D ¢ suoanau~N
)¢ suoinou~N‘T+GN) si980jur-wopues wopuel Adwnu = UWI~S90INOS
((FD* suoinou-N) ‘GN‘ T) si1089jur-wopues wopuel Adwnu = Xo-s92IN0S

(yeg1) peos " wopues Adwnu

ssuoaneu ALrojrqryur oyy 1oy (INHAN) ‘¢ (T+EAN) #

wolj pue suoinsau AI03eIIOXS Y} I0] AN YT #
woij Surtuund

fs] ©AI3NDOSUOD 9ARY SsuUOINLdU 873} eyl j1o]dxe oA\ ‘suoInau #
ylio 1re o3

suoinoau AI103®JIIOXS 9J WOIJ] SUOI}DOUUOD oY) 01®OID oM ‘ol #

Bibliography

N. Brunel. Dynamics of sparsely connected networks of excitatory and in-
hibitory spiking neurons. Journal of Computational Neuroscience, 8:183—
208, 2000.

J. C. Butcher. Numerical Methods for Ordinary Differential Fquations. John
Wiley & Sons, Ltd, second edition, 2008.

P. Dayan and L. F. Abbott. Theoretical Neuroscience; Computational and
Mathematical Modeling of Neural Systems. The MIT Press, Massachusetts
Institute of Technology, 2001.

J. M. Eppler, M. Helias, E. Muller, M. Diesmann, and M.O. Gewaltig.
PyNEST: A convenient interface to the NEST simulator. Frontiers in
Neuroinformatics, 2:12, 2009. doi: 10.3389/neuro.11.012.2008.

iaf_cond_alpha.h. Declaration file for the iaf_cond_alpha neuron model in
NEST; revision 8594, April 2010. URL www.nest-initiative.org.

iaf_psc_alpha.h. Declaration file for the iaf_psc_alpha neuron model in NEST;
revision 8607, April 2010. URL www.nest-initiative.org.

E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science.
McGraw-Hill, fourth edition, 1991.

A. Morrison, S. Straube, H. E. Plesser, and M. Diesmann. Exact Subthresh-
old Integration with Continuous Spike Times in Discrete-Time Neural
Network Simulations. Neural Computation, 19:47-79, 2007.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes, The Art of Scientific Computing. Cambrigde University
Press, third edition, 2007.

S. Rotter and M. Diesmann. Exact digital simulation of time-invariant linear
systems with applications to neuronal modeling. Biological Cybernetics,
81:381-402, 1999.

R. F. Thompson. The Brain: A Neuroscience Primer. Worth Publishers,
third edition, 2000.

106 Bibliography

J. S. Vandergraft. Computer Science and Applied Mathematics: Introduction
to Numerical Computations. Academic Press, second edition, 1983.

