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Summary

Gangsei, L.E. (2013) A Bayesian method for estimating moose (Alces alces) population

size based on hunter observations and killed at age data.

Master Thesis 2013. Norwegian University of Life Sciences.

Lots of wild species, fish and mammals, are heavy harvested through fishing and hunting.

Reliable population size estimates are valuable management tools for these species. In

cases where killed at age data are available, models outlined under the framework known

as ”cohort analysis” or ”virtual population analysis (VPA)” are used extensively. In fish

stock management several models using Bayesian techniques have been developed through

the last two decades.

In this study a model using a Bayesian approach for estimating moose population size

is examined. The model combines principles from discrete time series analysis, where basic

cohort analysis based on killed at age data constitutes the bulk, and analysis in continuous

time for each hunting season based on data from hunter observations. The analysis in

continuous time aims to find age- and year-specific expressions for the hunting mortality

rate. In the discrete time series analysis, the hunting yield is viewed as a binomially

distributed variable, with pre-harvest population size as ”number of trials” and mortality

rate derived from the analysis in continuous time as ”probability parameter”. All basic

principles are known from previous surveys, but the way they are assembled is, to the

authors knowledge, innovative.

The model performed very well when tested against simulated populations with known

parameter values. For real data tests are conducted through cross-validation based on

spatial subsets and by comparing results from temporal subsets. Generally the model

performed well in these test. However, an issue is revealed by comparing results from

different temporal subsets, since the hunters ability to spot moose seems to develop over

time (years) and/or depend on moose density. This issue should not terminate the practical

implementation of the model. If a satisfying solution to the issue is achieved, it might have

a possible positive impact on other methods for estimating abundance of wild species based

on effort, a very prevalent class of models.

The real data used for testing the model, and to demonstrate some practical interpre-

tations, are from the municipality of Ringerike in southern Norway. Killed at age data

are available from 1988 till 2012 in combination with hunter observations. The estimates
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show a moose population size rapidly increasing in the period from 1988 till its peak in

1993 at a posterior mean population size of approximately 3900 individuals. Thereafter,

in line with large hunting yields, reduced reproductivity rate and increased rate of natural

mortality, the population size declined rapidly till an estimated pre-harvest population size

of approximately 1700 individuals in year 2000. Thereafter the total population size has

been estimated as quite stable, but with a declining trend over the last couple of years.

Usually the natural (non harvest) mortality rate is assumed fixed and known when

cohort analysis methods are used for estimating abundance of wild species. The model

presented in this study is capable of producing reliable, and to some extent practical

beneficial, posterior distributions for the natural mortality rate based on an informative

prior distribution and an adequate amount of data. These posterior distributions for

natural mortality rates indicate surprisingly high rates for the years around 1993.
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Sammendrag

(Norwegian summary)

Populasjonene av en rekke ville arter, s̊avell fisk som pattedyr, blir hardt beskattet gjennom

jakt og fiske. For forvaltningen av slike arter vil sikre bestandestimater være et verdifullt

verktøy. I tilfeller hvor aldersregistreringer av uttaket er tilgjengelig benyttes modeller

kjent som ”kohort-analyse” regelmessig. I fiske-forvaltningen har ulike Bayesianske mod-

eller blitt utviklet gjennom de siste 20 år.

I denne studien presenteres og evalueres en Bayesiansk modell for å estimere be-

standsstørrelse hos elg. Modellen kombinerer prinsipper fra analyse av diskrete tidsserier,

hvor klassisk kohort-analyse utgjør hoveddelen, og prinsipper for analyse av kontinuerlige

tidsserier basert p̊a jegerdata fra de enkelte jaktsesongene. Analysen i kontinuerlig tid tar

sikte p̊a å finne alder- og års-spesifikke uttrykk for jaktdødelighetsraten til elg. I analysen

av den diskrete tidsserien er jaktuttaket sett p̊a som en binomialt fordelt variabel, med

populasjonsstørrelsen før jakt som ”antall-parameter” og jaktdødeligheten utledet i anal-

ysen gjennom kontinuerlig tid som ”sjanse-parameter”. Alle basis-prinsippene er kjent fra

tidligere studier, men måten prinsippene er kombinert p̊a er, s̊a langt forfatteren kjenner

til, en nyvinning.

Modellen fungerte svært tilfredsstillende n̊ar den ble testet mot simulerte populasjoner

med kjente parametere. Med grunnlag i ekte data ble modellen testet gjennom kryss-

validering (cross-validation) basert p̊a data i romlige (spatial) undergrupper. Modellen

fungerte gjennomg̊aende svært tilfredsstillende ogs̊a i disse testene. Imidlertid ble et

avvikende forhold avdekket gjennom bruk av data fra ulike tidsperioder. Jegernes es-

timerte evne til å oppdage elg er avhengig av hvilken tidsperiode datagrunnlaget hentes

fra. Problemet bør ikke forhindre at modellen taes i bruk, men avviket bør utredes yt-

terligere. Dersom man finner en tilfredsstillende løsning kan det f̊a følger for en rekke

metoder hvor populasjonsstørrelser estimeres med grunnlag i jakt-/fiske-innsats.

Dataene benyttet i denne studien kommer fra Ringerike kommune i Buskerud. Data

fra aldersregistreringer og jegerobservasjoner er tilgjengelige fra 1988. Estimatene viser

en elgbestand i rask vekst fra 1988 til 1993 da elgtettheten n̊adde toppen med en pos-

teriori gjennomsnittlig totalpopulasjon p̊a ca. 3900 elg før jakt. Etter dette, samtidig

med at jaktuttakene var høye, den estimerte naturlige dødelighetsraten var høy, og re-

produksjonsraten (kalveraten) minket, falt elgtettheten jevnt frem til år 2000, da estimert
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bestandsstørrelse før jakt var p̊a ca. 1700 elg. Etter dette har den beregnede elgtettheten

vært relativt stabil, dog med en markert nedgang de siste par årene.

N̊ar kohorts-analyse benyttes for ville arter er det er vanlig å anta at den naturlige

dødelighetsraten er konstant og kjent. Modellen som presenters i denne studien gir tro-

verdige, og i stor grad praktisk nyttige, posteriori fordelinger for den naturlige dødelighetsraten.

Riktig nok må informative ”prior”-fordelinger benyttes, og datamaterialets størrelse må

være betydelig. Beregningene av den naturlige dødelighetsraten viser overraskende store

verdier for årene rundt 1993.
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Preface

Killed at age data for moose have been an essential part of my profession for the last

decade as an employee at the management agency Faun Naturforvaltning AS. Variations

of the model presented in this study were routinely applied to several moose populations

in southern Norway, including the Ringerike moose population. As time went by my in-

terest for the theoretical statistical aspects of the model, and statistics in general, became

dominant compared to biological challenges. Eventually this led me to apply for a Master

degree in Applied Statistics at Norwegian University of Life Sciences (UMB).

In the present thesis a draft for a scientific paper focusing on the statistical aspects of

the method constitute the bulk. As an introduction to the paper there are added some

thoughts of how improved statistical methods might contribute to practical moose man-

agement, and possibly also to the management of other species. Further, the introduction

contains some paragraphs about Bayesian statistic with emphasis on Marcov Chain Monte

Carlo sampling, since these methods are essential in the present study.

My supervisors Trygve Almøy and in particular Solve Sæbø have been most helpful when-

ever I have had questions during my period as student. Even more importantly, during

my professions as a biologist, I was inspired by them to study statistics, in particular as

a consequence of Solves’s totally unselfish contributions to the development of the model

presented in this study.

The data from Ringerike exist due to meticulously registrations performed by hunters

over a period of 25 years, for which their reward is restricted to my heartfelt thanks. I

am also grateful to my former employer, Faun Naturforvaltning AS, for providing me the

opportunity to work with the theme and making all data easily available.

Åsmund P̊alerud has made a huge contribution to my knowledge and engagement by

teaching me the practical age determination technique and basic principles for cohort

analysis.

Finally I will give Hans Bergan, former secretary for the Ringerike Wildlife Board, a

big thanks. He has been the driving force for collecting killed at age data in Ringerike.

Further he has taught me all I know about practical moose management, which in the

name of justice might be glaring inadequate, at least if judged by some hunters.

Fyresdal, May 2013

Lars Erik Gangsei
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Chapter 1

Introduction

Are moose population size estimates demanded?

Results from a preliminary version of the model presented in this study was an essential

foundation for advises regarding moose management given by the author in his former

carrier as consultant in the management agency Faun Naturforvaltning AS. The feedback

from the customers was good and the population size estimates derived from the model

were regarded valuable. The need for methods providing absolute population size estimates

for moose, and other deers-species (Cervidae), is also emphasized by others, see for instance

Pedersen (2009, pp.27–28).

The model described in the present study should, in combination with the large data-

set from Ringerike, form a solid basis for further biological research on moose, and thereby

contribute with valuable knowledge for larger scale areas. In the following sections possible

applications for the model are outlined.

Moose population - Costs and assets

During the second half of the 20th century the moose density in south-eastern Norway

increased sharply as a result of changed harvesting strategies and higher food-production

(Direktoratet for Naturforvaltning, 1995). Currently moose is the most important hunting

game in Norway, at least if measured as meat yield.

Moose populations are managed primarily by the municipalities and the landowners.

Various municipalities and landowners may have different targets for their management.

A consensual ideal target is a moose management which maximizes the benefits and min-

imizes the cost for society. However, in practice this ideal comes with a great variety of

1



2 Introduction

interpretations.

A common management goal, in order to preserve moose hunting as a valuable asset,

is to stabilize moose population sizes at levels where they contribute with large and sus-

tainable hunting yields. A major challenge in this context has been a generally decreasing

production capacity in the moose populations over the last two decades, probably caused

by density dependent factors (Solberg et al., 2006).

Moose populations contribute with substantial costs for society. The most important is

traffic accidents involving moose (Solberg et al., 2009). There is a tight connection between

moose density and the expected number of traffic accidents involving moose (Rolandsen

et al., 2011). In some areas damage from moose browsing on young pine (Pinus sylvesteris)

forest causes large economical losses for landowners (Direktoratet for Naturforvaltning,

1995). Over-harvesting of some tree species might have important influence on ecosystems

and their biodiversity (Aanderaa et al., 1996). Parasites like deer ked (Lipoptena cervi)

and sheep tick (Ixodes ricinus), both nuisances and potentially dangerous for humans,

have their main hosts in the deer family. In practice moose is a crucial host for deer ked

in Scandinavia (Välimäki et al., 2010), whereas sheep tick has a wider specter of hosts

(Jaenson et al., 2012).

Due to these considerable costs, the main management policy in south-eastern Norway

over the last two decades has been to reduce moose density. This reduction must be

carried out through hunting since the population sizes of natural moose predators, wolf

(Canis lupus) and brown bear (Ursus arctos), are insufficient to regulate the moose density

over large areas (Wabakken et al., 2011, Tobiassen et al., 2012).

If, and from a political point of view there certainly exist an ”if”, the moose management

should aim at managing the moose population in a manner where the gain for society is

maximized, the need for further knowledge is substantial.

From general biology its known that to some extent the production capacity in the

moose population will be density dependent. However, quantified knowledge about the

interactions between moose density and production capacity is scarce. Some questions in

need of quantified answers are:

� When moose density increases, will production capacity decrease steadily or do

thresholds exist?

� Are time-lags present for the interaction between moose density and production ca-

pacity? If so can they be quantified?

� Some areas might be more productive areas regarding moose than others. Which
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factors are decisive for the ”moose production capacity” in an area?

� To what extent do the composition of the hunting yield influence subsequent years

moose population, and its production capacity?

Questions similar to the ones listed above might be asked for the interactions between

moose density and traffic-accidents involving moose, moose density and forest damage,

moose density and the prevalence of deer ked and sheep tick, etc.

The theme for this thesis is statistic and not biology. Therefore it will be made no

attempt to make the list of questions exhaustive. Neither will the questions listed above

be answered. However, answering these kind of questions prerequisite reliable population

size estimates, like the ones obtained from the model presented in this study.

Further work - development of the model

Validation on other moose populations

Through Faun Naturforvaltning AS killed at age data are available for a number of munic-

ipalities in southern Norway. However, the data-series from Ringerike are the better ones

in the sense of having large average annual hunting yields, covering the longest period of

time and containing killed at age data close to completeness. Consequently, using data

from other municipalities in southern Norway for model validation is anticipated to be of

limited utility.

Norwegian Institute for Nature Research (NINA) disposes killed at age data for several

areas in Norway. Of special interest is the data-series from the municipalities Grane, Vefsn

and Hattfjelldal in the county of Nordland in Northern Norway, where killed at age data

are available from 1967, see for instance Solberg & Sæther (1999). Testing the model on

these data would be anticipated to contribute substantially to the model’s validity.

Model adjustment for areas lacking killed at age data

Hunter observations are present for all parts of Norway. Most of these data are archived in

the the National deer register, at the website www.hjorteviltregisteret.no (National deer reg-

ister, 2013), where the access is free. Hunter observations contain registrations of number

of hunting days, and the number of observed moose in different age-, sex- and reproductive

categories. Hunter observations give valuable information about sex ratios, reproduction

rates and relative changes in moose density.
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Killed at age data is a prerequisite for the model presented in this study. The limited

prevalence of killed at age data for moose, and most other species, restricts the imple-

mentation of the model. Even if killed at age data lack for most areas, all municipalities

have registrations of the total hunting yield, where the individuals are classified as calves,

yearlings or older. Of course all individuals registered as ”older” had a certain age when

they were shot, this age is just unknown. By handling these unknown ages as ”missing

data” an adjusted version of the model presented in this study can be applied to areas

lacking killed at age data. It might be necessary to use informative priors for some of the

parameters, and especially the new variable, i.e. the age distribution in the hunting yield.

It is also likely that parameter estimates from areas lacking killed at age data will have

larger variability than estimates from areas where killed at age data are present.

Migration, natural mortality and production capacity

Surveys on moose marked with GPS- and/or radio collars in Norway generally show a

clear pattern with well defined and stable home-ranges for adult moose. In many areas

the majority of individuals has separate ”summer-” and ”winter-areas”. In the present

study population sizes during the hunting seasons are analyzed. Then seasonal moose

movements may be ignored since the moose only at rare occasions will be in the ”winter-

areas” during the hunting season. True migration, i.e. permanent shift of home-range, is

a matter of greater concern. When the offspring is chased from their mothers, at the age

of approximately one year, they tend to establish their new home-ranges a considerable

distance away from their mothers home-range. Moose in the county Nord-Trøndelag showed

a pattern where 50% (n = 20) migrated, i.e. established their home-range apart from their

mothers (Rolandsen et al., 2010, pp. 73− 74). Even though the typical distance between

home-ranges for offspring and mothers is less than 70 km, the probability of offspring

establishing home-range fully or partly in a neighbouring municipality is considerable.

Even if the migration is random in space, a situation with different moose-densities

among neighbouring municipalities, would lead, or at least be expected to lead, to net

immigration in the areas with the lower moose density and vice versa. In Gangsei (1999)

an attempt to estimate the net migration size was carried out. The basic idea was to

estimate the net migration as the difference between cohort sizes for calves estimated by

basic cohort analysis, and estimates based on population size for adult females (by cohort

analysis) and reproduction rates as observed in hunter observations. These calculations

show a net emigration from Ringerike in the period from 1988 till around 1992 followed

by a period with high immigration during most of the 90-s. This pattern seems intuitively
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right since Ringerike had relatively low hunting quotas during the 80-s and high quotas

during the 90-s compared with its neighbouring municipalities.

However, the migration estimates from Gangsei (1999) have several weaknesses. The

estimates are based on a fixed and non-stochastic natural mortality rate at 5% between

hunting seasons for all age-classes and years. As demonstrated in the present analysis,

this assumption is dubious at best. Secondly Gangsei (1999) seems to underestimate the

population size, which probably causes too high estimates for immigration during the 90-s.

Even though the migration estimates from Gangsei (1999) might be criticised, a natural

next step for the present study is to model migration as outlined there. A likely outcome

would be lower estimates for the natural mortality rate in years around 1993, combined

with substantial immigration in the following years.

Statistics Norway’s registrations of moose perishing from natural causes (Statistics

Norway, 2013) are divided into 7 different categories. For most of these categories, for

instance individuals killed in traffic incidents, the registrations are assumed to be close to

exhaustive. However, for a couple of categories, ”poaching” and ”other causes”, it is likely

that just an unknown fraction of the real number of deaths is registered.

There are several opportunities for further investigation of the relationship between

results from Statistics Norway and the estimated number of natural dead moose. These

options seems to be suitable in an biological context, i.e. if the goal is to investigate

variation in natural mortality among moose.

Killed at age data contain huge amounts of information unexploited in the present

study. Under a Bayesian regime it should be straight forward to apply carcass-weights

to all individuals in the population, based on carcass-weights from the hunting yield as

registered in the killed at age data. Then estimates for meat production per -cohort, -age-

class, -year etc. would be achievable. Such estimates would be interesting by virtue of

themselves. Of even greater interest is the interaction between production estimates and

-density, -age distribution, -sex ratio, etc. in the moose population.

Transferability to other species

The origin of cohort analysis is fishing management, and model improvement for cohort

analysis are attributed primarily to research on fish stocks. Cohort analysis forms the man-

agement foundation for some fish stocks of large economical interest. Even though data for

effort might be present for commercial fisheries, the fisheries lack data corresponding to the

hunter observations present for moose. Consequently some of the results from the analysis

in this study, especially the results regarding the variations in natural mortality rate, and
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the results showing discrepancy when assuming constant instantaneous observation rate,

might shed some new light on the models used for fish and possibly also other species. An

equal reasoning might be applied to the huge class of population abundance models, not

necessarily relying on cohort analysis, using effort as an explanatory variable.
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Bayesian statistics

Background

This section lists an overview over some basic principles and methods in Bayesian statistics

and estimation, with emphasis on Marcov Chain Monte Carlo (MCMC) sampling. MCMC

is not a Bayesian method per se, but is used extensively in Bayesian estimation. A lot of

the principles presented are from canonical studies. However, the whole section might be

regarded as a brief overview of chapters 1 to 5 in Gilks et al. (1996), and central parts of

Dellaportas & Roberts (2003).

Bayesian inference

The term ”Bayesian” refers to Thomas Bayes (1702-1761), who proved a special case of

what is now known as Bayes’ theorem:

P (A|B) =
P (B|A)× P (A)

P (B)

In classical frequentist statistics ”A” and ”B” are seen as events. Bayes’ theorem shows

the connection between the conditional and unconditional probabilities for the two events

”A” and ”B”.

Under a Bayesian inference the elements in Bayes’ theorem are interpreted as probabil-

ity density functions (pdf-s). A common notation is to denote ”parameters” by θ, ”data”

by y, and use π as function indicator, giving:

π(θ|y) = π(y|θ)× π(θ)

π(y)

The probability density function π(θ|y) is known as the posterior distribution. Notice

that the posterior distribution has the interpretation probability of parameter given data,

which is the exact target for most statistical analyses. A related interpretation is also

common, though slightly erroneous, for frequentist confidence intervals, a point emphasized

by a lot of Bayesian statisticians.

The posterior distribution is a function of π(y|θ), known as the likelihood, π(θ), known

as the prior, and π(y), known as the marginal likelihood.

The marginal likelihood is a q-dimensional integral, where q is the dimension of θ.

The marginal likelihood might be viewed as a constant making sure that the posterior
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distribution integrates to 1. Luckily, since calculation of the marginal likelihood often

is impossible or extremely demanding, analysis of the marginal density is usually not

really required, as analysis is rather driven by the posterior distribution, π(θ|y). However,
calculation of π(y) is nevertheless of importance in some situations. One example is the

need of numerical values for π(y) when dealing with issues of different candidate models.

The likelihood, π(y|θ), is the basis for traditional likelihood based frequentist statistics,

where it is analysed for instance to provide maximum likelihood estimates. The likelihood

also plays a major role in Bayesian statistics. Besides being a central part in Bayes’ theorem

the likelihood is central when calculating different model selection criteria, which will be

discussed briefly later in this section.

The last element in Bayes’ theorem is the prior, π(θ), a probability density function

reflecting the knowledge about parameters, θ, before the data, y, are taken into account.

The prior might be viewed both as the Achilles heel and Silver bullet in Bayesian statistics.

The prior has, even if we would want to avoid it, influence on the posterior distribution.

Since the prior, at least ideally, should be independent of data, there will always be a part of

subjectivity reflected in the prior. This is a major point in traditional frequentist criticism

of Bayesian statistics, see for instance Gelman (2008). On the other hand the prior offers

a well defined option for integrating knowledge not reflected in the data into the model.

Ideally the prior distribution should be a proper probability distribution, i.e. positive over

the whole parameter-space and integrate to 1. However, so-called flat priors are commonly

applied to parameters with undefined endpoints, making the priors improper. Mostly such

priors enables satisfactory results, under the prerequisite of a proper posterior distribution.

Several different types of priors, not always clearly distinguished, are utilized. The

following list shows some main groups, but is by no means exhaustive:

� Flat priors: That is priors ∝ 1. Even if the ”gut-feeling” is that such priors should

have no influence on the posterior distribution, this is not always the case. However,

their influence on the posterior distribution are mostly minor.

� Vague priors: Proper priors carrying little information.

� Jeffrys prior: Has the advantage of being invariant under reparametrization of the

likelihood.

� Informative priors:

– Empirical Bayes: Using data to find prior. ”Cheating, but sometimes effective”.
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– Using moments, i.e. expectation, variance or higher moments, from knowledge

independent of data, to find prior distributions.

– Using percentiles from knowledge independent of data, to find prior distribu-

tions.

� Conjugate priors: When using a conjugate prior the posterior distribution has the

same distribution as the prior, but with adjusted parameter-values based on data.

Models where the likelihood comes from the exponential family represent the majority

of distributions where conjugate priors are achievable. For all exponential family

likelihoods there exists a conjugate prior (Diaconis & Ylvisaker, 1979), which is often

also in the exponential family.

Decision theory - The Master Recipe for finding the Bayes solution

If we want to make decisions, a simple example might be to estimate (”decide”) a parameter

value, the Bayesian framework fits extremely well since there exist a well defined ”Bayes’

solution” (Carlin & Louis, 2011, pp.429–430, Hjort, 2012). This solution depends on known:

� Likelyhood function, π(y|θ),

� Prior function, π(θ),

� Data, y,

� Loss function, L(θ, a), where a is the ”action” or ”decision”

Then the Bayes’ solution, âB, is given by âB(y) = argmin(E(L(θ, a)|y)) (Hjort, 2012).
That is the estimator minimizing expected posterior loss. It might be shown that the Bayes’

solution is given by:

� âB(y) = ”Posterior mean” under quadratic loss funcion, i.e. L(θ, a) = (θ − a)2

� âB(y) = ”Posterior median” under absolute loss funcion, i.e. L(θ, a) = |θ − a|

� âB(y) = ”Posterior mode” under the loss function L(θ, a) = 0 if |θ − a| < C1 and

L(θ, a) = C2 if |θ − a| ≥ C1, as C1 → 0 and C2 > 0.

Different ”ad-hoc” loss functions might be applied to the ”Master Recipe”. For instance;

in practice moose managers might prefer an underestimation of true population size rather

than an overestimation. A loss function reflecting this fact might be added to the model
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presented in this study. Such a loss function would affect the Bayes estimates. However,

posterior means, medians etc. would be unaffected, they would just not be the the Bayes

estimates under the ”ad-hoc” loss function.

Marcov Chain Monte Carlo (MCMC) - sampling

Even though Bayesian statistics has many theoretical benifits, like the ”Master Recipe”

shown in the preceding paragraphs, benefits that have been well known for a long time, its

practical implementation was restricted to situations where analytical solutions were avail-

able, mainly very simple situations with conjugate priors or marginal likelihoods available

in closed form.

In the 1980s, there was a dramatic growth in research and applications of Bayesian

methods, mostly attributed to the discovery of Markov chain Monte Carlo (MCMC) meth-

ods, which removed many of the computational problems. This discovery, combined with a

rapid increase in computer power, changed the situation for Bayesian statisticians dramat-

ically. Suddenly the Bayesian framework offered a practical solution to complex models

which could be hard to solve using traditional frequentist methods.

The principle for MCMC-methods is, as stated by its name, a combination of Marcov

Chains and Monte Carlo sampling. The posterior distribution is not analyzed analyti-

cally, but the MCMC algorithm allows for sampling of values for θ from the true posterior

distribution, π(θ|y). By sampling an adequate number of values the posterior distribu-

tion can be analyzed by Monte Carlo methods. In addition the MCMC approach has a

straightforward solution for handling missing data, denoted ymis (Dellaportas & Roberts,

2003).

A Marcov Chain is memoryless. That is the next state of a variable θ (under Bayesian

inference the parameters, θ, might be viewed as random variables), denoted θn+1, of the

chain depends only on the current state, denoted θn, and not on the sequence of events

that preceded it, or formally it might be written; π(θn+1 = θ0|θn, θn−1, . . . , θ1) = π(θn+1 =

θ0|θn).
The main idea in MCMC sampling is to update the elements of θ and ymis in blocks or

one at a time by sampling values from the conditional posterior distribution assuming all

other elements of θ and ymis to be known. Even though the full conditional distribution

might be very complex for the full set of parameters it usually simplifies substantially for

each element updated through the Marcov Chain. Parts of the full conditional distribution

independent of the parameter- (or missing data) element in question should be excluded

from the sampling algorithm when a new value is drawn.
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Sampling directly from the full conditional distribution is known as Gibbs sampling

(Gelfand et al., 1990; Gelfand & Smith, 1990; Geman & Geman, 1984). Surprisingly often

it is possible to find prior distributions for a given parameter that is a conjugate prior to the

full conditional distribution. Then, as long as the prior in question is a known distribution,

sampling a value from the full conditional is straightforward. If a conjugate prior is not

available, Gibbs-sampling might still be possible, for instance by rejection sampling or

adaptive rejection sampling (Gilks & Wild, 1992).

Sometimes it is not possible to draw values directly from the full conditional distribu-

tion. By applying an algorithm known as Metropholis-Hastings algorithm (MH-algorithm)

(Hastings, 1970; Metropolis et al., 1953) to the Marcow Chain, the sampled values will

still come from the true posterior distribution. The algorithm is easily applied to Mar-

cov Chains, and makes use of a proposal function, commonly denoted q(·). The proposal

function samples a candidate value, denoted θp for the parameter-element (or elements) in

question, based on the current state, denoted θn, of the element. The candidate value is

accepted with probability as shown below. If θp is accepted then θn+1 = θp, and if θp is

not accepted then θn+1 = θn.

P (θp is accepted) = min

(
1,

π(y|θp) · π(θp) · q(θn|θp)
π(y|θn) · π(θn) · q(θp|θn)

)
If the proposal-function is symmetric, i.e. q(θp|θn) = q(θn|θp), then the q(·)-terms in the

equation shown above are skipped. Then the algorithm is a pure ”Metropolis” algorithm.

There are a number of different principles for making effective proposal functions. If the

acceptance rate, i.e. the probability that a candidate value is accepted, is too high, mixing is

slow due to ”small steps” and high autocorrelation in the Marcov Chain. On the other hand

if the acceptance rate is very low, then mixing is also unsatisfying since the same parameter-

values tend to be sampled for several iterations. Under some ideal conditions acceptance-

rates between 23% (dim(θ) → ∞) and 44% (dim(θ) = 1) are preferable (Gelman et al.,

1996).

In Bayesian MCMC-sampling it is fully acceptable to mix Gibbs-sampling and MH-

sampling. However, in my experience, effort should be allocated to making Gibbs-sampling

possible. For the model presented in this study Gibbs-sampling is possible for all param-

eter elements and missing data, a result of meticulous work for finding conjugating prior

functions.

The Marcow Chain has to be initiated, that is some initial values for θ and ymis must

be set. These initial values do not need to be close to the asymptotic value for the Markov

Chain. It can be shown that the asymptotic value for the Marcow chain is the true posterior
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distribution. When the Marcow Chain has reached the asymptotic level its said to have

converged. Values sampled prior to the time of convergence has to be eliminated from

the Monte Carlo analysis. The steps between initialization and convergence are commonly

known as burn-in period.

The results are evaluated through Monte Carlo methods, which might be most common

in, but not exclusive to, Bayesian statistic. First the burn-in period has to be excluded

from further analysis. There exist some formal methods for deciding how much of the

trace that should be regarded as burn-in. However, a common, and easy, way to decide

the length of burn-in is actually to ”analyse” a trace plot of the Marcow Chain in question

by eye, and ”see” where the chain converges.

The output from a Marcov Chain is potentially highly autocorrelated. Sometimes a

set of approximately independent estimates from the Marcov Chain is required. Then a

method called ”thinning” might be applied. Thinning is actually to pick values from the

Marcov Chain with a given interval between them. The interval size should be set so the

sample autocorrelation for the selected values is approximately zero.

Parameter estimates are mainly presented as point estimates, Credibility intervals or

percentiles. Credibility intervals are based on MCMC output and are analogues to the

frequentist Confidence interval. The limits for a 100(1 − α)% credibility interval is given

by the two values (or average of two values) from the output excluding 100(α/2)% and

100(1− α/2)% of the output values when sorted in increasing order.

Model selection - Deviance Information Criteria (DIC)

There are numerous methods for model selection. When comparing k different models,

M1, . . . ,Mk, under Bayesian inference, π(Mj), j = 1, . . . , k, might be seen as the prior

(unaffected by data) probability of model Mj being the best model. It might be shown

(Hjort, 2012), that the posterior probability for model Mj, π(Mj|y) is given by:

π(Mj|y) =
πj(y) · π(Mj)∑k
i=1 πi(y) · π(Mi)

, j = 1, . . . , k

where:

π(y) =

∫
θ

π(y|θ)π(θ)δθ, i.e. the marginal likelihood for the given model.

The setup shown above is excellent and has a very nice interpretation of π(Mj|y) as the
probability of model Mj being the best model conditional on data and prior belief. However,
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for complex models a serious matter occurs since this setup relies on the ability to calculate

the marginal likelihoods.

Mostly, as is the case of the model presented in this study, computation of the marginal

likelihood is not possible. Then so-called penalized likelihood criteria might be used. Ex-

amples are the Akaike Information Criteria (AIC) (Akaike, 1974), Bayesian Information

Criteria (BIC) (Schwarz, 1978) and Deviance Information Criteria (DIC) (Spiegelhalter

et al., 2002). The main principle for all these criteria is that they reward good model fit,

but penalizes the model if to many parameters are included.

For Bayesian models based on MCMC-output DIC is commonly applied since it is easily

computable. The DIC is used for the model selection in this study and is calculated as:

DIC = pD +D

where:

D = D
(
θ̂
)
, D

(
θ
)
= D

(
θ̂
)
, pD = D −D

(
θ
)

D(θ) = −2 log(p(y|θ)) : ”The deviance”,

θ̂ : ”The output”

All elements above might be calculated from MCMC-output. A good model fit causes

small values for D, and D will decrease as more parameters are added to the model, at

least if the models are nested. On the other hand pD increases as number of parameters

increase. Finally the model with lowest DIC-value should be selected.
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A Bayesian method for estimating moose
(Alces alces) population size based on hunter

observations and killed at age data.

Lars Erik Gangsei

Abstract: Lots of wild species, fish and mammals, are heavy harvested through fishing

and hunting. Reliable population size estimates are valuable management tools for these

species. In cases where killed at age data are available models outlined under the framework

known as cohort analysis or virtual population analysis (VPA) are used extensively.

In this study a model using a Bayesian approach for estimating moose population size

is examined. The model combines principles from discrete time series analysis, where basic

cohort analysis based on killed at age data constitutes the bulk, and analysis in continuous

time for each hunting season based on data from hunter observations.

The model performed very well when tested against simulated populations with known

parameter values. The real data are gathered from the municipality of Ringerike in southern

Norway. For these data tests are conducted through spatial cross-validation and temporal

test-set validation. Generally the model performed well in these tests. However, a con-

siderable issue is revealed by comparing results from different temporal subsets, since the

hunters ability to spot moose seems to develop over time (years) and/or depend on moose

density. This issue should not terminate the practical implementation of the model.

Keywords: Cohort analysis, moose, Alces alces, Bayesian, Markov Chain Monte Carlo

(MCMC)
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Introduction

The model described in this study consists of principles known from previous surveys, but

the way they are assembled in a Bayesian framework is, to the authors knowledge, inno-

vative. The main principle is cohort analysis which requires killed at age data. Auxiliary

information from hunter observations is incorporated in the model.

Population estimates from cohort analyses are widely used on fish populations (Hilborn

& Walters, 1992; Quinn & Deriso, 1999). Over the last two decades the use of Bayesian

methods has increased both within the framework of cohort analysis (Quinn & Deriso,

1999) and for other methods in population ecology (King et al., 2009). Cohort analysis has

also been used for terrestrial mammals, including moose and red deer (Cervus elaphus)

in Norway, see for instance Ueno et al. (2009), Solberg & Sæther (1999) and Mysterud

et al. (2007). Other articles of essential importance for outlining basic parts of the model

presented in this study are Ricker (1940), Dupont (1983) and Deriso et al. (1985).

The regulation of moose density in Norway is predominantly carried out through

hunting since the population sizes of natural moose predators, wolf (Canis lupus) and

brown bear (Ursus arctos), are insufficient to regulate the moose density over large areas

(Wabakken et al., 2011, Tobiassen et al., 2012). The main managers and policymakers are

municipalities and landowners whose main instrument for controlling moose density devel-

opment is the hunting quotas. The quotas should be set in a manner where the balance

between costs and benefits from the moose population is assessed. In this process reliable

estimates for moose density and production capacity would be valuable tools.

Preferably such estimates should be derived from hunter observations which are avail-

able for all parts of Norway at the website www.hjorteviltregisteret.no (National deer reg-

ister, 2013) where the access is free. Hunter observations contain registrations of number

of hunting days, and the number of observed and shot moose in different age-, sex- and re-

productive categories. Hunter observations are currently widely utilized in practical moose

management. The prevalence of killed at age data is, opposed to hunter observations,

limited.

The Bayesian framework offers several benefits compared to alternative methods. One

of them is the ability to utilize ”all” commonly available data. Further the method elu-

cidates estimate uncertainties, a possibility which is absent, or at least cumbersome, for

the bulk of alternative methods. Finally the Bayesian framework, and its utility to handle

missing data, forms a suitable basis in order to avail a slightly adjusted version of the

model in areas lacking killed at age data.
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Material and Methods

Data

The model is tested on data from Ringerike municipality in Norway. All statistics are

performed using R 2.15.1 (R Core Team, 2012), including the packages ”LearnBayes”

(Albert, 2011) and ”xtable” (Dahl, 2012). All data and code can be received from the

author upon request.

Ringerike wildlife board is the origin for all data. Hunter observations are available in

the period from 1984 till 2012 and killed at age data are available in the period from 1988

till 2012. The time span used for testing the model is limited to the period covered by the

killed at age data, i.e. 1988 till 2012. The hunter observations for the period 1984 till 1995

are available as paper copies, and for the latter years via the National deer register. The

killed at age data are received via the management agency Faun Naturforvaltning AS.

The ordinary hunting season in Norway starts on September 25th and ends on October

31th. For the years 1997 and 2008 till 2012 the hunting seasons were extended with

an extra winter hunting season in December. Pooled data for both ordinary and winter

hunting seasons are used for these years. Data from the National deer register contains

pooled values for the years 2008 till 2012. For 1997 data for the winter hunting season

from paper copies are added to the data from the National deer register.

Hunter observations are registered for each hunting field. Only hunting fields that have

been administrated from the Ringerike wildlife board for the whole period in question is

included in the study. Hunting fields are organized in so-called valds (Norwegian term).

Each vald is an administrative unit containing at least one hunting field. When validating

the model by spatial subsets the data are split according to the 22 valds present by 2011.

The age determination of moose shot during hunting seasons has been conducted by

Åsmund P̊alerud in the period from 1988 till 2000 and by Faun Naturforvaltning AS in the

period from 2001 till 2012. All individuals registered as old animals (2 years or older) by

hunters, and individuals classified as yearlings by hunters, but whose incisors by visually

inspection are classified as older, have their age determined by counting the number of

annuli in the cementum of their incisors (i.e. Rolandsen et al., 2008).

The killed at age data are not totally complete. In addition some of the individuals

in the killed at age data are not counted on the hunting quota for the actual vald due

to bad condition, inflammations, wounds etc., and thereby not registered as shot in the

hunter observations. This causes some minor discrepancy between killed at age data and

number of killed from hunter observations. In total 13740 moose are registered shot from
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the hunter observations. The killed at age data contains data for 3994 calves and 9746

adult moose, i.e. 95.7% of the total hunting yield. For the adult moose 9559 (98.1%) are

of known age and 187 of unknown age. These individuals are distributed according to the

sex- and age distribution of adult moose with known age for the concerned valds and years.

The areas for the different Valds are obtained from an online map (Ringerike municipal-

ity, 2012). Statistics Norway registers the number of reported moose perishing from other

causes than ordinary hunting for all municipalities in Norway (Statistics Norway, 2013).

These registrations are not used directly in the model, but contributes in the validation

process as independent benchmarks.

Model

Discrete Time Hazard Model

The model for population estimation presented in this study is based on the assumption

of no net migration. In addition no assumptions on, or estimates of, reproductivity rate

are made.

Let I denote the number of age-classes and let J denote the number of years in the

analysis. Further let NI×J denote the I × J matrix of pre-harvest population sizes for

all age-classes and across all years. Similarly, let KI×J denote the matrix of moose killed

during hunting seasons, and D(I−1)×(J−1), denote the matrix of moose perishing between

hunting-seasons from causes other than hunting. Both N and D are unobservable vari-

ables, but K is an observable variable containing the killed at age data.

All individuals with coinciding birth year belong to the same cohort. There are L =

I + J − 1 cohorts present in the analysis. Let l = 1 denote the youngest cohort, i.e. the

cohort with birth year J and let l = L denote the oldest cohort, i.e. the cohort of age I

in year 1. Each cohort is present in the analysis for a given number of years, Ml, where

Ml = min(l, L+ 1− l, J, I), for 1 ≤ l ≤ L.

Some parts of the model are easier explained using a complementary notation to

the ”age-year” (ij)-notation. The complementary notation, ”cohort-years present” (lm)

is marked by ∗. The relationship between the two notations is illustrated by equation (1)

where elements for cohort l = 3, i.e. the cohort with birth-year J − 2, is underlined. The

numeric relationship between the two notations is given by equation (2). In both equations,

(1) and (2), X denotes any variable having an ”age-year” structure.
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X =



X11 . . . X1(J−2) X1(J−1) X1J

... X2(J−1)
...

... X3J

...
...

XI1 . . . . . . . . . XIJ


,

X∗ =



X∗
J1 . . . X∗

31 X∗
21 X∗

11
... X∗

32

...
... X∗

33
...

...

X∗
L1 . . . . . . . . . X∗

I(min(I,J))



(1)

X∗
lm = X(max(0,l−J)+m)(max(0,J−l)+m), l ≤ L,m ≤ Ml, (2)

Under the assumption of no net migration for any cohort the deterministic relationship

between pre-harvest population sizes (N ), number shot during the hunt (K), and the

number of natural dead individuals (D) is given by equation (3).

Nij = N(i+1)(j+1) +Kij +Dij, 1 ≤ i < I, 1 ≤ j < J,

or equivalently:

N∗
lm = N∗

l(m+1) +K∗
lm +D∗

lm, 1 < l < L, 1 ≤ m ≤ Ml − 1,

(3)

Equation (3) is the basis for all cohort analysis, and simply shows that the difference

in cohort size from one year to another equals the number of deaths in the intermediate

period. All natural mortality is assumed to take place between hunting seasons.

Under this framework there are three different and disjunct possible outcomes for a

random moose; (i) it might be shot, (ii) it might die of natural causes, or (iii) it might

still be alive after the hunting season in year J . This framework fits into a discrete time

hazard model (see Congdon, 2010, pp.435–441) for each cohort.

For all moose, conditional on being alive at the start of the time period in question, the

probabilities of being shot, pI×J , or suffering a natural death, ν(I−1)×(J−1), are assumed

equal and independent for all individuals from the same cohort. These assumptions lead

to binomial distributions for the variables K and D as shown in equations (4) and (5).
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K∗
lm ∼ Bin (p∗lm, N∗

lm) , 1 ≤ l ≤ L, 1 ≤ m ≤ Ml, (4)

D∗
lm ∼ Bin (ν∗

lm, N∗
lm −K∗

lm) , 1 < l < L, 1 ≤ m < Ml, (5)

Let pc∗lm and νc∗
lm denote the probabilities for an individual from cohort l of being shot

or die a natural death in the m-th year the cohort is present in the analysis. Then pc∗lm
and νc∗

lm are given by equations (6) and (7), equations derived by minor expansions of the

equation given in Congdon (2010, p.436).

pc∗lm = p∗lm

m−1∏
n=1

(1− p∗ln)(1− ν∗
ln), l ≤ L,m ≤ Ml (6)

νc∗
lm = ν∗

lm(1− p∗lm)
m−1∏
n=1

(1− p∗ln)(1− ν∗
ln), 1 < l < L, m < Ml (7)

The cumulative probabilities for a moose from cohort l of being shot and of suffering

a natural death, denoted pCC
l and νCC

l respectively, are given in equation (8). Cohorts

reaching an age larger than I before year J , i.e. cohorts where l > I, reach the age I

in the year L − l + 1. Notice that for these cohorts elements from [pI(L−l+2), . . . , pIJ ] and

[ν(I−1)(L−l+1), . . . , ν(I−1)(J−1)], i.e. elements from the oldest age-class in succeeding cohorts,

are included in the cumulative probabilities. These inclusions are justified by the fact that

if an individual should reach an age older than I it would still be exposed to both hunting

and natural mortality.

pCC
l =

Ml∑
m=1

pc∗lm + I(l) ·
J∑

j=L−l+2

pcIj, 1 ≤ l ≤ L,

νCC
l =

∑
m

νc∗
lm + I(l) ·

J−1∑
j=L−l+1

νc
(I−1)j, 1 < l < L,

where:

I(l) =

{
1 if l > I

0 else

(8)

The initial population size for cohort l, N∗
l1, consist of (i) shot moose, KCC

l =
∑

mK∗
lm

(known number), (ii) natural dead moose, DCC
l =

∑
mD∗

lm (unknown number), and (iii)
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”survivors”, i.e. moose still alive post hunt in year J , denoted N s
l (unknown number).

Then obviously N∗
l1 = KCC

l +DCC
l +N s

l holds for all cohorts. Further these assumptions

lead to a negative binomial distribution for the sum of natural dead moose and survivors

if KCC
l > 0 and a geometric distribution if KCC

l = 0 as given in equation (9).

(DCC
l +N s

l ) ∼

{
Neg.Bin

(
pCC
l , KCC

l

)
, if KCC

l > 0

Geom
(
pCC
l

)
, if KCC

l = 0
, 1 ≤ l ≤ L (9)

Let d+
l denote a vector consisting of the numbers of natural dead moose and survivors

from cohort l, i.e. d+
l = [D∗

l1, . . . , D
∗
l(Ml−1), N

s
l ]

t. Further let νC+
l denote the probabilities

associated with d+
l , i.e. ν

C+
l = [νc∗

l1 , . . . , ν
c∗
l(Ml−1), 1−pCC

l −νCC
l ]t. Under these assumptions

d+
l is a multinomal distributed variable as shown in equation (10).

d+
l ∼ Multinom

(
νC+
l , N∗

l1 −KCC
l

)
, 1 ≤ l ≤ L (10)

From (3) it is obvious that if N is known, so is D and vice versa. Consequently if d+
l

is known so is Nlm for all m.

Analysis in Continuous Time

During any random hunting season, j, the cumulative probability of a random individual

of age i of being shot by time t, pij(t), is modeled in continuous time, t (0 ≤ t ≤ hj), where

hj is the (known) hunting effort in year j, measured as number of hunting days per km2

hunting area.

The instantaneous probability for a random hunter of observing a moose still alive at

time t is assumed independent of age and year, denoted α, and referred to as instantaneous

observation rate. A practical interpretation of α is the expected number of moose observed

by a random hunter on a random day if the moose density is 1 moose per km2.

Further, the probability of a moose of age i in year j being shot, conditional on being

observed, is given by γjλi. Here γJ , referred to as year-specific hunting mortality, is a

vector of year dependent factors, and λI , referred to as age-specific hunting mortality, is a

vector of age dependent factors.

These assumptions lead to a constant hazard function, denoted gij(t), given in equation

(11), for a moose of age i in year j.

gij(t) = αγjλi, 0 ≤ t ≤ hj, 1 ≤ i ≤ I, 1 ≤ j ≤ J (11)
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Since the hazard function gij(t) is independent of t an expression for pij = pij(t = hj)

is easily derived from (11) (see Congdon, 2010, pp.414–418) and is given by equation

(12). Further, due to assumed independence between individuals of being killed during the

hunting season, the hunting yield, K, is binomial distributed as shown in equation (4).

pij = 1− exp (−αγjλi · hj) , 1 ≤ i ≤ I, 1 ≤ j ≤ J (12)

The model described in equations (11), (12) and (4) might also be written in an alter-

native way, involving augmented data (Tanner & Wong, 1987). This alternative, given in

equations (14) and (15), might look cumbersome. However, it enables conjugate prior dis-

tributions for all parameters under the Bayesian inference. Then Gibbs-sampling (Gelfand

et al., 1990; Gelfand & Smith, 1990; Geman & Geman, 1984) might be used for all param-

eters in the estimation algorithm. Dellaportas & Roberts (2003) describes attainment of

simple conjugate priors as one of two main justifications for using data augmentation, the

other one being handling of missing data.

Let the unobservable variable S1
I×J denote the number of observed moose for all age-

classes across all years. The yearly sums of S1, i.e. the total number of observed moose

across all age-classes, sJ , is observed every year. The change in moose density during the

hunting season is modelled to be proportional to the actual moose density at the time.

Consequently the average number of moose present during the hunting season across all

years and age-classes, N̄I×J , is given by equation (13).

N̄ij =

−Kij

(
log
(
1− Kij

Nij

))−1

, if 0 < Kij < Nij

Nij , if Kij = 0 or Kij = Nij

, 1 ≤ i ≤ I, 1 ≤ j ≤ J (13)

As stated earlier the instantaneous observation rate, α, is modelled to be constant.

Under these assumptions the numbers of observed moose, given in S1, are results of non-

homogeneous poisson processes as given in equation (14).

S1
ij ∼ Pois

(
αhjN̄ij

)
, 1 ≤ i ≤ I, 1 ≤ j ≤ J,

⇒ sj ∼ Pois

(
αhj

I∑
i=1

N̄ij

)
, 1 ≤ j ≤ J

(14)

A fraction, S2
I×J , of the observed moose, S1, is considered shot by the hunters. The

probability of a random observed moose of being considered shot is assumed to be equal
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for moose from all age-classes during each hunting season. These probabilities are given by

the year-specific hunting mortality, γ. Consequently S2 is a binomial distributed variable

as given in equation (15).

Likewise a fraction, K, of S2 is actually shot. The age-specific hunting mortalities, λ,

are assumed to be constant, giving a binomial distribution for K also shown in equation

(15). The last equation shown in (15) is a simple result of the first two equations, and

has no practical application, but offers a somewhat more intuitive interpretation of the

parameters λ and γ, since their product might be viewed as the probability of a moose

being shot conditional on being observed.

S2
ij ∼ Bin

(
γj, S1

ij

)
, i ≤ I, j ≤ J,

Kij ∼ Bin
(
λi, S2

ij

)
, i ≤ I, j ≤ J,

⇒ Kij ∼ Bin
(
λiγj, S1

ij

)
, i ≤ I, j ≤ J

(15)

Posterior distribution

A Markov Chain Monte Carlo (MCMC) approach is applied in order to estimate posterior

distributions for the unknown parameters, θ = {λ,γ, α,ν}, and to predict the missing

data, Ymis = {N ,D,S1,S2}. A general introduction to MCMC can be found in Del-

laportas & Roberts (2003). The MCMC algorithm enables simulations from the joint

posterior distribution for the unknown parameters, θ, and missing data, Ymis, conditional

on the observed data, Yobs = {K, s} and the prior distributions, π(θ,Ymis|Φ), where

Φ = {ϕλ
2 ,ϕ

γ
2 ,ϕ

α
2 ,ϕ

ν
2} denotes the prior hyperparameters. The hunting effort, h, is viewed

as a fixed and observed covariate. The general form of the joint distribution of θ and Ymis

conditional on Yobs and Φ, is given in equation (16).

π (θ,Ymis|Yobs,Φ,h) =
π (Yobs|θ,Ymis,h) · π (θ,Ymis|Φ)

π (Yobs,Φ)

∝ π (Yobs|θ,Ymis,h) · π (θ,Ymis|Φ)

(16)

In equation (16) π(Yobs|θ,Ymis,h) is known as the likelihood function. The likelihood

function might be rewritten as equation (17). The main idea in MCMC sampling is to

update the elements of θ and Ymis in blocks or one at a time by sampling values from

the conditional posterior distribution assuming all other elements of θ and Ymis to be

known, see Gilks et al. (1996, pp.75–79). Expressions for these full conditional posterior
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distributions will be shown in the following sections for all elements in θ and Ymis.

π (Yobs|θ,Ymis,h) = f4 (K|λ,γ, α,N ,h) · f14 (s|K, α,N ,h) (17)

The prior distributions, π (θ,Ymis|Φ), are given in equation (18). The hyperparameters,

Φ, are quite uninformative for α (ϕα = [10−4, 10−4]
t
). For γ and λ hyperparameters with

some vague prior information are chosen (ϕλ = ϕγ = [5, 5]t), whereas the hyperparameters

for ν are informative with prior median at 0.05 and prior 99%-percentile at 0.15, i.e.

ϕν = [2.96, 50.41]t.

λi ∼ Beta
(
ϕλ
1 , ϕλ

2

)
, 1 ≤ i ≤ I,

γj ∼ Beta (ϕγ
1 , ϕγ

2) , 1 ≤ j ≤ J,

νj ∼ Beta (ϕν
1, ϕν

2) , 1 ≤ j < J,

α ∼ Gamma (ϕα
1 , ϕα

2 )

S1
ij ∝ 1, 1 ≤ i ≤ I 1 ≤ j ≤ J,

S2
ij ∝ 1, 1 ≤ i ≤ I 1 ≤ j ≤ J,

(18)

Data augmentation

The missing data, Ymis, is updated through data augmentation where the conditional

posterior distributions for the elements S1 and S2 are categorical distributed as shown in

equation (19). For simplicity uniform prior distributions are used for S1 and S2, as shown

in equation (18). Since S1 and S2 both are categorical distributed variables with finite

sample spaces as shown in equation (19) the prior distributions as given in equation (18)

are proper probability distributions.

The number of observed moose, S1, is part of equations (14) and (15). The lower and

upper bounds for S1 are provided by S2 and s respectively. In equation (19) s̃1ij is the

possible outcomes for S1
ij conditional on S2

ij and sj with the associated probabilities q̃1
ij.

Likewise the number of moose considerd shot, S2, is part of equation (15) ”two times”.

Obviously every element of S2 has an upper limit given by the elements of S1 and a lower

limit given by the elements of K. In equation (19) s̃2ij is the possible outcomes for S2
ij

conditional on Kij and S1
ij with the associated probabilities q̃2

ij. Details for equation (19)

are given in Appendix 2.
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S1
ij ∼ Cat

(
s̃1ij, q̃1

ij

)
, 1 ≤ i ≤ I, 1 ≤ j ≤ J,

S2
ij ∼ Cat

(
s̃2ij, q̃2

ij

)
, 1 ≤ i ≤ I, 1 ≤ j ≤ J,

(19)

Parameter estimation

Generally the main goal for the MCMC algorithm is to estimate the posterior distribu-

tion for θ. In this study reliable estimates for the population size, N , is of even larger

importance.

Gibbs-sampling is used for estimating all parameters, θ. The Gibbs-sampling proce-

dure is simplified by implementation of conjugate prior distributions for all parameters in

question. Most of them are vectors of probability parameters for binomial distributed vari-

ables, see equations (15) and (5). The conjugate prior distributions for these parameters

are beta distributions as given in equation (18). The full conditional posterior distributions

for the parameters λ, γ and ν are new beta distributions given in equation (20).

λi ∼ Beta

(
ϕλ
1 +

J∑
j=1

Kij, ϕλ
2 +

J∑
j=1

(
S2
ij −Kij

))
, 1 ≤ i < I2,

λI2 ∼ Beta

(
ϕλ
1 +

J∑
j=1

I∑
i=I2

Kij, ϕλ
2 +

J∑
j=1

I∑
i=I2

(
S2
ij −Kij

))
,

γj ∼ Beta

(
ϕγ
1 +

I∑
i=1

S2
ij, ϕγ

2 +
I∑

i=1

(
S1
ij − S2

ij

))
, 1 ≤ j ≤ J,

νj ∼ Beta

(
ϕν
1 +

I−1∑
i=1

Dij, ϕν
2 +

I−1∑
i=1

(Nij −Kij −Dij)

)
, 1 ≤ j < J

(20)

It is also possible to simulate values for α using Gibbs-sampling. The full conditional

posterior distribution for α is a gamma distribution given by equation (21). Further details

are given in Appendix 2.

α ∼ Gamma

(
ϕα
1 +

J∑
j=1

sj, ϕα
2 +

I∑
i=1

J∑
j=1

(
N̄ijhj

))
(21)

Several models with different parameter restrictions are applied to the data. For all

models the length of λ is restricted to I2 = 3. That is all individuals of age corresponding

to I2 or older are assumed to have equal age-specific hunting mortality. Further all age-
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classes are assumed to have equal probability off suffering a natural death, that is νij = νj

for all i ≤ I. Additional simplifications are implemented by running the 23 = 8 model

combinations with assumptions about equal values for all elements in λ (i.e. I2 = 1), γ

and ν.

The conditional posterior distributions for γ, λ and ν are given by equation (20). In

the situations where all elements are assumed equal for γ and ν the parameters given in

equation (20) are calculated by summarizing across both year and age as demonstrated for

λI2 in equation (20).

Estimation algorithm

The estimation algorithm is an iterative algorithm consisting of data augmentation (step

4) and parameter estimation (step 5). Notice that equations (9) and (10) enables sampling

for all N
(w)
l1 and D(w) directly without any need of prior distributions for these missing

data.

1. Initiate θ0

2. Set initial value for N (0) and S2(0) consistent with (3) and (19),

3. Set the iteration number w = 1,

4. Data-augmentation,

(a) for S1(w) by equation (19),

(b) for S2(w) by equation (19),

(c) for N
(w)∗
l1 for 1 ≤ l ≤ L by equation (9),

(d) for D(w) by equation (10),

(e) deterministic calculation of N (w) by equation (3),

5. Parameter estimation by Gibbs-sampling,

(a) for λ(w) by equation (20),

(b) for γ(w) by equation (20),

(c) for ν(w) by equation (20),

(d) for α(w) by equation (21),

6. Increment w by one,
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7. Repeat steps 4 till 6 for W = nburn−in + nsim iterations.

8. The parameter estimates are obtained as the posterior means computed as the Monte

Carlo averages from the nsim values sampled after burn-in.

Simultaneous estimation of female- and male populations

Moose observed by hunters are separated in three different classes; calves, females and

males. These classes are indexed C , F and M respectively.

Calves is the youngest age group, i.e. for calves i = 1. The total number of calves from

both sexes observed each year, sC , is an observable variable. Since the vast majority of

calves are observed together with their mother, calves of both sexes and adult females are

assumed to have equal instantaneous observation rate, αF . Consequently the observed,

but not shot, number of calves of a given sex, might be viewed as a binomial distributed

variable as shown in equation (22), where the parametrization is set up for female calves.

(
S1F
1j −KF

1j

)
∼ Bin

(
N̄F

1j/N̄M
1j , SC

j −KF
1j −KM

1j

)
, 1 ≤ j ≤ J, (22)

The probability of a calf being shot conditional on being observed, γC , might vary

between years. Since the number of observed calves is observed directly, an age-specific

hunting mortality parameter for calves is redundant. Therefore the first elements of the

λ- vectors, λF
1 and λM

1 , belongs to the yearlings whose age-class is i = 2. Then, as a

consequence of equation (15), the number of calves considered shot equals the number of

shot calves, i.e. S2
1j = K1j for all j (years) and both sexes.

Since calves and females are assumed to have equal instantaneous observation rate, αF ,

the conditional posterior distributions for αF and αM are given by equation (23).

αF ∼ Gamma

(
ϕα
1 +

J∑
j=1

(
sFj + sCj

)
, ϕα

2 +
I∑

i=1

J∑
j=1

(
N̄F

ijhj

)
+

J∑
j=1

(
N̄M

1j hj

))

αM ∼ Gamma

(
ϕα
1 +

J∑
j=1

sMj , ϕα
2 +

I∑
i=2

J∑
j=1

(
N̄M

ij hj

)) (23)

The age of the oldest individual in the killed at age data differs between sexes, thus they

are given separate values for I. Values for λF and λM , and, γF and γM , are estimated

on the basis of age-classes older than calves and separately for each sex, and for calves γC

is estimated on the basis of pooled values from both sexes. Likewise, the natural mortality
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rate, ν, is assumed to be equal for the two sexes, and therefore estimated on the basis of

pooled values across age- and sex-classes.

Model validation

Four different methods are applied for model validation; (i) calculating Deviance Informa-

tion Criterion (DIC) (Spiegelhalter et al., 2002), (ii) testing the model’s ability to estimate

known parameters from simulated model populations, (iii) splitting the data into different

spatial subsets and evaluating the results by cross-validation, and (iv) splitting the data

into different temporal subsets and compare parameter estimates. Methods (ii), (iii) and

(iv) are described in the following sections.

Model selection, i.e. choosing the number of elements included in the parameters λ, γ

and ν, is primarily based on DIC-values for the real data set and the simulated populations.

Test variables

For the simulated populations and the cross-validation, different test variables are cal-

culated. For the simulated population parameters estimates are compared with known

values. In principle the same approach is used for the cross-validation in spatial subsets

where predicted values for observed moose, ŝ, are compared with known observations, s.

In general let nsim denote the number of simulations after the initial burn-in period

of the MCMC-algorithm. Further let θ̂x
nsim

denote the simulated results for parameter x

where x might be any element from θ, N or s.

Three different test variables are calculated. The test variables are (i) average estima-

tion error, ϵxµ, (ii) posterior variance, ϵ
x
σ, and (iii) Monte Carlo p-value, ϵxp . Equation (24)

shows the formulas for the test parameters in question.

The Monte Carlo p-value, ϵxp , is the p-value for the hypothesis θx = θx0 , where θx0 is

the true/observed value, tested on basis of θ̂x. If the estimate, θ̂x, is unbiased, ϵxp is

approximately uniform distributed between 0 and 1 (Besag & Clifford, 1991). The approx-

imation is a result of influence from the prior distributions. Further, if the approxima-

tion is ignored, Besag & Clifford (1991) states that for a sample of m different ϵxp-s the

test-variable −2 ×
∑

m log(ϵxp(m)) will be χ2
2m-distributed under the null hypothesis that

ϵxp ∼ Uniform(0, 1).
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ϵxµ = θ̂x − θx0 ,

ϵxσ = var(θ̂x − θx0) = var(θ̂x),

ϵxp = 2×min

0.5,

∑
n I
(
θ̂xn ≥ θx0

)
+ 1

nsim + 1
,

∑
n I
(
θ̂xn ≤ θx0

)
+ 1

nsim + 1


where:

I(argument) =

{
1 if argument is true

0 if argument is false

(24)

Simulated population

In the following description sex indexes are omitted. The model is tested by applying the

estimation algorithm to two simulated populations with known parameter values. The

parameters, θ, the initial adult population, [N21, . . . , NI1]
t, and the number of calves,

[N11, . . . , N1J ] for the full period, used in the simulation process, are set equal to the

posterior means from real data based on the ”full model” and the model with reduced ν,

respectively. The hunting effort, h, are taken directly from the real data.

Next the probabilities of being shot, p, are calculated by equation (12). Then the

initial hunting yield, [K11, . . . , KI1]
t, and the initial number perishing from natural causes,

[D11, . . . , D(I−1)1]
t, is simulated in sequence by (4) and (5). These numbers form a basis for

calculating pre-harvest population size for adults in year 2 by equation (3). This procedure

is repeated for the following years resulting in simulations for the observable variable K

and the unobservable variables N and D. Finally the number of observed moose, s is

simulated based on (14). The final result is realisations for Yobs, θ, and the unobserved

variables of interest, N and D.

Spatial and temporal subsets

The implementation of spatial- and temporal subsets is restricted to the model with pa-

rameter combinations possessing the lowest DIC-value, which turns out to be the ”full

model”.

In a ”leave one out” strategy simulations are conducted on subsets leaving one vald out
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at a time. By 2011 22 different valds were present. Let the index −k denote the subset

consisting of all valds except vald k, k = 1, . . . , 22. Correspondingly the index +k denote

the subset consisting of data solely from vald k.

Model validation done on basis of vald subsets relies on the assumption that θ+k = θ−k.

For all subsets leaving one vald out at a time all parameters are simulated and named

θ̂−k
nsim×dim(θ). Thereafter the number of observed moose in all subsets is estimated and

stored in Ŝ+k
nsim×J by applying the following algorithm, where the sex-/age indexes are

omitted for simplicity.

1. Set n=1,

2. p+k is calculated using equation (12) and setting θ+k = θ̂−k
n ,

3. a value for N+k is drawn using equations (9), (10) and (3),

4. a value for S1(+y) is drawn using equation (14), and a value for s+k is calculated,

5. the result is stored by setting Ŝ+k
n = s+k,

6. increase n by 1,

7. step 2 till 6 are repeated until n = nsim.

The result of this algorithm, Ŝ+k, is a function of Y
(+y)−s
obs and θ̂−k, i.e. Ŝ+k and s+k are

independent. The test variables presented in equation (24) are calculated by substituting

θ̂ with Ŝ and θ with s.

For this situation with observed values for s an additional Monte Carlo inspired method

are applied to test the strength of the model. There are 66 different s+k-vectors (3 sex-/

age-classes from 22 valds), each of length J = 25. For every s+k the sequence of elements

are randomly reshuffled and then new values for ϵsp are calculated based these reshuffled

vectors and Ŝ for the corresponding subsets with columns in their original sequence. This

reshuffling procedure is conducted for 104 simulations. For every simulation an average

value for ϵsp, denoted ϵsp, is calculated for each sex-/age-class. Consequently every ϵsp is

based on 550 separate ϵsp values (25 years for 22 valds). The values for ϵsp are stored in

vectors of length 104. For all sex-/age-classes the Monte Carlo distributions for ϵsp based on

reshuffled elements are compared with observed ϵsp. A distinct difference between observed

ϵsp and its Monte Carlo distributions based on reshuffled elements indicates a good model

fit.
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The data from Ringerike spans over the period 1988 till 2012, totally 25 years of data.

Of course θ might be estimated using any consecutive time period. The full data set is

divided into 14 different subsets, each of them with 12 subsequent years of data. The

validation based on time subsets is conducted by evaluating potential trend in estimates

for the time-independent parameters α and λ.



Lars Erik Gangsei – master. thesis 35

Results

For all model runs the number of iterations in the estimation algorithm are 104 of which

2500 are used as burn-in period (nsim = 7500). All model runs with real and simulated

data mixed well, as the trace plot in Figure 1 indicates.

0 2000 4000 6000 8000 10000

0.
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Figure 1: Trace plot for the 3 elements in the parameter λF estimated by ”full model” and
based on the simulated data with ”full ν”. Real values shown with horizontal dashed lines, and
limit for burn-in period shown with vertical dotted line.

Model selection

As shown in Table 1 the parameter-combinations with full γ generally stand out as prefer-

able compared to the combinations with reduced γ. For the real data and the simulated

data where the elements of ν vary over years, the ”full model” has lowest DIC-value. For

the simulated data where the elements of ν were kept equal, the parameter-combination

with reduced ν and full γ and λ is preferable. This model will be referred to as the

”reduced model”.

The model selection has a considerable impact on the population size estimates as

indicated in Figure 2. The difference is caused by high estimates for the natural mortality

rate in the years around 1993 when using the ”full model”, see Figure 7. In turn the high

natural mortality rates causes large estimates for the number of natural dead moose which
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Table 1: DIC-values for models with different combinations of number of elements for the
parameters λ, γ and ν. The three first columns defines the parameter combination. The ”full
model” has a parameter combinations where all parameters are full, whereas the ”reduced model”
has reduced ν-parameter, but full λ and γ-parameters. The next 6 columns show DIC-values
and the ranking of models based on DIC-values for ”real data” and the two simulated data-sets.

Redused Real data Simulated from Simulated from
(=1) ”Full model” ”Redused ν”

γ λ ν DIC Rank DIC Rank DIC Rank
”Full model” 5049 1 4630 1 4360 2

”Reduced model” 6163 3 5307 3 4336 1
- 1 - 5542 2 5195 2 4791 5
- 1 1 6680 7 5871 6 4780 4
1 - - 6188 4 5689 5 5071 6
1 - 1 6427 5 5663 4 4672 3
1 1 - 6665 6 6180 8 5425 8
1 1 1 6827 8 6104 7 5077 7

in turn increases the estimates for total population size for the years prior to 1993/94. For

the period successive to 1993/94 differences in estimated natural mortality rate between

the ”full model” and the ”reduced model” are minor, and thereby differences for population

size estimates are small for this period.

In general all models seem to estimate moose population size, N , and the parameters,

θ, reasonably well as seen from Table 2. It is worth noticing that the ”reduced model”

estimates the very determining parameter α poorly for the simulated data with varying

elements for ν, where the true value for αM is less than all simulated values, i.e. ϵαp = 0.

However, in general the ”full model” and ”reduced model” has higher (”better”) values,

close to the expected number 0.5, for ϵp, and smaller average error, ϵµ for the parameters α

and λ, compared to the other relevant parameter-combinations, see Table 2. The posterior

variance, ϵσ, varies little between models for the parameter α, but for the parameter λ

the ”full model” and the ”reduced model” stands out once again with lower posterior

parameter variances.

All relevant models seem to estimate γ well, with ϵp values close to 0.5, and quite

similar values for average error, ϵµ, and average posterior parameter variance, ϵσ. The test-

variables for γC vary very little between the different relevant models. As a consequence of

rounding no differences are expressed in Table 2, though present. The result is as expected

since γC might be viewed as a vector of probability-parameters for an observed binomial
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variable, [KC
1 , . . . , K

C
J ], where the other parameter in question, sC , also is observed.

When testing different models ability to simulate the natural mortality rate the two

relevant models with full γ stands out as better since they have higher values for ϵp, and

lower values for average error, ϵµ, and average posterior parameter variance, ϵσ.

Posterior means for the yearly total numbers of natural dead moose from the ”full

model” and the ”reduced model” are both highly correlated with adjusted non-harvest

mortality numbers registered by Statistics Norway (2013). The Pearson correlations are

0.758 and 0.772 respectively, and the corresponding p-values for the null hypothesis of no

correlation between estimated number- and registered number of dead moose are 2.8 ·10−05

and 1.6 · 10−05.

The estimates of the population size, N , from the ”full model” stands out as better

than estimates from other parameter-combinations, especially since it has substantially

lower values for average error, ϵµ. The ”reduced model” has higher values for average

error, ϵµ, as a consequence of its poor model fit for the simulated population with full

ν. The average values for ϵNp are very high, i.e. larger than 0.5 for all, except one,

parameter-combinations, and the biases seems to be very small. However, these results

might be slightly misleading since the elements of N , unlike the parameters in θ, are

discrete variables, many of them with true value 0. The high average values for ϵNp are

partly a result of many 0-s estimated correctly in a high proportion of the simulations.

On the basis of the results presented in this section the ”full model” is selected as the

best model. The ”full model” is already substantially reduced by restricting the length of

λ till I2 = 3 and by pooling ν over all age-classes and both sexes. The results presented

in the following sections are, if not noted differently, from the ”full model” and with real

data.
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Table 2: Test variables for the different parameters. The Table shows average results for the 2
simulated populations, each simulation ran once. The number of simulations as basis for averages,
nθ = 2 (simulated populations)× dim(θ), and average true value, θ̄ are given for all parameters.
The right columns for both females and males shows the fraction of ϵp = 0, that is the fraction of
simulations where the true value is outside the extreme bounds reached by the simulations. For
each parameter only relevant model are included, i.e. models where the parameter in question is
not reduced.

Redused (=1) Females Males

γ λ ν |ϵµ| ϵσ ϵp ϵp |ϵµ| ϵσ ϵp ϵp
α

- - - 4.6e-03 2.9e-05 0.47 0 4.0e-03 1.6e-05 0.40 0
- - 1 8.7e-03 3.1e-05 0.39 0 7.7e-03 1.6e-05 0.45 50

nα = 2 - 1 - 1.5e-02 2.5e-05 0.036 50 7.8e-03 1.4e-05 0.14 0
- 1 1 1.7e-02 2.6e-05 0.089 50 1.1e-02 1.4e-05 0.29 50

αF = 0.21 1 - - 1.8e-02 3.6e-05 0.067 50 6.5e-03 2.0e-05 0.21 0

αM = 0.20 1 - 1 1.9e-03 3.4e-05 0.78 0 8.6e-03 1.7e-05 0.14 0
1 1 - 1.3e-02 3.1e-05 0.20 50 9.2e-03 1.6e-05 0.026 0
1 1 1 1.2e-02 2.5e-05 0.089 0 1.2e-02 1.3e-05 0.073 50

λ
- - - 1.4e-02 6.9e-04 0.57 0 9.7e-03 1.4e-03 0.78 0

nλ = 6 - - 1 1.4e-02 8.4e-04 0.58 0 1.1e-02 1.3e-03 0.77 0

λF = 0.42 1 - - 5.1e-02 3.7e-03 0.45 0 1.0e-01 4.3e-03 0.14 0

λM = 0.65 1 - 1 5.7e-02 3.0e-03 0.32 0 9.3e-02 3.1e-03 0.12 0
γ

- - - 3.1e-02 2.0e-03 0.53 0 3.1e-02 2.0e-03 0.53 0
nγ = 50 - - 1 3.2e-02 2.2e-03 0.54 0 3.2e-02 2.2e-03 0.54 0

γF = 0.51 - 1 - 3.1e-02 1.9e-03 0.54 0 3.1e-02 1.9e-03 0.54 0

γM = 0.56 - 1 1 3.1e-02 2.3e-03 0.57 0 3.1e-02 2.3e-03 0.57 0

N
- - - 2.5 21 0.65 0 1.9 16 0.76 0

nNF
= 1500 - - 1 3.8 16 0.61 2 3.1 10 0.72 2

nNM
= 950 - 1 - 3.8 17 0.47 0 2.1 15 0.73 0

- 1 1 4.7 13 0.47 4 3.2 9.6 0.70 3

NF = 41 1 - - 6.0 27 0.55 3 4.1 17 0.66 2

NM = 52 1 - 1 4.4 17 0.57 2 3.4 9.5 0.68 2
1 1 - 6.1 23 0.50 4 4.3 15 0.64 3
1 1 1 5.0 13 0.48 4 3.5 8.5 0.66 3

γC , ν γC , (Calves) ν

nγC
= 50 -/- -/- -/- 2.0e-02 3.5e-04 0.39 0 8.5e-03 6.0e-04 0.75 0

nν = 48 -/- -/1 1/- 2.0e-02 3.5e-04 0.39 0 1.0e-02 6.2e-04 0.72 0
γc = 0.26 -/1 1/- -/- 2.0e-02 3.5e-04 0.39 0 3.4e-02 8.0e-04 0.43 0
ν = 0.056 -/1 1/1 1/- 2.0e-02 3.5e-04 0.39 0 3.6e-02 8.0e-04 0.42 0
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Total population size.
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Figure 2: Boxplots for the Ringerike moose population over the period 1988 till 2012 based
on nsim = 7500 Monte Carlo simulations from the ”full model” (white) and ”reduced model”
(grey). Upper panel: Total average population size. i.e yearly averages of N̄ . ”Moose seen per
hunter-day” from hunter-observations are shown with black x-s and scale at the right axis. Lower
panel: Total number of natural dead moose, i.e. the number perishing from other causes than
hunting between hunting seasons.
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Sex−ratio.
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Figure 3: Boxplots for the Ringerike moose population over the period 1988 till 2012 based
on nsim = 7500 Monte Carlo simulations from the ”full model” (white) and ”reduced model”
(grey). Results from hunter-observations are shown with black x-s. Upper panel: Average sex-
ratio, i.e. the number of adult females per adult male, during the hunting seasons, and ”female
observed per male” from hunter-observations. Lower panel: Average calf-ratio, i.e. the number
of calves per adult female, during the hunting seasons, and ”calf observed per female” from
hunter-observations.
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αF and αM

0.18 0.19 0.2 0.21 0.22

Figure 4: Monte Carlo posterior probability distributions based on nsim = 7500 simulations
from real data and the ”full model” for the unknown parameters αF (grey-, full line) and αM

(black-, dashed line). Posterior 2.5%-, 50%- and 97.5% percentiles are shown with dotted lines.

Parameter estimates, population development

The basic development in the moose population are shown in Figures 2 and 3, and are

given in some more detail in Appendix 2. Notice that Figures 2 and 3 are based on average

population sizes during hunting seasons, i.e. yearly averages for N̄ .

The result, based on the ”full model”, shows a rapid increase in moose density from

1988 till 1992, when the pre-harvest density peaked at a posterior mean of approximately

3900 individuals in total. This increase is followed by a steady decrease in moose density

during the period from approximately 1992 till 2002. In the period 2002 till 2010 the

moose density stayed quite stable with posterior mean pre-harvest population sizes at

approximately 1700 individuals. Increased hunting yields over the last three years have

resulted in reduced estimates for pre-harvest population sizes, to a posterior mean at

approximately 1400 individuals for 2012. The development in moose density over the

whole period corresponds well with the hunting yield, which is high in the periods with

decreasing moose density and vice versa.

Population development estimates derived directly from hunter-observations, i.e. moose

seen per hunter-day, observed female per male and observed calf per female, fits very well
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Figure 5: Boxplot for the parameters λF (grey) and λM (white) for the age-classes i = 2, 3, 4
in the Ringerike moose population based on nsim = 7500 Monte Carlo simulations from real data
and the ”full model”.

with the corresponding absolute estimates from the model, i.e. population size, sex-ratio

and calf-ratio respectively. The fit between hunter-observations and model estimates is

visualized in Figures 2 and 3. These figures also indicates that the fit between ”full model”

and hunter-observations are better than the fit between ”reduced model” and hunter-

observations. Further there seem to be some discrepancy regarding the calf-rate for both

models, as the model estimates indicates higher calf-rates during the period 1988 till 1993

and lower calf-rates during the period 1995 till 1998 than the corresponding rates derived

directly from hunter-observations.

The strong fit between hunter-observations and model-estimates should not be empha-

sized as important for model validation, since the model estimates are heavily influenced

by hunter observations.

The general pattern for cohort analysis estimates is increasing variation for the popu-

lation size estimates for the latter years of the analysis. As seen from Figure 2 this pattern

is valid for the analysis of the Ringerike moose population back till approximately 1998.

However, the variation for population sizes prior to 1998, especially prior to 1994, are

higher than for the last years. The obvious reason for this inconsistency is the high, and
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γF, γM and γC
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Figure 6: Boxplot for the parameters γF (grey), γM (white) and γC (black) for the years
1988, . . . , 2012 in the Ringerike moose population based on nsim = 7500 Monte Carlo simulations
from real data and the ”full model”.

quite variable, estimates for number of natural dead moose, D, in the years prior to 1998.

Results for posterior estimates of unknown parameters, θ, are presented in Figure 4, 5,

6 and 7. The results are given in some more detail in Tables in Appendix (2).

The posterior distributions for the instantaneous observation rate, α, are very similar

and not substantially different for the two sexes. The distribution for males is a little more

”peaked” than the distribution for females, see Figure 4. Median posterior values for α

are 0.203 and 0.193 for females and males respectively, i.e. close to 0.2 for both sexes.

Consequently as a rule of thumb the average moose density (individuals per km2) during

the hunting season may be estimated by ”5× moose seen per hunter day”, where moose

seen per hunter day is the total number of observed moose during the hunting season

divided by total number of hunting days, a very common measurement for moose density.

When evaluating results for age-specific hunting mortality, λ, notice the somewhat

non-intuitive connection between age-class and real age. Calves has age 0 years, but their

age-class is set to i = 1, yearlings has age 1 year, but their age-class is set to i = 2

etc. Further note that the elements of λF and λM are not directly comparable, since

the probability of being shot conditional on being observed also depends on year-specific
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ν

Year
1988 1991 1994 1997 2000 2003 2006 2009

0

0.1

0.2

0.3

0.4

Figure 7: Boxplot for the parameter ν for the years 1988, . . . , 2011 in the Ringerike moose
population based on nsim = 7500 Monte Carlo simulations from real data and the ”full model”

hunting mortality, γ, which differs for the two sexes. The results for λ shows that yearlings

(age-class i = 2) has high age-specific hunting mortality for both sexes.

For females the age-specific hunting mortalities rapidly decreases with age, see Figure

5. For males the results show higher age-specific hunting mortality for yearlings than older

age-classes. However, the difference between 2 year old males and older males seems to be

minor.

The year-specific hunting mortality, γ, is estimated for females, males and calves. The

year-specific hunting mortality for females was very low in the period 1988 till 1992, see

Figure 6. Thereafter it increased substantially from 1992 till 1993, stayed quite stable over

a few years, and then increased rapidly from 1997 till 1998. After 1998 the year to year

differences have been less highlighted, but there is a clear pattern of steadily decreasing

values from 1999 till 2007 and thereafter increasing values till 2012.

For males a pattern comparable to females emerges. The year-specific hunting mortality

increased rapidly for the years 1993 till 1994 and 1997 till 1998. The trend from 1998 till

2012 shows the same general pattern as the trend for females.

In the years prior to 1992 calves had a low year-specific hunting mortality. From 1991

till 1993 age-specific hunting mortality for calves increased rapidly followed by a period of
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quite stable values in the period till 2001. From 2001 till 2008 the year-specific hunting

mortality for calves decreases steadily followed by a minor increase in the period from 2008

till 2012.

In general the hunting pressure is higher for males than for females since the instanta-

neous observation rates, α, are close to equal combined with higher average values for both

year-specific hunting mortality, γ, and in particular age-specific hunting mortality, λ, for

males.

It is of essential importance to remember that the probability for a moose of being shot,

given by p, is a function of both unknown parameters, θ, and the observed hunting effort,

h, see equation (12). For instance, the year-specific hunting mortality for males, γM , are

high in the first years of the analysis. But the hunting mortality for males these years are

not especially high compared with later years due to low hunting effort. For females and

calves the total hunting mortalities these years are very low as they benefitted from both

low hunting effort and low year-specific hunting mortality.

The natural mortality rate, ν, is pooled over all age-classes and both sexes. From the

posterior distributions it is clear that the natural mortality rate is substantially higher

than the prior median at 5% for the years 1992, 1993 and 1995, see Figure 7. The natural

mortality rate is especially high for 1993, with 20.3% as its posterior median value. The

high natural mortality rates corresponds with the peak for total moose population size,

resulting in very high estimates for total number of moose perishing from natural causes

during this period.

Model validation by subsets

Implementation of spatial- and temporal subsets is restricted to the ”full model”.

Figure (8) indicates a strong relationship between estimated values, ŝ, and real values, s,

for the number of observed moose in the 22 spatial subsets (valds). The Pearson correlation

between posterior mean for ŝ and s is 0.896. Even though the relationship is strong, it is

not perfect, since the distributions for ϵsp-s shows an evident pattern where they are skewed

towards 0 compared to the standard uniform distribution (Figure 9). For all sex-/ age-

classes the distribution of ϵsp differed significantly from the standard uniform distribution,

when tested by a χ2-test (Besag & Clifford, 1991) (p−value ≈ 0 for for females, calves and

in total, and p− value = 1.14× 10−12 for males). The skewed pattern is most evident for

females and least for males, indicating a better model fit for males than females. Average

values for ϵsp were 0.336 for females (n=550), 0.447 for males (n=550), 0.416 for calves

(n=550) and 0.400 for all classes in total (n=1650).
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Figure 8: Posterior mean for number of observed moose against real observations (n = 1650).
Grey circles (1269 in total, or 76.9%) indicates that the associated ϵsp is less than 0.05 and black
x-s (381 in total, or 23.1%) indicates the opposite.

As seen from Figure 9 there are substantial differences between distributions for ϵsp
based on reshuffled elements for s and the observed values for ϵsp, i.e. the values calculated

with the elements from all s-s in their original sequence. In fact for all sex-/age-classes

no value for ϵsp based on reshuffled elements are as high as the observed value, resulting in

Monte Carlo p-values at ≈ 10−4 for the hypothesis that the model has no predictive effect

for s. This result strongly supports the validity of the model.

A linear model with ϵp as response-variable and sex-/age- class, vald, year, and the

interactions sex-/age-class - year and sex-/age-class - vald as predictor variables shows

a significant effect of both sex-/age- class (p − value = 7.22 × 10−8), vald (p − value =

2.31×10−11) and year (p−value = 4.33×10−4), but not for the interaction terms (p-values

0.265 and 0.268 respectively). This result strongly indicates that the model-fit vary with

both vald and year. When splitting ϵsp according to the valds the average ϵsp (n = 75 for

each vald) vary between 0.279 and 0.627, and when splitting according to years the average

ϵsp (n = 66 for each year) vary between 0.315 and 0.524. There is a pattern with smaller

average values for ϵsp during the period 1993− 2001, indicating a poorer model-fit for this

period.
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Figure 9: Upper panel: Densities for ϵsp-s for females (grey, n = 550), males (black, n = 550)
and calves (dashed black, n = 550). Lower panel: Densities for ϵsp-s based on 104 reshuffled
elements for females (grey), males (black) and calves (dashed black). Average value for ϵsp-s
based on s in original sequence are shown with dotted lines for females and males, and dashed
line for calves.
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Figure 10: Boxplot showing posterior Monte Carlo distributions for αF (grey) and αM (white)
from the different time subsets. Posterior median values from the full dataset are shown with
dotted lines.

Comparisons between the vast majority of the temporal subsets have limited value due

to dependency between them. Hence formal validation tests performed on these subsets

are omitted. However, Figure 10 clearly demonstrates a pattern of decreasing estimates

for instantaneous observation rate, α, with increasing end year for subsets, until the subset

ending in year 2009. The slope in this trend is steeper for females than for males, and

steeper during the first years than the latter years. The subsets ending in the years 1999

and 2012 respectively, are totaly independent. For both sexes values for α is significantly

different for these two subsets, with Monte Carlo p− values ≈ 0 and 0.007 for females and

males respectively.

The estimates for age-specific hunting mortality, λ, do not depend heavily on time

subset. When comparing estimates for λ from the subsets ending in 1999 and 2012 there

exist significant differences, i.e. Monte Carlo p− value < 0.05, for λF
3 and λM

2 .
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Discussion

First, and most important, the model used and tested in this study performed very satis-

factorily. Especially convincing is the cross-validation test from the spatial subsets. Even

though the distribution of the Monte Carlo p− values (ϵp-s) are skewed compared to the

ideal standard uniform distribution, the results strongly supports the model’s validity.

There are two main challenges for practical implementation of the model, one of them

being the dependency between instantaneous observation rate, α, and temporal subset.

Further estimates for the natural mortality, D, vary substantially between models. Both

of these challenges might have huge impact on population size estimates, and are discusses

in detail later in this section.

Model selection is an important issue of this study. In this respect DIC-values for differ-

ent models have been emphasised. Using DIC for model selection seems to favor complex

models, and an alternative model selection criteria, Bayesian predictive information crite-

rion (BPIC), has been proposed by Ando (2007) to solve this problem. Since the model

selected in this study is the most complex model tested, implementation of BPIC instead

of DIC as selection criteria might have some minor influence on model selection.

The model seems to give a better model fit for males than females, at least if judged by

the results from cross-validation by different spatial subsets. Since estimates for the two

sexes are pooled for calves, and thereby depends on each other, the better model fit for

males might have positive impact also on female estimates.

Model assumptions and errors

To obtain simple and easily computable formulaes in the estimation algorithm some sim-

plifying model assumptions are made, which in general are considered to be of minor im-

portance for the parameter estimates. However, the general effect of such simplifications

is reduced variation in the posterior parameter distributions.

The reduction in the population size during the hunting season is a stepwise (discrete)

process. Consequently the assumption about constant relative reduction in moose density

during the hunting season, an assumption in line with traditional principles for harvesting

mortality (Ricker, 1940), leading to equation (13), is a simplification.

Further, the assumption of no natural mortality during the hunting season is an obvious

simplification. In practise the opposite situation is more likely to emerge, i.e. increased nat-

ural mortality rate during the hunting season due to individuals shot and fatally wounded,

but vanishing from the hunters. Under the model outlined in this study these individ-
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uals would be regarded as perished from natural causes since they are not registered in

the hunting yield. However, hunting is by far the dominating mortality factor during the

hunting season, making also this simplification of minor importance.

In this study it is assumed no aging errors for moose killed during the hunt. Rolandsen

et al. (2008) show that age determination by counting dental cement layers in incisors

is inaccurate to some extent. However, the inaccuracies are minor, and if errors are not

systematically wrong, cohort analysis methods are quite robust against aging errors when

cohort sizes are quite stable, which is the case for moose populations.

Interpretation of model parameters, θ

The results from the real data indicate a dependency between the instantaneous observation

rate, α, and the temporal subsets. This dependency is a violation of the model assumptions

and might cause severely biased population estimates especially for the latter years in the

analysis. The dependency might be due to development of α over time (years) and/or due

to dependency between α and moose density. Such dependencies can be given credible

practical explanations.

In the model it is assumed that any random hunter has a constant instantaneous chance

of observing a random moose in the whole study area. In practice every hunter/hunting

team disposes a limited hunting area, and the moose density might vary considerable

between different areas. Indications of differences between areas, not necessarily restricted

to the α-parameter, is indicated by the fact that there are a significant vald-effect in the

cross-validation for spatial subsets.

The irregularities for α is in line with observations from Solberg et al. (2010), where

an imperfect fit between moose density and moose seen per hunter day is reported. The

population size estimates in Solberg et al. (2010) are highly reliable since they are based

on marked moose in a population where the large majority of moose are marked. However,

the study object was a ”young” moose population founded in 1985 (Solberg et al., 2011)

at the island Vega, on the cost outside the county of Nordland. The nature on Vega and in

Ringerike is extremely different. Consequently the transfer value of the results from Vega

till Ringerike might be questioned.

The different estimates for α in different temporal subsets imply that any population

size estimate derived from effort will be biased unless the variation in α is implemented

in the model. For a lot of wild spices, both fish, birds and mammals, the most common

and important population size estimates depends, to varying degrees, of effort. The lim-

itations and potential biases by using such estimates are well known (Quinn & Deriso,
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1999, pp.1–49). However, a better understanding of, and improved methods for modelling,

the relationship between effort and yield/observations would be a valuable contribution to

improve a broad specter of models used for estimating abundance of wild species.

The high estimates for age-specific hunting mortality, λ, for age-class i = 2 (yearlings)

are expected. In most valds hunting quotas for calves and yearlings are pooled. Hunters

mostly prefer to shot yearlings before calves due to higher meat yield. Solberg et al. (2010)

also found that yearlings seemed to expose themselves easier for hunters.

The rapid decrease in age-specific hunting mortality for females from age-classes i = 2

till i = 4 is also as expected. The present data show that females carcass weight and

reproductive rate, both factors potentially recognizable by hunters, increases until the age

of approximately 3 years (i = 4), a pattern consistent with other studies, for instance

Solberg et al. (2006). For older age-classes these factors are quite stable. Unreported

results, with I2 > 3, show a pattern where the age-specific hunting mortality for females

are stable for age-classes 3 years and older.

In contradiction to females there are several factors, for instance weight and antler size,

both potentially recognizable by hunters, developing until at least 6 years of age (i = 7)

for males. Unreported results, with I2 > 3, show a pattern where the age-specific hunting

mortality for males decreases until 3 years of age, but thereafter increases until 6− 7 years

of age. Consequently the decision to set I2 = 3 might be questioned for males. Ideally

different combinations for I2 between the two sexes should be tested and evaluated using

DIC-values and test-variables. However, the model is quite complex as it is, and the hard

restriction on the λ-parameter is justifiable.

For the hunting seasons 1984 till 2009 yearly reports about hunter observations, hunting

yield and general moose management are available from the Ringerike wildlife board. In

retrospective these reports gives valuable knowledge about the contemplations performed

at the time. By consulting the reports for the two periods 1992 till 1994 and 1997 till

1998 (Bergan, 1994, 1995, 1998) it turns out that the increase in year-specific hunting

mortality during these periods coincides very well with the guidelines given to hunters by

the Ringerike wildlife board.

The observed moose, s, is an element of the observed data, Yobs, and has an year-

structure. Consequently these data, combined with the yearly hunting yields, contain

considerable information about the year specific hunting mortality, γ. Oppositely these

data lack age-structure for adult moose, and thereby also lack any direct information about

the age-specific hunting mortality, λ. Therefore it makes sense to estimate γ for all years,

but to restrict the number of elements in λ till I2. Likely, the pattern where models with

”full γ” in general scores lower DIC-values than models with ”reduced γ”, is a result of
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the year-structure in s.

As shown in (15) Kij is a binomial distributed variable with λiγj as probability param-

eter. Consequently the estimates for λ and γ might be severely biased and at the same

time the matrix (λ× γt)I2×J might be only minor biased. The same argumentation is valid

for p as seen from equation (12). When flat prior distributions for λ and γ were applied,

i.e. ϕλ
1 = ϕλ

2 = ϕγ
1 = ϕγ

2 = 1, this situation in fact occurred for the simulated populations

(unreported results), resulting in underestimation of λ and correspondingly overestimation

of γ. By adjusting the prior distributions to be vaguely informative, symmetric, and with

prior expectation equal to 0.5, i.e. ϕλ
1 = ϕλ

2 = ϕγ
1 = ϕγ

2 = 5, the posterior distributions for

the parameters in question performed close to perfection for the simulated populations. A

possible, not verified, reason for the unsatisfying results using flat prior distributions is the

somewhat unwise choice of initial value for S2, which is set equal to K.

The natural mortality rate, ν, is a key parameter for estimating ”on target” population

sizes. Most studies using ”cohort-analysis” or related methods for mammals, but also for

fish (see Quinn & Deriso, 1999, pp.355–357), operates with fixed, assumed known, values

for natural mortality rates, ν. The ability to estimate natural mortality rate, demonstrated

in this study, should be considered a step forward even if the estimates lean heavily on the

informative prior distribution.

Setting informative priors for the natural mortality rate, ν, is justified by at least two

causes. Primarily a sufficient ”narrow” prior distribution for ν is required for the model

to converge. If this prior distribution is set uninformative the model tend to produce

very large, and not converging, estimates for N , D and ν along with small estimates for

p (unreported results), that is, a very large moose population where the main mortality

cause is natural death, not hunting. Additionally the prior knowledge for natural mortality

rate is quite high due to a number of studies with radio-marked moose, see for instance

Rolandsen et al. (2010), Roer & Gangsei (2008) or the website www.dyreposisjoner.no

(Norwegian Institute for Nature Research, 2013).

The estimated mortality rates around year 1993 are very high with posterior mean at

20% for the year 1993/94. The winter 1993/94 was a winter with deep snow and stable

cold temperatures after a series of previous succeeding winters with little snow and warm

weather in the late 80-s and early 90-s. From another study (Roer & Gangsei, 2008) in the

municipality of Veg̊arshei in southern Norway an estimated natural mortality rate among

radio-marked moose at 14% (n = 47) is observed during the years 2006 till 2008, a period

with harsh snow conditions in the area. Even if data are scarce, this mortality rate is in

line with estimated rates for Ringerike around 1993.

The number of parameters to be estimated is large, and further restrictions by using the



Lars Erik Gangsei – master. thesis 53

”reduced model” might be wise in a number of occasions. The evaluation with simulated

populations showed, beyond doubt, that the ”full model” is superior when the natural

mortality rate vary substantially between years. On the other hand the simulations showed

that ”reduced model” is better when natural mortality rate is constant or close to constant.

The effects of varying data foundation are untested. Generally more complex models

might be applied if a huge amount of data is available. Consequently if the data basis

is large, like in Ringerike, and the prior biological knowledge indicates a varying natural

mortality rate, the ”full model” should be preferred. Oppositely if data basis is scarce, and

the prior biological knowledge indicates near constant natural mortality rate over years

the ”reduced model” is the better choice. Of course the intersection point for which model

to choose lies somewhere in between these two opposite situations. A practical solution

when in doubt about what model to choose is to use both models and evaluate them by

DIC-value.

Further restrictions on number of unknown parameters could be conducted by reducing

the number of age-specific hunting mortalities to be estimated. I.e. further reduction in the

length of λ by setting I2 < 3. Obviously the gain is limited. The results indicate that the

year-specific hunting mortality, γ, should be estimated for every year, i.e. γ should have

length J . Of course the instantaneous observation rate, α, should always be estimated.

However, α might be pooled for the two sexes. The parameter estimates for areas like

Ringerike provides a valuable basis for more informative prior distributions in other areas.

Population-size estimates. Interaction between factors

There are three factors that potentially might have huge impact at the population size

estimates, (i) inconsistency in the assumption about constant instantaneous observation

rate, α, (ii) severely biased estimates for natural mortality rate, ν, and (iii) the presence

of migration which is modelled to be absent. Of course these three factors might interact.

Figure 2 demonstrates that the huge estimate for the natural mortality rate, ν, around

1993 is likely to be a result of the assumption about constant α, since constant α is expected

to give a very tight fit between moose density and ”moose seen per hunter day”. This fit

is much better when the natural mortality rate is allowed to vary between years. As a

consequence the yearly estimates for natural mortality rate from the ”full model” will be

reliable if the assumption about constant α is correct, and vice versa.

Surveys from the county Nord-Trøndelag (Rolandsen et al., 2010, pp. 73–74) indicates

that the assumption of no net migration for any age-class any year might be dubious. In

Gangsei (1999) an attempt to estimate the net migration size was carried out. Even if
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these migration estimates have several weaknesses, a pattern related to these estimates is

apparent in Figure 3. The discrepancies between calf-rates estimated by the model, and

the calf-rates from hunter observations, might be a result of migration, see Gangsei (1999)

for further explanation.

In the cross-validation for spatial subsets there are a significant year-effect. It seems

like the model’s prediction accuracy for observed moose, tested in the cross-validation, is

poorer for the period 1993 till 2001. This period coincides mostly with the period crucial

for the discrepancies between population size estimates from the ”full model” and the

”reduced model”, which are most evident in the period prior to 1995. Further, during this

period the hunting yields were high and so was the estimated hunting mortalities. It seems

likely that circumstances with large hunting quotas and hunting yields, possibly combined

by somewhat different management strategies among the valds, paves the way for a poorer

model fit/violation of the model assumptions.

Impacts for practical moose management

The method used in this study has not been tested against alternative methods for esti-

mating moose population size, for instance methods based on hunter observations alone

(Solberg & Sæther, 1999) or changes in sex ratio (Solberg et al., 2005). Neither has the

method been tested on other moose populations than the Ringerike population. Such tests

and comparisons are obvious task for further work.

For the particular case in this study, moose in Norway, several studies have shown

that moose seen per hunter day, i.e. the relative moose density estimate derived from the

instantaneous observation rate, α, generally responds well to changes in moose density,

but the validity differs between areas (Gangsei, 1999; Solberg et al., 2006, 2010; Solberg &

Sæther, 1999). Solberg & Sæther (1999) and Solberg et al. (2010) questions to some extent

the validity of estimates for absolute population sizes from moose seen per hunter day. The

present study challenge this view since moose seen per hunter day fits extremely well with

the estimated population size, especially the estimates from the ”full model”. Using results

from Ringerike derived from a cohort analysis method independent of hunter observations,

for instance the method described by Ueno et al. (2009), to compare absolute population

size estimates and moose seen per hunter day would most likely result in a better fit than

reported in Solberg & Sæther (1999) and Solberg et al. (2010).

Estimating moose population size based on change in sex ratio is described by Solberg

et al. (2005). Even though the method has several benefits, it is less intuitive than using

estimates derived from moose seen per hunter day. Further, the method leans heavily on
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an assumption of known sex ratio among calves each year. As pointed out by Solberg et al.

(2005) the sex ratio among calves might be affected by paternal age and the sex ratio in

the adult population (Sæther et al., 2004). Further a hypothesis known as the Trivers-

Willard hypothesis (Trivers & Willard, 1973) states that the general fitness of females in

the population might influence the sex ratio among calves.

For areas where killed at age data are present methods for estimating population size

based on cohort analysis combined with hunter observations, like the one presented in

this study, should be superior to methods based purely on hunter observations. Since the

method incorporates data from hunter observations in the estimation procedure it should

also perform better than cohort analysis methods based solely on killed at age data, like

for instance Ueno et al. (2009).

Conclusion

The model described in this study produces reliable estimates for moose population size.

Its utility is to some extent limited by the shortage of killed at age data in most parts of

Norway. Anyhow the Bayesian framework forms a suitable basis for applying a slightly

adjusted version of the model to areas lacking killed at age data.

Further work should be concentrated on developing improved methods for modelling

variation in the instantaneous observation rate, α, over time. Such methods could be a

valuable contribution to improve a broad specter of population size models.
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Appendix

Data (Yobs) for Ringerike (total)

The total hunting area in Ringerike is 1205 km2.

Table 3: Number of observed moose for females, males and calves, and number of hunting days
in the period 1988 till 2011.

Number of observed Number of
Year Females (SF ) Males (SM ) Calves (SC) hunterdays
1988 599 381 488 3031
1989 641 423 513 3360
1990 766 508 621 3623
1991 888 712 672 4173
1992 1225 792 850 4590
1993 1464 963 938 6021
1994 1440 875 970 7054
1995 1653 787 991 7416
1996 1477 724 837 7485
1997 1659 775 854 9003
1998 1258 586 777 7902
1999 1201 619 662 8608
2000 936 479 553 7929
2001 894 405 507 8013
2002 697 392 397 6383
2003 712 411 394 6494
2004 734 487 418 7294
2005 666 423 423 7094
2006 645 441 409 6497
2007 702 505 423 6287
2008 830 547 564 7293
2009 836 535 522 7945
2010 773 540 525 7690
2011 851 571 473 8198
2012 700 439 427 7794
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Tables with results for the moose population in Ringerike

Table 6: 2.5%, 50% and 97.5% posterior percentiles for the instantaneous observing rates, α,
for females and males. Estimates based on nsim = 7500 simulations from real data and the ”full
model”.

Females (αF ) Males (αM)
2.5% 50% 97.5% 2.5% 50% 97.5%
0.192 0.203 0.213 0.185 0.193 0.201

Table 7: 2.5%, 50% and 97.5% posterior percentiles for the elements of age-specific hunting
mortality (λ) for females and males over the age-classes i = 2 till i = 4. Estimates based on
nsim = 7500 simulations from real data and the ”full model”.

Females (λF ) Males (λM)
Age-class(i) 2.5% 50% 97.5% 2.5% 50% 97.5%

2 0.56 0.63 0.70 0.69 0.75 0.82
3 0.31 0.35 0.40 0.56 0.62 0.69
4 0.24 0.27 0.31 0.56 0.62 0.67
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Table 8: 2.5%, 50% and 97.5% posterior percentiles for the natural mortality rate (ν) over the
period 1988 till 2011. Estimates based on nsim = 7500 simulations from real data and the ”full
model”.

ν ν
Year 2.5% 50% 97.5% Year 2.5% 50% 97.5%
1988 0.040 0.118 0.211 2000 0.006 0.025 0.059
1989 0.034 0.103 0.193 2001 0.005 0.021 0.053
1990 0.030 0.100 0.180 2002 0.006 0.027 0.061
1991 0.025 0.084 0.152 2003 0.008 0.032 0.080
1992 0.076 0.155 0.225 2004 0.009 0.033 0.075
1993 0.121 0.203 0.272 2005 0.007 0.029 0.070
1994 0.034 0.090 0.161 2006 0.006 0.027 0.063
1995 0.059 0.124 0.201 2007 0.008 0.033 0.081
1996 0.019 0.067 0.135 2008 0.009 0.036 0.086
1997 0.009 0.038 0.084 2009 0.006 0.028 0.067
1998 0.007 0.028 0.074 2010 0.007 0.029 0.067
1999 0.007 0.029 0.068 2011 0.011 0.043 0.105
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Table 9: 2.5%, 50% and 97.5% posterior percentiles for the elements of year-specific hunting
mortality (γ) for females, males and calves over the period 1988 till 2012. Estimates based on
nsim = 7500 simulations from real data and the ”full model”.

Females (γF ) Males (γM) Calves (γC)
Year 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%
1988 0.29 0.37 0.47 0.53 0.61 0.70 0.13 0.16 0.20
1989 0.35 0.43 0.53 0.45 0.53 0.61 0.14 0.17 0.21
1990 0.28 0.34 0.43 0.45 0.52 0.60 0.13 0.16 0.19
1991 0.27 0.33 0.40 0.39 0.45 0.51 0.15 0.18 0.21
1992 0.25 0.30 0.36 0.40 0.46 0.52 0.20 0.23 0.26
1993 0.42 0.49 0.56 0.42 0.48 0.55 0.27 0.30 0.32
1994 0.39 0.46 0.54 0.54 0.60 0.67 0.29 0.32 0.35
1995 0.36 0.42 0.49 0.56 0.63 0.70 0.27 0.29 0.32
1996 0.39 0.46 0.53 0.50 0.56 0.63 0.27 0.30 0.33
1997 0.40 0.46 0.54 0.54 0.61 0.68 0.30 0.34 0.37
1998 0.60 0.69 0.79 0.65 0.73 0.81 0.28 0.31 0.35
1999 0.62 0.71 0.81 0.65 0.72 0.81 0.29 0.32 0.36
2000 0.60 0.70 0.80 0.59 0.67 0.75 0.28 0.32 0.36
2001 0.53 0.62 0.72 0.58 0.67 0.75 0.28 0.32 0.36
2002 0.49 0.59 0.69 0.47 0.55 0.63 0.24 0.28 0.33
2003 0.55 0.65 0.76 0.44 0.52 0.60 0.25 0.30 0.34
2004 0.47 0.55 0.66 0.40 0.47 0.55 0.22 0.26 0.31
2005 0.41 0.50 0.60 0.43 0.51 0.59 0.22 0.26 0.30
2006 0.40 0.50 0.61 0.41 0.48 0.55 0.19 0.23 0.27
2007 0.38 0.46 0.55 0.41 0.48 0.55 0.21 0.25 0.29
2008 0.40 0.48 0.57 0.47 0.54 0.61 0.19 0.22 0.26
2009 0.47 0.56 0.65 0.47 0.54 0.62 0.21 0.24 0.28
2010 0.42 0.51 0.61 0.50 0.57 0.65 0.21 0.24 0.28
2011 0.49 0.58 0.68 0.47 0.54 0.61 0.22 0.26 0.30
2012 0.52 0.61 0.73 0.53 0.61 0.70 0.22 0.26 0.30
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Table 10: 2.5%, 50% and 97.5%-percentiles for pre-harvest population sizes for females, males
and calves over the period 1988 till 2012.

Females Males Calves
Year 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%
1988 1106 1255 1429 788 861 950 560 626 707
1989 1117 1249 1409 814 883 970 714 787 878
1990 1184 1316 1481 921 997 1083 803 883 978
1991 1300 1447 1606 1025 1102 1189 906 988 1079
1992 1455 1612 1788 1129 1219 1319 957 1042 1137
1993 1477 1611 1766 1099 1177 1269 886 952 1027
1994 1253 1359 1474 900 949 1006 908 959 1022
1995 1227 1322 1452 792 833 890 895 948 1019
1996 1136 1213 1311 707 738 779 820 859 911
1997 1130 1183 1254 701 719 746 790 813 846
1998 1053 1097 1156 652 666 689 743 764 796
1999 978 1019 1072 605 618 637 623 642 668
2000 843 883 934 512 524 541 511 528 550
2001 768 809 862 450 463 480 469 487 511
2002 714 758 815 419 434 454 394 413 437
2003 697 741 798 414 431 454 408 428 455
2004 651 694 752 429 445 470 411 431 459
2005 632 676 734 435 453 478 408 430 458
2006 627 674 732 462 482 508 438 463 495
2007 659 711 776 507 530 561 433 458 492
2008 670 724 790 526 551 583 499 529 566
2009 664 720 784 547 575 609 448 478 512
2010 630 690 762 526 558 596 445 479 518
2011 622 690 768 488 528 575 340 377 421
2012 534 608 693 386 433 486 305 377 468
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Table 11: 2.5%, 50% and 97.5%-percentiles for number of natural dead individuals for females,
males and calves over the period 1988 till 2011.

Females Males Calves
Year 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%
1988 44 139 274 26 84 165 20 68 136
1989 36 119 243 22 76 157 21 73 150
1990 33 122 238 23 82 159 22 80 156
1991 30 113 215 20 77 150 19 73 144
1992 103 228 359 71 155 241 60 136 216
1993 149 272 392 100 182 265 77 143 211
1994 33 99 193 19 57 113 19 58 114
1995 59 133 236 29 66 118 34 81 146
1996 16 66 144 8 33 71 9 40 87
1997 7 35 83 3 15 38 3 18 46
1998 4 22 64 1 10 29 2 14 41
1999 3 20 53 1 8 23 2 11 31
2000 2 15 40 1 7 19 1 8 24
2001 2 12 34 0 5 15 0 6 20
2002 2 15 39 1 7 20 1 8 21
2003 3 18 49 1 9 26 1 10 28
2004 3 17 44 2 10 26 2 10 27
2005 2 15 41 1 9 25 1 9 25
2006 2 14 37 1 9 24 1 9 26
2007 3 18 50 2 12 34 2 11 32
2008 4 20 53 2 13 35 2 14 39
2009 2 15 39 1 10 28 1 9 27
2010 2 15 39 1 9 25 1 10 26
2011 4 21 58 2 13 37 2 11 31
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Table 12: 2.5%, 50% and 97.5%-percentiles for pre-harvest mean-age of adult females and
males, and pre-harvest sex ratio for the period 1988 till 2012.

Mean-age
Females Males Sex ratio

Year 2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%
1988 4.76 5.00 5.28 2.86 2.96 3.08 1.33 1.46 1.60
1989 4.82 5.05 5.30 2.93 3.02 3.13 1.30 1.41 1.54
1990 4.78 4.99 5.22 2.93 3.02 3.11 1.22 1.32 1.43
1991 4.65 4.83 5.03 2.88 2.96 3.05 1.22 1.31 1.41
1992 4.60 4.77 4.94 2.89 2.97 3.05 1.24 1.32 1.42
1993 4.67 4.81 4.96 3.03 3.10 3.18 1.29 1.37 1.45
1994 4.88 5.00 5.14 3.29 3.35 3.42 1.36 1.43 1.51
1995 4.84 4.96 5.09 3.15 3.21 3.28 1.52 1.59 1.67
1996 4.87 4.97 5.08 2.98 3.02 3.08 1.58 1.64 1.72
1997 4.78 4.87 4.98 2.72 2.76 2.80 1.59 1.64 1.71
1998 4.86 4.96 5.07 2.58 2.61 2.66 1.59 1.65 1.71
1999 4.76 4.87 4.98 2.53 2.56 2.61 1.59 1.65 1.72
2000 4.88 5.00 5.14 2.54 2.58 2.63 1.62 1.68 1.76
2001 4.94 5.09 5.25 2.63 2.68 2.73 1.67 1.75 1.84
2002 4.93 5.10 5.27 2.56 2.61 2.67 1.66 1.75 1.85
2003 5.02 5.19 5.38 2.65 2.71 2.78 1.63 1.72 1.82
2004 5.15 5.34 5.55 2.61 2.66 2.73 1.47 1.56 1.66
2005 5.18 5.39 5.61 2.64 2.70 2.77 1.40 1.49 1.60
2006 5.18 5.40 5.64 2.66 2.72 2.80 1.31 1.40 1.50
2007 5.05 5.28 5.52 2.71 2.78 2.86 1.25 1.34 1.45
2008 5.15 5.39 5.64 2.80 2.87 2.96 1.22 1.31 1.42
2009 5.00 5.26 5.54 2.62 2.70 2.80 1.15 1.25 1.36
2010 4.74 5.04 5.35 2.60 2.70 2.82 1.12 1.24 1.37
2011 4.84 5.17 5.53 2.65 2.79 2.94 1.16 1.30 1.46
2012 4.91 5.33 5.76 2.86 3.06 3.28 1.20 1.40 1.64
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Calculating formulas

Categorical distributions for S1 and S2 in equation (19)

The full conditional posterior distribution for any element of S1, might be rewritten as

follows:

π
(
S1
ij|θ,Yobs,Y

−S1

mis

)
∝ f14

(
S1
ij|h, α, N̄

)
· f15

(
S2|γ, S1

ij, s
)
· π
(
S1
ij|Φ

)
The function f15

(
S2|γ, S1

ij, s
)
is a bit of a challenge. For a given year j the total

number of observed moose is given by sj. Let S
1
−ij denote the number of observed moose

in year j from all age-classes except i, i.e. sj = S1
ij + S1

−ij. Then it is obvious that the

element S1
ij in f15

(
S2|γ, S1

ij, s
)
influences all elements of S2

:j, and not only the element S2
ij.

Further let S2
−ij denote the sum of S2 in year j for all age-classes except i. Then, since the

element γj is common for all age-classes in year j, S2
ij might be seen as a hypergeometric

variable as shown in (25).

(
S2
ij|s,S2, S1

ij

)
∼ Hypergeometric

(
sj, S1

ij,

I2∑
i=1

S2
ij

)
(25)

The data augmentation for S1 is conducted through a stepwise process for each year.

In the first step S1 is assumed unknown for all age-classes and a value for age-class 1 is

drawn by equation (19) and assumed fixed. In the second step the elements in (25) is

adjusted by subtracting age-class 1 and a value for age-class 2 is drawn by equation (19).

This algorithm continues until age I2 − 1. S1
I2j

is simply set to the difference between sj

and the sum of S1
:j for the younger age-classes.

For all i and j the formulas for s̃1ij and q̃1
ij in (19) are given by the following formulaes:

s̃1ij =
[
S2
ij, . . . ,

(
S2
ij +M1 − 1

)]t
, q̃1

ij =
[
q̃1ij(1), . . . , q̃

1
ij(M1)

]t
, where

M1 =

(
sj −

i−1∑
l=1

S1
lj

)
−

I∑
l=1

S2
lj + 1, and

q̃1ij(m) ∝ f25
(
S2
ij|s,S2, S1

ij = s̃1ij(m)

)
· f14

(
S1
ij = s̃1ij(m)|N̄ ,h, α

)
, 1 ≤ m ≤ M1,

s̃2ij = [Kij, . . . , (Kij +M2 − 1)]t , q̃2
ij =

[
q̃2ij(1), . . . , q̃

1
ij(M2)

]t
, where

M2 = S1
ij − S2

ij + 1, and
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q̃2ij(m) ∝ f15
(
Kij|S2

ij = s̃2ij(m), λi

)
· f15

(
S2
ij = s̃2ij(m)|S1

ij, γj
)
, 1 ≤ m ≤ M2

Conjugate prior distribution for α

Since the different elements of S1 are assumed to be independent the posterior distribution

of S1 conditional on θ−α,Yobs,Ymis might be written as shown below. Then the full

conditional distribution for α is gamma distribution.

π
(
S1|θ−α,Yobs,Ymis

)
∝α

(
I∏

i=1

J∏
j=1

f14
(
S1
ij|α,N ,K,H

))
· π (α|Φ)

= C · e
−
(
ϕα
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I∑
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J∑
j=1

(N̄ijhj)
)
α

· α

(
ϕα
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I∑
i=1

J∑
j=1

S1
ij

)
−1

where C =

(
I∏

i=1

J∏
j=1

(
N̄ijhj

)Sij

Sij!

)
· ϕα

2
ϕα
1

Γ(ϕα
1 )

Then:

π
(
α|θ−α,Yobs,Ymis

)
∼ Gamma

(
ϕα
1 +

J∑
j=1

sj, ϕα
2 +

I∑
i=1

J∑
j=1

(
N̄ijhj

))



Chapter 3

R-code

Script for running models

###########################################################################

##### Modell for moose ##

##### Lars Erik Gangsei, 17. april 2013. ##

rm(list=ls());setwd("C:/Users/Eier/Dropbox/LEGMasterThesis/R_Scripts");

setwd("C:/Users/LarsErik/Dropbox/LEGMasterThesis/R_Scripts")

##### Prior-hyperparameters ##

Phi<-

list(DelA=c(10^(-4),10^(-4)),TauL=c(5,5),TauG=c(5,5),TauNu=c(2.96,50.41))

Iclass<-3;W<-10^4

##### Loading Data and initiating values ##

##### Setting working directory, loading packages and own-made functions ##

for (nm in list.files(paste(getwd(),"Funksjoner",sep="/")))

{source(paste(getwd(),"Funksjoner",nm,sep="/"))}

load(paste(getwd(),"Data/Data",sep="/"));

load(paste(getwd(),"Data/ValdAreal",sep="/"));

Vald<-as.character(ValdAreal$Valdnavn)

load(paste(getwd(),"Data/ThetaInit",sep="/"));

ThetaInit$alfa<-0.1;ThetaInit$alfaM<-0.1

ThetaInit$lambda<-ThetaInit$lambda[1:Iclass]

ThetaInit$lambdaM<-ThetaInit$lambdaM[1:Iclass]

load(paste(getwd(),"Data/Nstart",sep="/"))

71
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###########################################################################

##### Model with real data ##

Yobs<-Data$Totalt;Yobs$H<-1000*Yobs$H/sum(ValdAreal$Areal)

##### Making a list, ResultsAll, for storing results ##

ResultsAll<-vector("list",2)

for(GG in c(1,0))

{

ResultsAll[[GG+1]]<-vector("list",2)

for(LL in c(1,0))

{

ResultsAll[[GG+1]][[LL+1]]<-vector("list",2)

for(NN in c(1,0))

{

##### Kohort_func "runs the model", and returns estimates ##

ResultsAll[[GG+1]][[LL+1]][[NN+1]]<-Kohort_func(Yobs=Yobs,

Iclass=Iclass,W=W,Phi=Phi,ThetaInit=ThetaInit,Nstart=Nstart,

Gsim=GG,Lsim=LL,Nsim=NN)

save(ResultsAll,file=paste(getwd(),"Resultat","ResultsAll.R",sep="/"))

}

}

}

###########################################################################

##### Modell with simulated data ##

load(file=paste(getwd(),"SimData/Simdata",sep="/"))

##### Making a list, ResultsSim, for storing results ##

ResultsSim<-vector("list",2)

Yobs<-list(K=SimData$K_sim,KM=SimData$KM_sim,S=SimData$s_sim,

SM=SimData$sM_sim,SC=SimData$sC_sim,H=SimData$H_sim)

for(GG in c(1,0))

{

ResultsSim[[1]][[GG+1]]<-vector("list",2)

for(LL in c(1,0))

{

ResultsSim[[1]][[GG+1]][[LL+1]]<-vector("list",2)
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for(NN in c(1,0))

{

##### Kohort_func "runs the model", and returns estimates ##

ResultsSim[[1]][[GG+1]][[LL+1]][[NN+1]]<-Kohort_func(Yobs=Yobs,

Iclass=Iclass,W=W,Phi=Phi,ThetaInit=ThetaInit,Nstart=Nstart,

Gsim=GG,Lsim=LL,Nsim=NN,SIM=SimData)

print(c(GG,LL,NN))

save(ResultsSim,file=paste(getwd(),"Resultat","ResultsSim.R",sep="/"))

}

}

}

##### Testing the single elements of theta. Results unreported in the ##

##### Master-thesis ##

ResultsSim[[2]]<-vector("list",5)

for (ii in 1:5)

{

ResultsSim[[2]][[ii]]<-Kohort_func(Yobs=Yobs,Iclass=Iclass,

W=W,Phi=Phi,ThetaInit=ThetaInit,Nstart=Nstart,

Gsim=ifelse(ii==1,1,2),Lsim=ifelse(ii==2,1,2),

Nsim=ifelse(ii==3,1,2),Asim=ifelse(ii==4,1,2),

NNsim=ifelse(ii==5,1,2),SIM=SimData)

save(ResultsSim,file=paste(getwd(),"Resultat","ResultsSim.R",sep="/"))

}

###########################################################################

##### Modell with simulated data B ##

load(file=paste(getwd(),"SimData/Simdata_B",sep="/"))

##### Making a list, ResultsSim_B, for storing results ##

ResultsSim_B<-vector("list",2)

Yobs<-list(K=SimData_B$K_sim,KM=SimData_B$KM_sim,S=SimData_B$s_sim,

SM=SimData_B$sM_sim,SC=SimData_B$sC_sim,H=SimData_B$H_sim)

for(GG in c(1,0))

{

ResultsSim_B[[1]][[GG+1]]<-vector("list",2)

for(LL in c(1,0))

{
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ResultsSim_B[[1]][[GG+1]][[LL+1]]<-vector("list",2)

for(NN in c(1,0))

{

##### Kohort_func "runs the model", and returns estimates ##

ResultsSim_B[[1]][[GG+1]][[LL+1]][[NN+1]]<-Kohort_func(Yobs=Yobs,

Iclass=Iclass,W=W,Phi=Phi,ThetaInit=ThetaInit,Nstart=Nstart,

Gsim=GG,Lsim=LL,Nsim=NN,SIM=SimData_B)

print(c(GG,LL,NN))

save(ResultsSim_B,file=paste(getwd(),"Resultat","ResultsSim_B.R",sep="/"))

}

}

}

##### Testing the single elements of theta. Results unreported in the ##

##### Master-thesis ##

ResultsSim_B[[2]]<-vector("list",5)

for (ii in 1:5)

{

ResultsSim_B[[2]][[ii]]<-Kohort_func(Yobs=Yobs,Iclass=Iclass,

W=W,Phi=Phi,ThetaInit=ThetaInit,Nstart=Nstart,

Gsim=ifelse(ii==1,1,2),Lsim=ifelse(ii==2,1,2),

Nsim=ifelse(ii==3,1,2),Asim=ifelse(ii==4,1,2),

NNsim=ifelse(ii==5,1,2),SIM=SimData_B)

save(ResultsSim_B,file=paste(getwd(),"Resultat","ResultsSim_B.R",sep="/"))

}

###########################################################################

##### Modell with different time-subsets ##

##### Making a list, ResultsTime, for storing results. Only full model ##

##### i.e. Gsim=Lsim=Nsim=1, is applied. ##

ResultsTime<-vector("list",14)

names(ResultsTime)<-1999:2012

for(k in 1:14)

{

Yobs<-Data$Totalt;

for(l in 1:2){Yobs[[l]]<-Yobs[[l]][,k:(k+11)]}

for(l in 3:6){Yobs[[l]]<-Yobs[[l]][k:(k+11)]}

Yobs$H<-1000*Yobs$H/sum(ValdAreal$Areal)
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ThetaInit_Time<-ThetaInit

for(l in c(2,6,8)){ThetaInit_Time[[l]]<-ThetaInit_Time[[l]][1:12]}

ThetaInit_Time[[4]]<-ThetaInit_Time[[4]][1:11]

##### Kohort_func "runs the model", and returns estimates ##

ResultsTime[[k]]<-Kohort_func(Yobs=Yobs,Iclass=Iclass,W=W,Phi=Phi,

ThetaInit=ThetaInit_Time,Nstart=Nstart[,14:25],Gsim=1,Lsim=1,Nsim=1)

save(ResultsTime,file=paste(getwd(),"Resultat","ResultsTime.R",sep="/"))

}

###########################################################################

##### Modell with different geographical-subsets ##

##### Making a list, ResultsVald, for storing results. Only full model ##

##### i.e. Gsim=Lsim=Nsim=1, is applied. ##

ResultsVald<-vector("list",22);names(ResultsVald)<-ValdAreal$Valdnavn

for(k in 1:22)

{

Yobs<-

mapply("-",Data$Totalt,Data[[which(names(ResultsVald[k])==names(Data))]]);

Yobs$H<-1000*Yobs$H/(sum(ValdAreal$Areal)

-ValdAreal$Areal[which(names(ResultsVald[k])==ValdAreal$Valdnavn)])

##### Kohort_func "runs the model", and returns estimates ##

ResultsVald[[k]]<-Kohort_func(Yobs=Yobs,Iclass=Iclass,W=W,Phi=Phi,

ThetaInit=ThetaInit,Nstart=Nstart,Gsim=1,Lsim=1,Nsim=1)

save(ResultsVald,file=paste(getwd(),"Resultat","ResultsVald.R",sep="/"))

}#End for
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Model-script

###########################################################################

###### Main model for Cohort-analysis of moose ##

###### Lars Erik Gangsei, 26.04.2013 ##

Kohort_func<-function(Yobs,Iclass,W,Phi,ThetaInit,Nstart,Gsim=1,Lsim=1,

Nsim=1,Asim=1,NNsim=1,SIM=NULL)

{#start function

attach(Yobs);attach(Phi);Imax<-dim(K)[1];ImaxM<-dim(KM)[1];Jmax<-dim(K)[2]

###### Matrixes for storing of simulatet values and data-augmented values##

lambda.<-matrix(NA,W,ifelse(Lsim==1,Iclass,1));

gamma.<-matrix(NA,W,ifelse(Gsim==1,Jmax,1));alfa.<-rep(NA,W);

nu.<-matrix(NA,W,ifelse(Nsim==1,(Jmax-1),1));

lambdaM.<-matrix(NA,W,ifelse(Lsim==1,Iclass,1));

gammaM.<-matrix(NA,W,ifelse(Gsim==1,Jmax,1));alfaM.<-rep(NA,W);

gammaC.<-matrix(NA,W,ifelse(Gsim==1,Jmax,1));N.<-matrix(NA,Imax*W,Jmax);

NM.<-matrix(NA,ImaxM*W,Jmax);S1.<-matrix(NA,(Iclass+1)*W,Jmax);

S1M.<-matrix(NA,(Iclass+1)*W,Jmax);S2.<-matrix(NA,(Iclass+1)*W,Jmax)

S2M.<-matrix(NA,(Iclass+1)*W,Jmax);DIC.<-matrix(NA,W,2)

###########################################################################

##### Cumulative values for shoot moose, used in calculations ##

cumK<-K;cumKM<-KM

for(i in (Imax-1):1){cumK[i,1:(Jmax-1)]<-cumK[i+1,2:Jmax]+K[i,1:(Jmax-1)]};

for(i in (ImaxM-1):1){cumKM[i,1:(Jmax-1)]<-cumKM[i+1,2:Jmax]+KM[i,1:(Jmax-1)]}

##### Cohort-indexes (l) put up in a matrix. Used in calculations, for ##

##### instance in data-augmentation of N. ##

Index<-NULL;IndexM<-NULL;

for(j in 1:Jmax)

{Index<-cbind(Index,c((Jmax+1-j):(Jmax+Imax-1),rep(99,Jmax-j)))}

for(j in 1:Jmax)

{IndexM<-cbind(IndexM,c((Jmax+1-j):(Jmax+ImaxM-1),rep(99,Jmax-j)))}

###########################################################################

##### MCMC algorithm ##

###########################################################################

##### Step 1: Initiation of parameters ##
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attach(ThetaInit)

alfa.[1]<-alfa;alfaM.[1]<-alfaM

###########################################################################

##### Step 2: Start value for N, Nbar, D and S2 ##

N<-Nstart[1:Imax,]+cumK;Nbar<--K/(log(1-K/N));Nbar[K==N]<-N[K==N];

Nbar[K==0]<-N[K==0];

NM<-Nstart[1:ImaxM,]+cumKM;NbarM<--KM/(log(1-KM/NM));

NbarM[KM==NM]<-NM[KM==NM];NbarM[KM==0]<-NM[KM==0];

S2<-rbind(K[1:Iclass,],colSums(K[(Iclass+1):Imax,]));

S2M<-rbind(KM[1:Iclass,],colSums(KM[(Iclass+1):ImaxM,]))

S1<-matrix(NA,Iclass+1,Jmax);S1M<-matrix(NA,Iclass+1,Jmax)

###########################################################################

##### Step 3: Initiate the model ##

w=1

while(w<=W)

{#start while

###########################################################################

##### Step 4:Data-augmentasjon ##

##### a) Data-augmentasjon N, "data.augment.NC" is a custom function ##

##### returning values for N and D. ##

##### NNsim = 1 in all situations except the situation when single ##

##### elements from theta are tested, results unrep. in the Master-th.##

N_D<-data.augment.NC(Index=Index,cumK=cumK,K=K,H=H,D=D,alfa=alfa,

alfaC=alfa,gamma=gamma,gammaC=gammaC,lambda=lambda,nu=nu,

Iclass=Iclass,Imax=Imax,Jmax=Jmax)

N_D_M<-data.augment.NC(Index=IndexM,cumK=cumKM,K=KM,H=H,D=DM,alfa=alfaM,

alfaC=alfa,gamma=gammaM,gammaC=gammaC,lambda=lambdaM,nu=nu,

Iclass=Iclass,Imax=ImaxM,Jmax=Jmax)

if(NNsim==1){N<-N_D$N;D<-N_D$D;NM<-N_D_M$N;DM<-N_D_M$D}

else{N<-SIM$N_sim;D<-SIM$D_sim;NM<-SIM$NM_sim;DM<-SIM$DM_sim}
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##### Update Nbar for every step. ##

Nbar<--K/(log(1-K/N));Nbar[K==N]<-N[K==N];Nbar[K==0]<-N[K==0]

NbarM<--KM/(log(1-KM/NM));NbarM[KM==NM]<-NM[KM==NM];NbarM[KM==0]<-NM[KM==0]

##### b) Data-augmentasjon S1 (categorical based on gamma and lambda). ##

##### "data.augment.s1" is a custom function returning value for S1 ##

##### for adult moose. ##

S1[2:(Iclass+1),]<-data.augment.S1(Nbar=Nbar[2:Imax,],

s=S,S2=S2[2:(Iclass+1),],gamma=gamma,lambda=lambda,Iclass=Iclass,

Imax=Imax-1,Jmax=Jmax)

S1M[2:(Iclass+1),]<-data.augment.S1(Nbar=NbarM[2:ImaxM,],

s=SM,S2=S2M[2:(Iclass+1),],gamma=gammaM,lambda=lambdaM,

Iclass=Iclass,Imax=ImaxM-1,Jmax=Jmax)

##### Calves. ##

S1[1,]<-rbinom(Jmax,SC-K[1,]-KM[1,],Nbar[1,]/(Nbar[1,]+NbarM[1,]))+K[1,];

S1M[1,]<-SC-S1[1,]

##### c) Data-augmentasjon S2 (categorical based on gamma and lambda). ##

##### "data.augment.s2B" is a custom function returning value for S2 ##

##### for adult moose. ##

#c) Data-augmentasjon S2, (categorical based on gamma and lambda)

S2[2:(Iclass+1),]<-data.augment.S2B(K=K[2:Imax,],S1=S1[2:(Iclass+1),],

lambda=lambda,gamma=gamma,Iclass=Iclass,Imax=Imax-1,Jmax=Jmax);

S2M[2:(Iclass+1),]<-data.augment.S2B(K=KM[2:ImaxM,],S1=S1M[2:(Iclass+1),],

lambda=lambdaM,gamma=gammaM,Iclass=Iclass,Imax=ImaxM-1,Jmax=Jmax);

##### Calves. ##

S2[1,]<-K[1,];S2M[1,]<-KM[1,]

###########################################################################

##### Step 5: Gibbs sampling ##

##### a) lambda ##

##### Full length of lambda: ##

if(Lsim==1)

{

Hyp1L<-c(TauL[1]+rowSums(K[2:Iclass,]),
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TauL[1]+sum(K[(Iclass+1):Imax,]));

Hyp2L<-c(TauL[2]+rowSums(S2[2:Iclass,])-rowSums(K[2:Iclass,]),

TauL[2]+sum(S2[(Iclass+1),])-sum(K[(Iclass+1):Imax,]))

Hyp1LM<-c(TauL[1]+rowSums(KM[2:Iclass,]),

TauL[1]+sum(KM[(Iclass+1):ImaxM,]));

Hyp2LM<-c(TauL[2]+rowSums(S2M[2:Iclass,])-rowSums(KM[2:Iclass,]),

TauL[2]+sum(S2M[(Iclass+1),])-sum(KM[(Iclass+1):ImaxM,]))

lambda<-rbeta(Iclass,Hyp1L,Hyp2L);lambdaM<-rbeta(Iclass,Hyp1LM,Hyp2LM)

}

##### Setting lambda equal to true value. Unrep. results, simulated pop. ##

else if(Lsim==2)

{

lambda<-SIM$lambda_sim;lambdaM<-SIM$lambdaM_sim;

}

##### Reduced length of lambda: ##

else

{

Hyp1L<-TauL[1]+sum(K[2:Imax,]);

Hyp2L<-TauL[2]+sum(S2[2:(Iclass+1),])-sum(K[2:Imax,])

Hyp1LM<-TauL[1]+sum(KM[2:ImaxM,]);

Hyp2LM<-TauL[2]+sum(S2M[2:(Iclass+1),])-sum(KM[2:ImaxM,])

lambda_val<-rbeta(1,Hyp1L,Hyp2L);lambda<-rep(lambda_val,Iclass);

lambdaM_val<-rbeta(1,Hyp1LM,Hyp2LM);lambdaM<-rep(lambdaM_val,Iclass)

}

##### b) gamma ##

##### Full length of gamma: ##

if(Gsim==1)

{

Hyp1G<-TauG[1]+colSums(S2[2:(Iclass+1),]);

Hyp2G<-TauG[2]+S-colSums(S2[2:(Iclass+1),])

Hyp1GM<-TauG[1]+colSums(S2M[2:(Iclass+1),]);

Hyp2GM<-TauG[2]+SM-colSums(S2M[2:(Iclass+1),])

Hyp1GC<-TauG[1]+(S2[1,]+S2M[1,]);Hyp2GC<-TauG[2]+SC-(S2[1,]+S2M[1,])
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gamma<-rbeta(Jmax,Hyp1G,Hyp2G);

gammaM<-rbeta(Jmax,Hyp1GM,Hyp2GM);

gammaC<-rbeta(Jmax,Hyp1GC,Hyp2GC)

}

##### Setting gamma equal to true value. Unrep. results, simulated pop. ##

else if(Gsim==2)

{

gamma<-SIM$gamma_sim;gammaM<-SIM$gammaM_sim;gammaC<-SIM$gammaC_sim

}

##### Reduced length of gamma: ##

else

{

Hyp1G<-TauG[1]+sum(S2[2:(Iclass+1),]);

Hyp2G<-TauG[2]+sum(S)-sum(S2[2:(Iclass+1),])

Hyp1GM<-TauG[1]+sum(S2M[2:(Iclass+1),]);

Hyp2GM<-TauG[2]+sum(SM)-sum(S2M[2:(Iclass+1),])

Hyp1GC<-TauG[1]+sum(S2[1,]+S2M[1,]);

Hyp2GC<-TauG[2]+sum(SC)-sum(S2[1,]+S2M[1,])

gamma_val<-rbeta(1,Hyp1G,Hyp2G);gamma<-rep(gamma_val,Jmax);

gammaM_val<-rbeta(1,Hyp1GM,Hyp2GM);gammaM<-rep(gammaM_val,Jmax);

gammaC_val<-rbeta(1,Hyp1GC,Hyp2GC);gammaC<-rep(gammaC_val,Jmax)

}

##### c)nu ##

##### Full length of nu: ##

if(Nsim==1)

{

Hyp1Nu<-TauNu[1]+colSums(D)+colSums(DM);

Hyp2Nu<-(TauNu[2]+colSums((N-K)[1:(Imax-1),1:(Jmax-1)])

+colSums((NM-KM)[1:(ImaxM-1),1:(Jmax-1)])-colSums(D)-colSums(DM))

nu<-rbeta((Jmax-1),Hyp1Nu,Hyp2Nu)

}

##### Setting nu equal to true value. Unrep. results, simulated pop. ##

else if(Nsim==2)
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{

nu<-SIM$nu_sim;

}

##### Reduced length of nu: ##

else

{

Hyp1Nu<-Jmax*TauNu[1]+sum(D)+sum(DM);

Hyp2Nu<-(Jmax*TauNu[2]+sum((N-K)[1:(Imax-1),1:(Jmax-1)])

+sum((NM-KM)[1:(ImaxM-1),1:(Jmax-1)])-sum(D)-sum(DM))

nu_val<-rbeta(1,Hyp1Nu,Hyp2Nu);nu<-rep(nu_val,Jmax-1)

}

##### d) alfa ##

if(Asim==1)

{

Hyp1A<-DelA[1]+sum(S1)+sum(S1M[1,]);

Hyp2A<-(DelA[2]+sum(Nbar*matrix(rep(H,Imax),Imax,Jmax,byrow=TRUE))

+sum(NbarM[1,]*H))

Hyp1AM<-DelA[1]+sum(S1M)-sum(S1M[1,]);

Hyp2AM<-(DelA[2]+sum(NbarM*matrix(rep(H,ImaxM),ImaxM,Jmax,byrow=TRUE))

-sum(NbarM[1,]*H))

alfa<-rgamma(1,Hyp1A,Hyp2A);alfaM<-rgamma(1,Hyp1AM,Hyp2AM)

}

##### Setting alpha equal to true value. Unrep. results, simulated pop. ##

else

{

alfa<-SIM$alfa_sim;alfaM<-SIM$alfaM_sim;

}

###########################################################################

##### Storing data ##

if(Lsim==1){lambda.[w,]<-lambda;lambdaM.[w,]<-lambdaM}

else{lambda.[w,]<-lambda[1];lambdaM.[w,]<-lambdaM[1]};

if(Gsim==1){gamma.[w,]<-gamma;gammaM.[w,]<-gammaM;gammaC.[w,]<-gammaC}
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else{gamma.[w,]<-gamma[1];gammaM.[w,]<-gammaM[1];gammaC.[w,]<-gammaC[1]}

if(Nsim==1){nu.[w,]<-nu}else{nu.[w,]<-nu[1]}

alfa.[w]<-alfa;alfaM.[w]<-alfaM;

N.[((w-1)*Imax+1):(w*Imax),]<-N;

NM.[((w-1)*ImaxM+1):(w*ImaxM),]<-NM;

S1.[((w-1)*(Iclass+1)+1):(w*(Iclass+1)),]<-S1;

S1M.[((w-1)*(Iclass+1)+1):(w*(Iclass+1)),]<-S1M

S2.[((w-1)*(Iclass+1)+1):(w*(Iclass+1)),]<-S2;

S2M.[((w-1)*(Iclass+1)+1):(w*(Iclass+1)),]<-S2M

###########################################################################

##### Step 6: Increase iteration (w) by 1. ##

w=w+1;print(w)

if(w%%100==0){plot(alfa.,type="l");if(!is.null(SIM)){abline(h=SIM$alfa_sim)}}

}#End while

###########################################################################

##### Storing result ##

ResSub<-list(lambda.=lambda.,lambdaM.=lambdaM.,gamma.=gamma.,

gammaM.=gammaM.,gammaC.=gammaC.,nu.=nu.,alfa.=alfa.,alfaM.=alfaM.,

N.=N.,NM.=NM.,S1.=S1.,S1M.=S1M.,S2.=S2.,S2M.=S2M.,DIC.=DIC.)

return(ResSub)

}#End function
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Function: Data-augmentation N

###########################################################################

##### Funksjon for returning Data-augmented values for N and D ##

##### ##

##### The data are split into different cohorts using functions "mapply" ##

##### and the matrix "Index", where cohort "l" (cohort number) are given ##

##### in matrix form. ##

##### ##

##### Lars Erik Gangsei 27.12.2012 ##

data.augment.NC<-function(Index,cumK,K,H,D,alfa,alfaC,gamma,gammaC,lambda,

nu,Iclass,Imax,Jmax)

{#Start function

##### Number of Cohorts, Lmax ##

Lmax<-Imax+Jmax-1

##### pp: probability of being shot, pp-inv: probability of survive ##

pp<-rbind(1-exp(-alfaC*gammaC*H),

1-exp(-alfa*(c(lambda,rep(lambda[Iclass],Lmax-Iclass-1))%*%t(gamma*H))))

pp_inv_list<-tapply(1-pp,Index,c)[1:Lmax]

pp_list<-tapply(pp,Index,c)[1:Lmax]

##### nu: natural mortality rate ##

nu_mat<-rbind(rep(0,Jmax),matrix(c(0,nu),Lmax-1,Jmax,byrow=TRUE))

nu_inv_list<-c(tapply(1-nu_mat,Index,c)[1:Lmax])

nu_mat_B<-rbind(matrix(c(nu,1),Lmax-1,Jmax,byrow=TRUE),rep(1,Jmax))

nu_list<-c(tapply(nu_mat_B,Index,c)[1:Lmax])

###### Probability of surviving from hunting end to next years hunt. end ##

nu_pp_vec<-mapply("*",nu_inv_list,pp_inv_list)

###### Probability of being alive post-hunt ##

pp_cum_post_surv_list<-sapply(nu_pp_vec,cumprod)

###### Probability of being alive pre-hunt ##

pp_cum_pre_surv_list<-mapply("/",pp_cum_post_surv_list,pp_inv_list)
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###### Unconditional probability of being shot a given year ##

pp_t_list<-mapply("*",pp_cum_pre_surv_list,pp_list)

###### Cumulative probability of being shot ##

cum_pp_t_list<-lapply(pp_t_list,sum)

###### Number of shot in every cohort ##

cumK_list<-tapply(K,Index[1:Imax,],sum)[1:Lmax]

###### Number not shot in every cohort ##

LEG_rnbin<-function(ss,pp)

{if(ss>0){res<-rnbinom(1,size=ss,prob=pp)}

else{res<-rgeom(1,pp)};return(res)}

N0_cum_list<-mapply(LEG_rnbin,ss=cumK_list,pp=cum_pp_t_list)

###### Unconditional natural mortality rate ##

nu_t_list<-mapply("*",pp_cum_post_surv_list,nu_list)

###### Distribution in natural dead and survivors ##

DD_N0_list<-mapply(rmultinom,n=1,size=N0_cum_list,prob=nu_t_list)

###### Finding D og N ##

DD<-matrix(NA,Lmax,Jmax)

DD[1,Jmax]<-DD_N0_list[[1]]

for(l in 2:Lmax)

{diag(DD[max(1,l+1-Jmax):l,max(1,Jmax+1-l):Jmax])<-DD_N0_list[[l]]}

for (j in 1:(Jmax-1)){DD[Imax,j]<-sum(diag(DD[Imax:(Lmax+1-j),j:Jmax]))}

DD<-DD[1:Imax,]

cumDD<-DD

for(i in (Imax-1):1)

{cumDD[i,1:(Jmax-1)]<-cumDD[i+1,2:Jmax]+DD[i,1:(Jmax-1)]}

NN<-cumK+cumDD

res<-list(N=NN,D=DD[1:(Imax-1),1:(Jmax-1)])

return(res)

}#End function
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Function: Data-augmentation S1

###########################################################################

##### Function for returning S1 from data-augmentation ##

##### ##

##### The function is based on categorical distribution ##

##### ##

##### Lars Erik Gangsei 16.02.2013 ##

data.augment.S1<-function(Nbar,S2,s,gamma,lambda,Iclass,Imax,Jmax)

{#Start function

S1<-matrix(NA,Iclass,Jmax)

for (j in 1:Jmax)

{#start for

for (i in 1:(Iclass-1))

{#start i

X<-0:ifelse(i>1,s[j]-sum(S1[1:(i-1),j])-

sum(S2[i:Iclass,j]),s[j]-sum(S2[,j]))

if(max(X)==0){S1[i:(Iclass-1),j]<-S2[i:(Iclass-1),j];break()}

else

{#start else

propS2<-dhyper(x=S2[i,j],m=X+S2[i,j],n=s[j]-

ifelse(i>1,sum(S1[1:(i-1),j]),0)-X-S2[i,j],k=sum(S2[i:Iclass,j]))

propNbar<-dbinom(X,max(X),Nbar[i,j]/sum(Nbar[i:Imax,j]))

PropT<-propS2*propNbar;PropT[PropT=="NaN"]=0;

if(sum(PropT)==0){PropT<-rep(1/length(PropT),length(PropT))}

S1[i,j]<-sample(X,size=1,prob=PropT)+S2[i,j]

}#end else

}#end for (i)

}#end for (j)

S1[Iclass,]<-s-colSums(S1[1:(Iclass-1),])

return(S1)

}#End function
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Function: Data-augmentation S2

###########################################################################

##### Function for returning S2 from data-augmentation ##

##### ##

##### Function is based on categorical distribution. The function ##

##### "mapply" is applied to "estimate all elements at once". ##

##### ##

##### Lars Erik Gangsei 16.02.2013 ##

data.augment.S2B<-function(K,S1,lambda,gamma,Iclass,Imax,Jmax)

{#Start function

KK<-rbind(K[1:(Iclass-1),],colSums(K[Iclass:Imax,]))

X<-mapply(seq,KK,S1)

PropG<-mapply(dbinom,X,as.list(S1),as.list(matrix(rep(gamma,Iclass),

Iclass,Jmax,byrow=TRUE)))

PropL<-mapply(dbinom,as.list(KK),X,as.list(matrix(rep(lambda,Jmax),

Iclass,Jmax,byrow=FALSE)))

Prop<-mapply("*",PropG,PropL)

S2<-sapply(X,sum);

S2[mapply(length,X)>1]<-mapply(sample,X[mapply(length,X)>1],

prob=Prop[mapply(length,X)>1],size=1)

S2<-matrix(S2,Iclass,Jmax,byrow=FALSE)

return(S2)

}#End function
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Function: DIC.1

###########################################################################

##### Function returning values bar(DEV), p_DEV, DEV_bar(th) and DIC ##

##### for a list containing Monte Carlo realizations for parameter ##

##### estimates and single realizations for DEV for every iteration. The ##

##### names for parameter estimates must be proper. The algorithm is ##

##### restricted to use on the moose population model only. The ##

##### Burnin-period should be eliminated from Theta. ##

##### ##

##### Lars Erik gangsei 23.04.2013 ##

DIC_function_theta<-function(GG=1,LL=1,NN=1,Theta,Data,Iclass,hh)

{

mm<-length(Theta$alfa.);Imax<-dim(Data$K)[1];

ImaxM<-dim(Data$KM)[1];Jmax<-dim(Data$K)[2]

##### Calculating the deviance for each element in the output using the ##

##### custom function "DIC_func_1_B" which returns the deviance for the ##

##### moose model as function of data (Y_obs), missing data ##

##### (Y_mis, i.e. N) and parameters (theta). ##

Bar_Dev_mat<-rep(NA,mm)

for(xx in 1:mm)

{

Bar_Dev_mat[xx]<-DIC_func_1_B(KK=Data$K,

KKM=Data$KM,NN=Theta$N.[((xx-1)*Imax+1):(xx*Imax),],

NNM=Theta$NM.[((xx-1)*ImaxM+1):(xx*ImaxM),],

ss=Data$S,ssM=Data$SM,ssC=Data$SC,

if(GG==1){gg=Theta$gamma.[xx,]}

else{gg=rep(Theta$gamma.[xx],Jmax)},

if(GG==1){ggM=Theta$gammaM.[xx,]}

else{ggM=rep(Theta$gammaM.[xx],Jmax)},

if(GG==1){ggC=Theta$gammaC.[xx,]}

else{ggC=rep(Theta$gammaC.[xx],Jmax)},

if(LL==1){ll=Theta$lambda.[xx,]}

else{ll=rep(Theta$lambda.[xx],Iclass)},
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if(LL==1){llM=Theta$lambdaM.[xx,]}

else{llM=rep(Theta$lambdaM.[xx],Iclass)},

if(NN==1){nn=Theta$nu.[xx,]}

else{nn=rep(Theta$nu.[xx],Jmax-1)},

aa=Theta$alfa.[xx],aaM=Theta$alfaM.[xx],hh=hh)

}

##### Calculating "bar_D", a central part of DIC ##

Bar_Dev<-mean(Bar_Dev_mat)

##### Calculating the deviance for average parameter/missing data output.##

##### First calculating average values for parameters and miss. data (N).##

if(LL==1)

{Bar_lambda<-colMeans(Theta$lambda.)}

else{Bar_lambda<-rep(mean(Theta$lambda.),Iclass)}

if(LL==1)

{Bar_lambdaM<-colMeans(Theta$lambdaM.)}

else{Bar_lambdaM<-rep(mean(Theta$lambdaM.),Iclass)}

if(GG==1)

{Bar_gamma<-colMeans(Theta$gamma.)}

else{Bar_gamma<-rep(mean(Theta$gamma.),Jmax)}

if(GG==1)

{Bar_gammaM<-colMeans(Theta$gammaM.)}

else{Bar_gammaM<-rep(mean(Theta$gammaM.),Jmax)}

if(GG==1)

{Bar_gammaC<-colMeans(Theta$gammaC.)}

else{Bar_gammaC<-rep(mean(Theta$gammaC.),Jmax)}

if(NN==1){Bar_nu<-colMeans(Theta$nu.)}

else{Bar_nu<-rep(mean(Theta$nu.),Jmax-1)}

Bar_alfa<-mean(Theta$alfa.)

Bar_alfaM<-mean(Theta$alfaM.)

Bar_N<-NULL;Bar_NM<-NULL;

for(i in 1:Imax)
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{Bar_N<-rbind(Bar_N,colMeans(Theta$N.[seq(i,mm*Imax,by=Imax),]))}

for(i in 1:ImaxM)

{Bar_NM<-rbind(Bar_NM,colMeans(Theta$NM.[seq(i,mm*ImaxM,by=ImaxM),]))}

##### Bar_dev(bar_theta), a central part of DIC ##

Dev_Theta_Bar<-

DIC_func_1_B(KK=Data$K,KKM=Data$KM,NN=round(Bar_N),NNM=round(Bar_NM),

ss=Data$S,ssM=Data$SM,ssC=Data$SC,gg=Bar_gamma,ggM=Bar_gammaM,

ggC=Bar_gammaC,ll=Bar_lambda,llM=Bar_lambdaM,nn=Bar_nu,

aa=Bar_alfa,aaM=Bar_alfaM,hh=hh)

##### P_d and returning results ##

p_Dev<-Bar_Dev-Dev_Theta_Bar; DIC<-Bar_Dev+p_Dev

return(c(GG,LL,NN,Bar_Dev,Dev_Theta_Bar,p_Dev,DIC))

}
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Function: DIC.2

###########################################################################

##### Functions returning the deviance based on data, missing data and ##

##### parameters. ##

##### ##

##### Lars Erik Gangsei 20.04.2013 ##

DIC_func_1_B<-function(KK,KKM,NN,NNM,ss,ssM,ssC,#SS1,SS1M,SS2,SS2M,

gg,ggM,ggC,ll,llM,nn,aa,aaM,hh)

{

NNBB<--KK/(log(1-KK/NN));NNBB[KK==NN]<-NN[KK==NN];

NNBB[KK==0]<-NN[KK==0];NNMMBB<--KKM/(log(1-KKM/NNM));

NNMMBB[KKM==NNM]<-NNM[KKM==NNM];NNMMBB[KKM==0]<-NNM[KKM==0]

II<-dim(KK)[1];JJ<-dim(KK)[2];IICC<-length(lambda)+1;IIM<-dim(KKM)[1]

Like_s<-

(sum(dpois(ss,colSums(NNBB[2:II,])*hh*aa,log=TRUE))

+sum(dpois(ssM,colSums(NNMMBB[2:IIM,])*hh*aaM,log=TRUE))

+sum(dpois(ssC,(NNBB[1,]+NNMMBB[1,])*hh*aa,log=TRUE)))

ppF<-1-exp(-aa*(c(ll,rep(ll[IICC-1],II-IICC))%*%t(gg*hh)))

ppM<-1-exp(-aaM*(c(llM,rep(llM[IICC-1],IIM-IICC))%*%t(ggM*hh)))

ppC<-1-exp(-aa*ggC*hh)

Like_p<-

(sum(dbinom(KK[2:II,],NN[2:II,],ppF,log=TRUE))

+sum(dbinom(KKM[2:IIM,],NNM[2:IIM,],ppM,log=TRUE))

+sum(dbinom(KK[1,]+KKM[1,],NN[1,]+NNM[1,],ppC,log=TRUE)))

return(-2*(Like_p+Like_s))

}
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Script for simulating data

###########################################################################

##### Script returning a simulated moose populations ##

##### The script has to be run 2 times, one time for each simulation. ##

##### Names for results has to be changed manually then. ##

##### ##

##### Lars Erik Gangsei 20.04.2013 ##

##### Cleaning working space, settting working directory. ##

rm(list=ls());

setwd("C:/Users/Eier/Dropbox/LEGMasterThesis/R_Scripts")

setwd("C:/Users/LarsErik/Dropbox/LEGMasterThesis/R_Scripts")

##### Loading results from the real data. ##

load(paste(getwd(),"Resultat/ResultsAll.R",sep="/"))

load(paste(getwd(),"Data/ValdAreal",sep="/"));

load(paste(getwd(),"Data/Data",sep="/"));

##### Setting parameters ##

Par<-list(Jmax=25,Imax=30,ImaxM=19,Iclass=3,Burnin=2500,W=10^4);attach(Par)

##### Calculating mean numbers for "startng populatins", i.e calves and ##

##### first year. Then calculating mean parametervalues. ##

Omega_N<-

round(tapply(ResultsAll[[2]][[2]][[1]]$N.[(Burnin*Imax+1):(W*Imax),1],

rep(1:Imax,W-Burnin),mean))[2:Imax]

Omega_NM<-

round(tapply(ResultsAll[[2]][[2]][[1]]$NM.[(Burnin*ImaxM+1):(W*ImaxM),1],

rep(1:ImaxM,W-Burnin),mean))[2:ImaxM]

Omega_N2<-round(

colMeans(ResultsAll[[2]][[2]][[1]]$

N.[seq(Burnin*Imax+1,W*Imax,by=Imax),]))

Omega_NM2<-round(

colMeans(ResultsAll[[2]][[2]][[1]]$

NM.[seq(Burnin*ImaxM+1,W*ImaxM,by=ImaxM),]))

hh_sim<-Yobs<-1000*Data$Totalt$H/sum(ValdAreal$Areal)
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ll_sim<-colMeans(ResultsAll[[2]][[2]][[1]]$lambda.[(Burnin+1):W,])

llM_sim<-colMeans(ResultsAll[[2]][[2]][[1]]$lambdaM.[(Burnin+1):W,])

gg_sim<-colMeans(ResultsAll[[2]][[2]][[1]]$gamma.[(Burnin+1):W,])

ggM_sim<-colMeans(ResultsAll[[2]][[2]][[1]]$gammaM.[(Burnin+1):W,])

ggC_sim<-colMeans(ResultsAll[[2]][[2]][[1]]$gammaC.[(Burnin+1):W,])

aa_sim<-mean(ResultsAll[[2]][[2]][[1]]$alfa.[(Burnin+1):W])

aaM_sim<-mean(ResultsAll[[2]][[2]][[1]]$alfaM.[(Burnin+1):W])

##### If full length of nu: ##

#nn_sim<-colMeans(ResultsAll[[2]][[2]][[1]]$nu.[(Burnin+1):W,])

##### If reduced length of nu: ##

nn_sim<-rep(mean(ResultsAll[[2]][[2]][[1]]$nu.[(Burnin+1):W]),Jmax-1)

##### Calculating p based on parameters and h: ##

pp<-rbind(1-exp(-aa_sim*ggC_sim*hh_sim),

1-exp(-aa_sim*(c(ll_sim,

rep(ll_sim[Iclass],Imax-Iclass-1))%*%t(gg_sim*hh_sim))))

ppM<-rbind(1-exp(-aa_sim*ggC_sim*hh_sim),

1-exp(-aaM_sim*(c(llM_sim,

rep(llM_sim[Iclass],ImaxM-Iclass-1))%*%t(ggM_sim*hh_sim))))

##### Setting up matrixes for simulaing data: ##

N_sim<-matrix(NA,Imax,Jmax);N_sim[2:Imax,1]<-Omega_N

N_sim[1,]<-Omega_N2

NM_sim<-matrix(NA,ImaxM,Jmax);NM_sim[2:ImaxM,1]<-Omega_NM;

NM_sim[1,]<-Omega_NM2

K_sim<-matrix(NA,Imax,Jmax);D_sim<-matrix(NA,Imax-1,Jmax-1)

KM_sim<-matrix(NA,ImaxM,Jmax);DM_sim<-matrix(NA,ImaxM-1,Jmax-1)

##### Simulating process, N and K: ##

for(j in 1:Jmax)

{#start for

K_sim[,j]<-rbinom(Imax,N_sim[,j],pp[,j])

KM_sim[,j]<-rbinom(ImaxM,NM_sim[,j],ppM[,j])

if(j==Jmax){break()}

D_sim[,j]<-rbinom((Imax-1),(N_sim[-Imax,j]-K_sim[-Imax,j]),nn_sim[j])

DM_sim[,j]<-rbinom((ImaxM-1),

(NM_sim[-ImaxM,j]-KM_sim[-ImaxM,j]),nn_sim[j])
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N_sim[2:Imax,(j+1)]<-N_sim[1:(Imax-1),j]-K_sim[1:(Imax-1),j]-D_sim[,j]

NM_sim[2:ImaxM,(j+1)]<-

NM_sim[1:(ImaxM-1),j]-KM_sim[1:(ImaxM-1),j]-DM_sim[,j]

}#end for

##### Simulating process, s and S: ##

N_bar<--K_sim/(log(1-K_sim/N_sim));

N_bar[K_sim==N_sim]<-N_sim[K_sim==N_sim];

N_bar[K_sim==0]<-N_sim[K_sim==0];

NM_bar<--KM_sim/(log(1-KM_sim/NM_sim));

NM_bar[KM_sim==NM_sim]<-NM_sim[KM_sim==NM_sim];

NM_bar[KM_sim==0]<-NM_sim[KM_sim==0];

S1_sim<-matrix(

rpois(Imax*Jmax,(aa_sim*matrix(hh_sim,Imax,Jmax,byrow=TRUE)*N_bar)),

Imax,Jmax,byrow=FALSE);ss_sim<-colSums(S1_sim[2:Imax,])

S1M_sim<-rbind(rpois(Jmax,aa_sim*hh_sim*NM_bar[1,]),

matrix(rpois((ImaxM-1)*Jmax,(aaM_sim*matrix(hh_sim,(ImaxM-1),

Jmax,byrow=TRUE)*NM_bar[2:ImaxM,])),

(ImaxM-1),Jmax,byrow=FALSE));ssM_sim<-colSums(S1M_sim[2:ImaxM,])

ssC_sim<-S1_sim[1,]+S1M_sim[1,]

##### Results returned: ##

SimData_B<-list(lambda_sim=ll_sim,lambdaM_sim=llM_sim,gamma_sim=gg_sim,

gammaM_sim=ggM_sim,gammaC_sim=ggC_sim,alfa_sim=aa_sim,alfaM_sim=aaM_sim,

H_sim=hh_sim,nu_sim=nn_sim,N_sim=N_sim,NM_sim=NM_sim,s_sim=ss_sim,

sM_sim=ssM_sim,sC_sim=ssC_sim,K_sim=K_sim,KM_sim=KM_sim,D_sim=D_sim,

DM_sim=DM_sim)

save(SimData_B,file=paste(getwd(),"SimData/SimData_B",sep="/"))
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