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Abstract 

Lactic acid bacteria (LAB) are commonly ingested with many types of food. Some strains 

have been shown to have beneficial health effects when ingested, of which a few have been 

given the term “probiotic”. Probiotics are defined by the Food and Agriculture Organization 

and World Health Organization (FAO/WHO) as “live microorganisms which when 

administered in adequate amounts confer a health benefit on the host”. Previous studies have 

shown that probiotics may improve human health through immune modulation by inducing 

cytokine secretion. Therefore, the aim of this thesis was to compare the cytokine secretion 

from human immune cell lines exposed to the 7 selected LAB: Lactobacillus plantarum 

MF1298, NC8 and 299v, L. reuteri DSM 20016, DSM 17938 and mm4-1a, and L. rhamnosus 

GG. Furthermore, the effect of putative bacterial surface proteins on the immune response 

were also investigated using L. reuteri mutants. 

The secretion of interleukin (IL-) 6, IL-8, IL-10 and tumor necrosis factor (TNF) α from the 

human monocytic THP-1 cell line and THP-1 derived macrophages was investigated 

following 6 h co-culture with LAB.  

The results showed that L. reuteri strains stimulated a high secretion of cytokines compared to 

the other strains, while L. plantarum NC8 and L. rhamnosus GG induced low secretion of 

cytokines compared to the other strains. The tendency to induce cytokine secretion was 

overall the same for the live LAB as for the UV-inactivated LAB. However, UV-inactivated 

L. rhamnosus GG induced higher levels of secreted cytokines than the live form. Of the 

putative bacterial surface proteins tested, a protein essential for adhesion to intestinal 

epithelial cells (IEC) was not important for the cytokine secretion from THP-1 cells. 

However, sortase activity showed a possible importance for the induction of IL-8 secretion. 
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Sammendrag 

Melkesyrebakterier (MSB) blir ofte inntatt i mange typer mat. Noen varianter har vist seg å 

kunne gi gunstige helseeffekter ved inntak, hvorav noen få har fått betegnelsen "probiotiske". 

Probiotika er av «Food and Agriculture Organization» og Verdens helseorganisasjon (FAO / 

WHO) definert som "levende mikroorganismer som ved inntak i tilstrekkelige mengder gir 

verten en helsegevinst". Tidligere studier har vist at probiotika kan forbedre menneskers helse 

gjennom immunmodulering, ved å indusere cytokinsekresjon. Målet med denne avhandlingen 

var derfor å sammenligne cytokinsekresjon fra humane immuncellelinjer inkubert med 7 

utvalgte MSB: Lactobacillus plantarum MF1298, NC8 og 299v, L. reuteri DSM 20016, DSM 

17938 og mm4-1a, og L. rhamnosus GG. Videre ble effekten av antatte bakterielle 

overflateproteiner på immunresponsen, undersøkt ved hjelp av L. reuteri-mutanter. 

Sekresjon av interleukin (IL) 6, ble IL-8, IL-10 og tumor nekrose faktor (TNF) α fra den 

humane monocytiske cellelinjen THP-1 og makrofager differensiert fra THP-1 celler ble 

undersøkt etter 6 t inkubasjon med MSB. 

Resultatene viste at L. reuteri-stammene stimulerte høy sekresjon av cytokiner i forhold til de 

andre stammene, mens L. plantarum NC8 og L. rhamnosus GG induserte lav sekresjon av 

cytokiner i forhold til de andre stammene. Tendensen til å indusere cytokinsekresjon var 

generelt den samme for levende MSB som for UV-inaktiverte MSB. Unntaket var UV-

inaktiverte L. rhamnosus GG som induserte høyere nivåer av sekrerte cytokiner enn i levende 

form. Av de antatte bakterielle overflateproteiner testet, var et protein avgjørende for adhesjon 

til intestinale epitelceller ikke viktig for cytokinsekresjon fra THP-1celler. Imidlertid viste 

sortase aktivitet en mulig betydning for induksjon av IL-8 sekresjon. 
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1 Introduction 

The main focus of this thesis was the cytokine secretion from the human immune cell lines 

THP-1 and THP-1 derived macrophages exposed to 7 selected lactic acid bacteria (LAB). The 

LAB used were Lactobacillus plantarum MF1298, NC8 and 299v, L. reuteri DSM 20016, 

DSM 17938 and mm4-1a and L. rhamnosus GG. 3 of the strains used were commercially 

available probiotics (L. plantarum 299v, L. reuteri DSM 17938 and L. rhamnosus GG). 

1.1 Lactic acid bacteria 

The LAB are a group of bacteria that have some morphological, metabolic and physiological 

characteristics in common (Axelsson 1998). They produce lactic acid as the major end 

product during fermentation of carbohydrates, and are in general Gram-positive, non-spore 

forming, catalase-negative cocci or rods that grow anaerobically (Holzapfel et al. 2001). The 

LAB are widespread in nature, and they are found in humans and animals (oral cavity, 

gastrointestinal tract (GIT) and vagina, breast milk and skin), as well as in dairy and 

fermented products. 

The species of LAB used in this thesis all belong to the genus Lactobacillus. The genus 

Lactobacillus is the largest of the genera included in the LAB, and the definition of this genus 

is essentially rod-shaped LAB (Axelsson 1998). This definition explains why the genus 

consists of such a large number of heterogeneous species (Axelsson 1998). They are, 

however, divided further into three groups: (1) The obligately homofermentative, (2) the 

facultatively heterofermentative, and (3) the obligately heterofermentative strains (Stiles & 

Holzapfel 1997), depending on the presence or absence of key enzymes involved in 

metabolism of carbohydrates (Axelsson 1998). The homofermentative strains metabolize 

carbohydrates fermentatively producing lactic acid as the major end-product, while the 

heterofermentative strains produce lactic acid as a significant component in a mixture of end-

products (Stiles & Holzapfel 1997). 

In food production LAB are used as starter cultures in many products, such as fermented dairy 

products, sausages and fermented vegetables (Mäyrä-Mäkinen & Bigret 1998). LAB produce 

lactic acid, which lowers the pH in products, creating an environment favorable for LAB 

(Mäyrä-Mäkinen & Bigret 1998). This will in turn suppress the growth of food spoiling 

bacteria, thus making the product microbiologically stable (Mäyrä-Mäkinen & Bigret 1998). 
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1.1.1 Probiotic bacteria  

Probiotics are defined as “live microorganisms which when administered in adequate amounts 

confer a health benefit on the host” (FAO/WHO 2001). Probiotic strains should be of human 

origin, resistant to acid and bile in order to survive passage through the GIT, be able to adhere 

to human intestinal cells, be able to colonize the human gut (at least temporarily), have 

antagonistic effects against cariogenic and pathogenic bacteria, and be safe for human 

consumption (Lee & Salminen 1995). For probiotics used in food industry good technical 

properties for large scale cultivation, acceptable shelf life and contribution to good taste is 

essential (Ouwehand et al. 2002). 

The gut microbiota is essential for shaping and maintaining normal mucosal immunity 

(Collado et al. 2009; Rakoff-Nahoum et al. 2004). The intestinal microbiota also helps 

provide a barrier against other bacteria (e.g. potential pathogens) by production of microbial 

components as well as competition for nutrients and binding sites (Ouwehand 2007). 

Probiotic bacteria have been suggested to promote human health by the inhibition of 

pathogens, improvement of the epithelial barrier function, and modulation of host immune 

responses (Lebeer et al. 2008). Good adherence capacity is generally a desirable attribute in 

probiotic lactobacilli, as it may promote the gut residence time, exclude pathogens, and 

interact with host cells for the protection of epithelial cells or initiate immune modulation 

(Servin 2004). Exported proteins (proteins that within their sequences contain export signals 

and surface-retention domains) are found to mediate adhesion to intestinal components 

(Sanchez et al. 2008). LPXTG-motif, C-terminal membrane anchor protein, and sortase 

coding gene are examples of proteins and genes that are important for bacterial adhesion 

(Velez et al. 2007). LPXTG is a sequence motif (where X is any amino acid), and is present in 

the C-terminal part in many surface-associated proteins (Navarre & Schneewind 1999). The 

enzyme sortase recognizes the LPXTG motif, and cleaves between the T and G residues 

(Velez et al. 2007), and covalently links the threonine carboxyl group to amino groups 

supplied by the cell wall cross bridges of peptidoglycan precursors, which in turn yields a 

surface protein linked to peptidoglycan, incorporated into the envelope and displayed on the 

microbial surface (Marraffini et al. 2006). For review of other surface-associated proteins and 

enzymes see Boekhorst et al. (2006), Sanchez et al. (2008), and Velez et al. (2007). 

Due to the high demands from the European Union (EU) on nutrition and health claims made 

for food (EU 2006), which is enforced by the European Food Safety Authority (EFSA), as of 

today no probiotic strains are approved for health claims. There are many reasons for this: 
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Studies have been performed with different strains (or not defined strains), with different 

design and different concentrations of probiotics. Thus, the total amount of evidence is not 

sufficiently to validate a health claim. The trials concerning probiotics should be well-defined 

studies and well-designed clinical trials that are double-blind, placebo controlled, randomized 

and the results should be confirmed by different groups (Lee & Salminen 1995). Even though 

no products containing probiotics are approved for health claims, there is a good marked for 

these products. The manufacturers are allowed to make general statements (e.g. “beneficial 

for the digestion and immune system”) but not specific statements (e.g. “lowers the 

cholesterol”, “increases the secretion of IL-10”), and this seem to be good enough for the 

consumers. 

Some effects of probiotics are more solidly established by a large amount of (well designed 

and well conducted) studies, while other effects still need a lot more research. Probiotics have 

been shown to reduce the prevalence and duration of various types of diarrhea (e.g. duration 

of acute diarrhea in children by approximately 1 day (Francavilla et al. 2012; Huang et al. 

2002) and prevention of antibiotics-associated diarrhea (Butler et al. 2012; Hempel et al. 

2012)) and reduce the risk of necrotizing enterocolitis in preterm infants (Alfaleh et al. 2010; 

Alfaleh et al. 2011; Deshpande et al. 2010; Guthmann et al. 2010). On the other hand, many 

suggested effects still require more studies, such as treatment of irritable bowel syndrome 

(Hoveyda et al. 2009; McFarland & Dublin 2008; Moayyedi et al. 2010; Nikfar et al. 2008), 

early prevention of allergic disease (Szajewska 2012), treatment of Crohn’s disease (CD) 

(Jonkers et al. 2012) and cholesterol-lowering effect (Kumar et al. 2012). 

In the following section some selected studies done on the commercially available probiotics 

used in this study are described. 

Lactobacillus plantarum 299v is a probiotic bacterium owned by the Swedish company Probi 

AB (Lund, Sweden). It is used in the product brand ProViva, and has been extensively tested. 

Binding of enteropathogenic Escherichia coli (EPEC) to epithelial cells in vitro was shown to 

be decreased when L. plantarum 299v was administered to the cells before EPEC, which in 

turn reduced the secretory response (from the epithelial cells) to EPEC (Michail & Abernathy 

2002). In another study, L. plantarum 299v was shown to inhibit the adhesion of EPEC to 

intestinal epithelial cells (IEC) by inducing mucin production resulting in limited access to 

IEC (Mack et al. 2003). Two studies have shown that consumption of L. plantarum 299v 

temporarily increased the amount of lactobacilli in the fecal flora (Goossens et al. 2003; 
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Goossens et al. 2006). Furthermore, L. plantarum 299v, when given to patients with irritable 

bowel syndrome (IBS), seemed to ease their symptoms (Niedzielin et al. 2001). 

Lactobacillus reuteri DSM 17938 is a probiotic bacterium owned by the Swedish company 

BioGaia AB (Stockholm, Sweden) and is in Norway used in the product brand BioQ produced 

by Q-meieriene AS (Norway). There have been many studies examining the effects of this 

strain. Studies have shown that L. reuteri DSM 17938 given to infants with colic seems to 

alleviate the symptoms compared with placebo treatment (Brown 2011; Cabana 2011; Savino 

et al. 2010). The strain has also been shown to increase the bowel movement of infants with 

chronic constipation, compared to the placebo group (Coccorullo et al. 2010). Compared to 

placebo treatment L. reuteri DSM 17938 reduced the frequency, duration and the recurring 

rate of acute diarrhea in children (Francavilla et al. 2012). On the other hand, L. reuteri DSM 

17938 had no effect compared with placebo treatment regarding the overall incidence of 

nosocomial (hospital-acquired infection) diarrhea in hospitalized children (Wanke & 

Szajewska 2012). 

Lactobacillus rhamnosus GG is a probiotic strain owned by the Finnish company Valio, and 

is probably the worlds most investigated LAB. In Norway the strain can be found in the Biola 

products produced by TINE
®
. A study showed that L. rhamnosus GG inhibits the adhesion of 

EPEC to IEC by binding strongly to the epithelial cells and up-regulating the mucin 

production, thus making it difficult for the EPEC to adhere to the epithelial cells (Mack et al. 

2003). Another study showed that L. rhamnosus GG could alleviate the intestinal 

inflammation in infants with atopic eczema/dermatitis syndrome and suspected cows milk 

allergy, by decreasing intestinal inflammatory markers (e.g. TNF-α) (Viljanen et al. 2005). 

Long term consumption of L. rhamnosus GG may reduce respiratory infections among 

children in day care according to a seven month long study (Hatakka et al. 2001). 

Furthermore, prophylactic intake of L. rhamnosus GG have been shown to reduce the risk of 

nosocomial diarrhea in infants (Szajewska et al. 2001), and to control diarrhea in 

undernourished children at increased risk of diarrhea (Oberhelman et al. 1999). 

1.2 The gastrointestinal tract 

The GIT consists of the stomach where food is mechanically broken down and chemical 

digestion of proteins begins, and the small and large intestines where further digestion takes 

place and nutrients, water and salts are absorbed (Saladin 2010). The GIT has the important 

task of digesting and absorbing nutrients in order to meet the metabolic requirements and 



10 

 

demands for human growth and development, and to provide protective host defense against 

the constant presence of food antigens and microorganisms in the lumen of the gut (Singh et 

al. 2009). Gastric acid, saliva, mucus, gut flora, peristalsis, IEC and intracellular junctional 

complexes all provide protection against potentially harmful agents in the GIT (Singh et al. 

2009). The bacterial flora of the GIT mainly resides in the large intestine (approximately 

1×10
12

 cfu/g contents), but there are micro-organisms present throughout the entire GIT 

(Cummings et al. 2004). The commensal bacteria in the gut are essential for shaping and 

maintaining normal mucosal immunity (Kelly et al. 2005). 

1.2.1 Gut-associated lymphoid tissue  

The gut-associated lymphoid tissue (GALT) consists of Peyers patches (PP), the appendix and 

many isolated lymphoid follicles (ILF) (Shi & Walker 2004). The PP are mainly located in 

the small intestinal distal ileum, and it is where the initiation of immune responses occurs 

(Cummings et al. 2004). The PP and ILF are composed of specialized follicle-associated 

epithelium, which contains microfold (M) cells, a sub epithelial dome rich in dendritic cells 

(DCs), and B-cell follicle(s) that contain germinal centers (Fagarasan & Honjo 2003). In GCs 

differentiation of the follicular B cells can efficiently take place (Fagarasan & Honjo 2003). In 

addition, the ILF contains T-cells and macrophages (Delcenserie et al. 2008). The M cells do 

not have brush border, their function is the transport of antigens across the epithelium to the 

lymphoid follicle and the antigen presenting cells that resides there (Artis 2008). 

1.3 The immune system 

The immune system consists of an innate and an adaptive part. The innate immune system is 

non-specific and can be triggered by preserved parts on microorganisms, while the adaptive 

immune system is specific and develops memory as it encounters infectious agents and 

foreign antigens (Cummings et al. 2004). This thesis describes the effect of LAB on immune 

cells in vitro, thus the following sections will focus on the immune system and bacteria. 

1.3.1 The innate immune system 

The innate immune system has barriers to prevent microbial threats from invading our body: 

Physical/structural barriers such as the epithelial linings of the skin and mucosae, mucus, 

ciliary function and peristalsis, chemical factors such as pH of bodily fluids, antimicrobial 

peptides and proteins, and phagocytic cells, e.g. macrophages and DCs (Cummings et al. 
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2004). In addition, the complement proteins, acute phase reactants, natural killer (NK)-cells, 

phagocytes, and cytokines are included in the innate immune system (Kekkonen 2008).  

When our body is invaded by pathogens, the cells of the innate immune system act as a first 

line of defense (Delcenserie et al. 2008). The cells of the innate immune system have 

receptors that recognize conserved components on microorganisms (e.g. bacterial cilia or 

lipopolysaccharide (LPS)), generally called pathogen-associated molecular patterns (PAMPs) 

(Cummings et al. 2004; Harris et al. 2006). Since these structures are also found on 

commensal and non-pathogenic microorganisms the term microbe-associated molecular 

patterns (MAMPs) are commonly used (Neish 2009; Wells et al. 2010). Pattern recognition 

receptors (PRRs) are the cellular receptors of the innate immune system that recognize 

MAMPs (Harris et al. 2006). Many of them belong to the so-called Toll-like receptors 

(TLRs), which is mainly expressed by the DCs and macrophages, but also by other cell types 

such as B cells and epithelial cells (Cummings et al. 2004). The nucleotide-oligomerization 

domain (NOD)-like receptors (NLRs) is another family of PRRs, and is expressed on a broad 

range of tissue types, including intestinal cells (Wells et al. 2011). A key characteristic of the 

innate immune system is the speed of the response (Delcenserie et al. 2008). As commensal 

bacteria in the gut have MAMPs on their cell surface, they have the potential to activate 

immune responses trough PRRs such as TLRs and NLRs (Goto & Kiyono 2012). 

Among the phagocytic cells are the monocytes and macrophages (Delcenserie et al. 2008). 

Macrophages are monocytes that have migrated from blood to tissue, and depending on the 

tissue the macrophage migrates to, they display different patterns of surface molecules 

(Ziegler-Heitbrock 2007). Macrophages also have the ability to present antigen to certain T-

cells (Birmingham et al. 1982). Antigen presenting cells can phagocytize an antigen and 

display fragments of it on its surface, in order for other cells of the immune system to 

recognize the antigen (Cummings et al. 2004). In this thesis a human monocyte cell line 

(THP-1) and macrophages derived from this cell line have been used, and the cytokine 

profiles from these after co-culture with LAB have been examined. 

1.3.2 The adaptive immune system 

In the adaptive immune system the most important cells and mechanisms are B-lymphocytes, 

T-helper cells (Th1, Th2, Th3), cytotoxic T-cells, regulatory T-cells (T-reg), production of 

antibodies and cytokines (Kekkonen 2008). B- and T-lymphocytes (B- and T-cells) have 

specialized receptors that can bind and identify antigens (Andersen et al. 2006). When an 
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antigen binds, the cells may become activated and differentiate into effector-cells, which in 

turn is responsible for fighting the microbial threats (Cummings et al. 2004; Delcenserie et al. 

2008). 

Lymphocytes  

The B- and T-cells are equipped with receptors that have the ability to distinguish between 

foreign structures and the bodys own (Cummings et al. 2004). One of the main differences 

between the B-and T-cells and the defensive cells in the innate immune system (e.g. 

macrophages) is that while a macrophage has PRRs, a lymphocyte has specificity for one 

particular antigen alone (Cummings et al. 2004). When a lymphocyte is stimulated, this leads 

to an increase in the cells volume, preparing them for division in order to make more 

lymphocytes with the same type of receptors and ability to recognize and react with the 

specific antigen (Cummings et al. 2004). Furthermore, binding of antigen leads to further 

development of effector cells, which are more specialized than the original lymphocytes 

(Delcenserie et al. 2008). 

The antigen receptor of B-cells is a membrane bound version of antibody molecules, and 

when bound to antigen this can lead to stimulation (Cummings et al. 2004). Stimulation 

differentiate the B-cell into plasma cells (secreting immunoglobulins (Ig)) that have the same 

specificity as the membrane bound receptors on the initial, stimulated B-cell (Cummings et al. 

2004). The B-cells are primarily equipped to recognize and fight extracellular microorganisms 

and compounds (Cummings et al. 2004). Memory B-cells give the host the ability to provide 

more effective immune responses upon secondary infections with an antigen it has 

encountered before (Delcenserie et al. 2008). 

The T-cells monitor the intracellular environment (Delcenserie et al. 2008), and there are 

mainly 4 different types of T-cells: The cytotoxic T-cells (also called killer T-cells, carry out 

the attack on enemy cells (Kekkonen 2008)), T-helper cells (involved in both humoral and 

cellular immunity (Delcenserie et al. 2008)), regulatory T-cells (limits the immune response 

by blocking the activity of other T-cells and by secreting the anti-inflammatory cytokine IL-

10 (Beissert et al. 2006), some regulatory T-cells are also important in preventing 

autoimmune diseases (Beissert et al. 2006)) and memory T-cells (responsible for the memory 

in cellular immunity (Saladin 2010)) (Kekkonen 2008). 
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1.3.3 Inflammation 

Inflammation is characterized by redness, heat, swelling, and pain (Kekkonen 2008). Redness 

and heat are caused by the increased blood flow to the inflammation site, swelling by the 

accumulation of fluids, and pain is caused by the swelling (Hakansson & Molin 2011). 

Inflammation can be triggered by infections, decomposition of body tissue by trauma (e.g., 

surgery or accidents) and allergy or autoimmunity (Hakansson & Molin 2011). The 

inflammation in allergy is triggered by the adaptive immune system which reacts to different 

types of harmless compounds in the environment, e.g., pollen, while in autoimmunity, the 

inflammation is caused by the adaptive immune system attacking the bodys own cells and 

tissue (Hakansson & Molin 2011). 

1.4 Cytokines 

Cytokines are polypeptide messenger compounds that stimulate cellular differentiation, 

cellular growth, and functional development (Cummings et al. 2004). Cytokines include 

interleukins (IL), interferons, chemokines, colony-stimulating factors and many growth 

factors (Scheller et al. 2011). They regulate hematopoiesis, immune reactions, inflammatory 

reactions, and vascular reactions, and both stimulatory and inhibitory cytokines play 

important roles in the function of endothelial cells, smooth muscle cells, macrophages, and T-

cells (Kofler et al. 2005). The cytokines do not function as effector molecules on their own, 

but have an effect after binding to specific surface receptors on the membrane of cells 

(Kekkonen 2008). Cytokines have autocrine (on the producing cell) or paracrine (on neighbor 

cells) effects (Kekkonen 2008).  

The cytokines measured in this thesis are described in more detail in the following sections. 

1.4.1 Interleukin 6 

Alternative names for IL-6 are interferon β2, B-cell stimulatory factor-2 (BSF2), hepatocyte 

stimulatory factor and plasmacytoma/hybridoma growth factor (Akdis et al. 2011; Schwab et 

al. 1991). Endothelial cells, fibroblast, monocytes and macrophages produce IL-6 during 

systemic inflammation in response to different stimuli (IL-1, IL-17 and TNF-α) (Akdis et al. 

2011). In chronic inflammation, the T-cells produce IL-6 (Naugler & Karin 2008). The main 

target cells are hepatocytes, leukocytes, T-cells, B-cells and hematopoietic cells (Akdis et al. 

2011). IL-6 is a multifunctional cytokine with many effects (Akdis et al. 2011). It is involved 

in regulation of immune responses, acute-phase responses, hematopoiesis and inflammation 
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(Akdis et al. 2011). The levels of IL-6 are low under normal conditions, but during stress the 

levels of IL-6 in serum rise quickly (Naugler & Karin 2008). In innate immunity, IL-6 directs 

leukocyte trafficking and activation (Hurst et al. 2001), and induces production of acute-phase 

proteins by hepatocytes (Gauldie et al. 1987). Some studies have shown that IL-6 may act as 

an anti-inflammatory mediator by suppressing LPS induced production of IL-1 and TNF in 

macrophages in vitro, and in LPS-treated mice in vivo (Barton & Jackson 1993; Schindler et 

al. 1990), but IL-6 is mostly regarded as a pro-inflammatory cytokine (Scheller et al. 2011). 

IL-6 has been shown to induce fever (LeMay et al. 1990; Sakata et al. 1991). It has also been 

demonstrated that IL-6 is responsible for T-cell proliferation (Uyttenhove et al. 1988) and the 

final maturation of B-cells into Ig-secreting plasma cells (Hirano et al. 1985). Studies have 

shown that IL-6 may have both autocrine (Schwab et al. 1991) and paracrine (Klein et al. 

1989) effects. IL-10 has been shown to inhibit the production of IL-6 (de Waal Malefyt et al. 

1991). 

1.4.2 Interleukin 8 

IL-8 is a pro-inflammatory cytokine, also known as CXCL8 (Akdis et al. 2011) and 

monocyte-derived neutrophil chemotactic factor (MDNCF) (Yoshimura et al. 1987). IL-8 

belongs to the chemokines, a group of structurally related, small, mostly basic molecules 

(Zlotnik & Yoshie 2000). Among other effects, IL-8 can induce the directional migration of 

many cell types, including neutrophils, monocytes, T-cells, basophils and fibroblasts (Taub et 

al. 1993). A variety of cells secrete IL-8, including fibroblasts (Burke et al. 2008; Fredriksson 

et al. 2003), skeletal muscle cells (Chan et al. 2004), smooth muscle cells (Issa et al. 2008), 

monocytes (Bhattacharyya et al. 2002), macrophages (Lin et al. 2008), T cells, neutrophils, 

NK-cells, endothelial cells, epithelial cells, tumor cells (Mukaida et al. 2003) and mast cells 

(Burke et al. 2008). IL-8 production can be induced by IL-1, IL-2, IL-3 and TNF-α (Seitz et 

al. 1991). A major effector function of IL-8 is the recruitment of neutrophils to an infection or 

injury site (Matsushima et al. 1988). IL-8 can also recruit NK cells to sites of viral infection 

(Burke et al. 2008). Elevated levels of IL-8 have been detected in patients with rheumatoid 

arthritis (RA) (Seitz et al. 1991) and patients with Helicobacter pylori-infection (Holck et al. 

2003). IL-10 has been shown to inhibit production of IL-8 (de Waal Malefyt et al. 1991).  

1.4.3 Interleukin 10 

IL-10 has immunosuppressive effects, and protects the host from autoimmune diseases and 

exaggerated inflammatory responses to microbial infections (Akdis et al. 2011). IL-10 was 
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originally named cytokine synthesis inhibitory factor (CSIF), as it inhibits cytokines such as 

interferon (INF)-γ (Fiorentino et al. 1989), IL-1α, tumor necrosis factor (TNF)-α, GM-CSF, 

G-CSF, IL-1β, IL-6 and IL-8 (de Waal Malefyt et al. 1991). IL-10 is produced by monocytes 

(de Waal Malefyt et al. 1991), DCs, T-cells (Nagalakshmi et al. 2004), B-cells (Benjamin et 

al. 1992), macrophages (Okamoto et al. 2011) and NK cells (Wolk et al. 2002). IL-10s 

primary purpose is to limit cytokine- and chemokine production in mainly macrophages 

(Akdis et al. 2011), monocytes (Sabat et al. 2010) and DCs (Akdis et al. 2011). In 

monocytes/macrophages IL-10 inhibits antigen presentation, influences the cells to release 

anti-inflammatory mediators, and enhances the inhibitory, tolerance-inducing and scavenger 

functions (Sabat et al. 2010). 

IL-10 is produced at high levels relatively late in the immune response compared to some of 

the pro-inflammatory cytokines (e.g. IL-6 and IL-8) (de Waal Malefyt et al. 1991). The pro-

inflammatory cytokines peaks early in the immune response (4 - 8 h after stimulation) while 

IL-10 peak 24 - 48 h after stimulation (de Waal Malefyt et al. 1991). Other target cells include 

B-cells (Wakkach et al. 2000) which are differentiated into antibody-secreting/plasma cells 

(Akdis et al. 2011), NK cells, and T-cells (Wolk et al. 2002).  

IL-10 plays an important role in disease (Sabat et al. 2010). Over-production of IL-10 can 

result in growth of tumors and undesired immunosuppressive effects (Sabat et al. 2010). 

Examples of this kind of diseases are systemic lupus erythematosus (Grondal et al. 1999; 

Llorente et al. 2000) and Epstein-Barr virus-associated lymphomas (Stewart et al. 1994). A 

relative or absolute IL-10 deficiency will result in a continuous activation of the immune 

response (Sabat et al. 2010). Examples of these types of disease are psoriasis (Asadullah et al. 

1998), RA (Sheff et al. 1994) and CD (van Montfrans et al. 1998). 

1.4.4 Tumor Necrosis Factor α 

TNF-α, also called TNF and cachectin, is a pleiotropic pro-inflammatory cytokine (Wang et 

al. 2003) and it is mainly produced by activated macrophages and T-cells (De Paepe et al. 

2012). Other TNF-α producing cells include (among others) monocytes, mast cells, NK cells, 

smooth muscle cells, tumor cells (Wang et al. 2003), endothelial cells (ten Hagen et al. 2008) 

and fibroblasts (Roberts et al. 2011). TNF-α is released in response to inflammatory stimuli 

and cytokines, including peptidoglycan, LPS and other bacterial components (Roberts et al. 

2011). Since systemic overproduction of TNF-α activates inflammatory responses to infection 

and injury, mediates hypotension, diffuse coagulation and gives widespread tissue damage, 



16 

 

the expression of TNF-α is tightly controlled (Wang et al. 2003). TNF-α can induce both 

apoptosis and cell survival, and it has been shown that systemic administration of TNF-α 

causes well established subcutaneous tumors to undergo necrosis (ten Hagen et al. 2008). 

TNF-α has been demonstrated to have a growth inhibitory effect on SV40-transformed human 

mammary epithelial cells, and a cytotoxic effect on breast cancer cell lines, but there was no 

effect on normal human mammary epithelial cells in vitro (Dealtry et al. 1987). TNF-α have 

also been shown to have a cytostatic effect on hepatoma cells, while it had little effect on non 

tumorgenic liver cells (Motoo et al. 1986). TNF-α is inhibited by IL-10 (de Waal Malefyt et 

al. 1991; Sheff et al. 1994). 
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2 Objectives 

The major aims of this thesis were: 

 To compare immune stimulatory effects of selected strains of LAB on the monocytic 

THP-1 cell line and THP-1 derived macrophages.  

 To compare the effect of live LAB versus UV-inactivated LAB. 

 To investigate the effect of putative bacterial surface proteins on the immune response 

of THP-1 cells by help of L. reuteri mm4-1a mutants.  

The selected LAB strains include L. plantarum MF1298, NC8 and 299v, L. reuteri DSM 

20016, DSM 17938 and mm4-1a and L. rhamnosus GG. 

The goal of this thesis was to focus on similarities and differences between the strains, not to 

find a new probiotic bacterium or define what a good probiotic bacterium is.  

Some studies indicate that LAB not necessarily have to be alive to administer a positive health 

effect (Kataria et al. 2009). Thus, the effect of live and Ultraviolet (UV) inactivated LAB 

were compared in this thesis. 
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3 Materials 

3.1 Chemicals and reagents 

Chemicals and reagents Supplier 

2-mercanptoethanol 50 mM Gibco®, Life technologies, Grand 

Island, NY 

3,3`,5,5`-Tetramethylbenzidine Sigma-Aldrich, St. Louis, MO 

Biotin Purified Mouse Anti-Human IL-8 BD Pharmingen, Franklin Lake, 

NJ 

Biotin Purified Mouse Anti-Human TNF-α BD Pharmingen, Franklin Lake, 

NJ 

Biotin Purified Rat Anti-Human and viral IL-

10 

BD Pharmingen, Franklin Lake, 

NJ 

Biotin Purified Rat Anti-Human IL-6 BD Pharmingen, Franklin Lake, 

NJ 

Bovine Serum Albumin (BSA) Sigma-Aldrich, St. Louis, MO 

Brain Heart Infusion (BHI)-agar Oxoid Limited, Hampshire, UK 

Brain Heart Infusion (BHI)-broth Oxoid Limited, Hampshire, UK 

C6H8O7 x H2O Merck KGaA, Darmstadt, 

Germany 

De man, Rogosa, Sharpe (MRS) agar Oxoid Limited, Hampshire, UK 

De man, Rogosa, Sharpe (MRS) broth Oxoid Limited, Hampshire, UK 

Dimetylsulfoksid (DMSO) Sigma-Aldrich, St. Louis, MO 

Dulbecco's Phosphate Buffered Saline  

(DPBS) 

Sigma-Aldrich, St. Louis, MO 
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Fetal Bovine Serum (FBS) Gibco®, Life technologies, Grand 

Island, NY 

Gentamicin 10 mg/mL Sigma-Aldrich, St. Louis, MO 

Glycerol 87 % Merck KGaA, Darmstadt, 

Germany 

H2O2 30 % Sigma-Aldrich, St. Louis, MO 

H2SO4 Merck KGaA, Darmstadt, 

Germany 

High Performance ELISA (HPE) buffer Sanquin, Amsterdam, The 

Netherlands 

KCl Merck KGaA, Darmstadt, 

Germany 

KH2PO4 Merck KGaA, Darmstadt, 

Germany 

L-Glutamine 200 mM  Gibco®, Life technologies, Grand 

Island, NY 

Lipopolysaccarid (LPS), from Escherichia  

coli 055:B5  

Sigma-Aldrich, St. Louis, MO 

Na2CO3 Merck KGaA, Darmstadt, 

Germany 

Na2HPO4 Merck KGaA, Darmstadt, 

Germany 

NaCl Merck KGaA, Darmstadt, 

Germany 

NaHCO3 Merck KGaA, Darmstadt, 

Germany 
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Penicillin/Streptomycin (P/S) 100 U/mL,  

100 µg/mL 

Gibco®, Life technologies, Grand 

Island, NY 

Phorbol 12-myristate 13-acetate (PMA) Sigma-Aldrich, St. Louis, MO 

Purified Mouse Anti-Human IL-8 BD Pharmingen, Franklin Lake, 

NJ 

Purified Mouse Anti-Human TNF-α BD Pharmingen, Franklin Lake, 

NJ 

Purified Rat Anti-Human and viral IL-10 BD Pharmingen, Franklin Lake, 

NJ 

Purified Rat Anti-Human IL-6 BD Pharmingen, Franklin Lake, 

NJ 

Recombinant human IL-10 BD Pharmingen, Franklin Lake, 

NJ 

Recombinant human IL-6 BD Pharmingen, Franklin Lake, 

NJ 

Recombinant human IL-8 BD Pharmingen, Franklin Lake, 

NJ 

Recombinant human TNF-α BD Pharmingen, Franklin Lake, 

NJ 

RPMI 1640 culture medium Gibco®, Life technologies, Grand 

Island, NY 

Sterile Dulbecco's Phosphate Buffered  

Saline (SDPBS) 

Gibco®, Life technologies, Grand 

Island, NY 

Streptavidin-HRP(Sav-HRP) BD Pharmingen, Franklin Lake, 

NJ 

Tween® 20 Sigma-Aldrich, St. Louis, MO 
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3.2 Equipment 

Equipment Supplier 

353003-Tissue Culture Dish Becton Dickingson Labware, 

Franklin Lake, NJ 

AnaeroGen™ 2.5 L Oxoid Limited., Hampshire, UK 

AnaeroGen™ 3.5 L Oxoid Limited., Hampshire, UK 

Barseal™ Nunc, Roskilde, Denmark 

Centrifuge Thermo Electron Corporation, 

Waltham, MA 

Centrifuge tubes 15 ml VWR International, Radnor, PA 

Centrifuge tubes 50 ml VWR International, Radnor, PA 

Certoclave LGA, Nürnberg, Germany 

Eppendorf tubes 1.5 ml Sarstedt, Nümbrecht, Germany 

MaxiSorp™ ELISA plates Nunc, Roskilde, Denmark 

Multi-channel automatic pipette  Biohit, Helsinki, Finland 

Multiwell™, 12-well tissue culture plate Becton Dickingson Labware, 

Franklin Lake, NJ 

Pipetboy Integra Biosciences, Zizers, 

Switzerland 

Platform shaker Stuart scientific, Chelsford Essex, 

UK 

ProtoCOL2, colony counter Synbiosis, Cambridge, UK 

SPECTROstar
nano

 BMG LABTECH, Offenburg, 

Germany 
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Sterile 1.8 ml Cryo Pure Tubes Sarstedt, Nümbrecht, Germany 

Sterile petri dishes VWR International, Radnor, PA, 

Sterile Single pipettes 5 ml VWR International, Radnor, PA, 

 

3.3 Software 

 

Software Supplier 

GraphPad Prism 5.02 GraphPad Software, Inc, La Jolla, 

CA 

SPECTROstar
nano

Mars BMG LABTECH, Offenburg, 

Germany 

3.4 Bacteria 

 

Bacteria 

 

Supplier and references/origin 

Escherichia coli K12 ATCC 47076 

Lactobacillus plantarum 299v  

(DSM 9843) 

Sourdough. ProViva brand of 

probiotic products. (Johansson et 

al. 1993) 

Lactobacillus plantarum MF1298 Norwegian mutton salami 

(Klingberg et al. 2005) 

Lactobacillus plantarum NC8 Grass silage (Shrago et al. 1986) 

Lactobacillus reuteri DSM 17938 Plasmid cured variant of ATCC 

55730. Human breast milk. 

(Rosander et al. 2008). 
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Commercially available probiotic 

bacteria. 

Lactobacillus reuteri DSM 20016 Type strain. Human intestine 

(Kandler et al. 1980) 

Lactobacillus reuteri mm4-1a (ATCC  

PTA 6475) 

Human breast milk (Oh et al. 

2009) 

Lactobacillus reuteri mm4-1a S1065_E Mutant of Lactobacillus reuteri 

mm4-1a (ATCC PTA 6475), 

nonsense mutation in gene 

equivalent to LAR_0044*, C-

terminal membrane anchor 

protein (van Pijkeren & Britton 

2012) 

Lactobacillus reuteri mm4-1a 130_A Mutant of Lactobacillus reuteri 

mm4-1a (ATCC PTA 6475), 

nonsense mutation in gene 

equivalent to LAR_0227*, sortase 

(van Pijkeren & Britton 2012) 

Lactobacillus reuteri mm4-1a 1696_H2 Mutant of Lactobacillus reuteri 

mm4-1a (ATCC PTA 6475), 

nonsense mutation in gene 

equivalent to LAR_0813*, 

LPXTG protein, amidase (van 

Pijkeren & Britton 2012) 

Lactobacillus reuteri mm4-1a S241_E Mutant of Lactobacillus reuteri 

mm4-1a (ATCC PTA 6475), 

nonsense mutation in gene 

equivalent to LAR_0958*, 

repeated LPXTG protein (van 
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Pijkeren & Britton 2012) 

Lactobacillus reuteri mm4-1a S655_H Mutant of Lactobacillus reuteri 

mm4-1a (ATCC PTA 6475), 

nonsense mutation in gene 

equivalent to LAR_0983*, 

LPXTG (van Pijkeren & Britton 

2012) 

Lactobacillus reuteri mm4-1a S647_E Mutant of Lactobacillus reuteri 

mm4-1a (ATCC PTA 6475), 

nonsense mutation in gene 

equivalent to LAR_0989*, 

LPXTG protein, part of Rib motif 

(van Pijkeren & Britton 2012) 

Lactobacillus rhamnosus GG (ATCC 53103) Human intestine (Silva et al. 

1987) 

ATCC, American Type Culture Collection 

DSM, Deutsche Sammlung von Mikroorganismen 

*locus tags from sequenced strain L. reuteri JCM1112 

3.5 Buffer 

Buffer Preparation 

0.05 M Substrate buffer 7.3 g Na2HPO4  

 5.1 g citric acid  

 1 l dH2O  

 pH adjusted to 5 

 autoclaved before use 

10×Phosphate Buffered Saline (PBS) 80 g NaCl 
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 2 g KCl 

 20 g Na2HPO4 

 4 g KH2PO4 

 pH adjusted to 7.2 – 7.3 to 1 l of 

dH2O 

Blocking buffer 1×PBS with 5% Bovine Serum 

Albumin (BSA) 

Coating buffer Solution A: 1.06 g Na2CO3 in 100 

ml dH2O 

 Solution B: 1.68 g of NaHCO3 in 

200 ml dH2O 

 Mix solution A and solution B to 

obtain a pH of 9.6 

High Performance ELISA (HPE) buffer Diluted 1:7 in dH2O 

Substrate One tablet 3,3`,5,5`-

Tetramethylbenzidine was 

dissolved in 1 ml 

dimetylsulfoksid (DMSO). 

Immediately before use, 9 ml of 

substrate buffer and 2 µl of H2O2 

were added. The substrate was 

protected from light. 

Washing buffer 1×PBS with 0.01% Tween
®
 20 
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4 Methods 

4.1 Agar/broth 

MRS- and BHI-agar/broth was prepared as described by the supplier. The powder was 

suspended in deionized water and certoclaved. The MRS- and BHI-agar was poured in sterile 

petri dishes in a sterile bench, and allowed to cool down completely before packing in plastic 

bags and storing at 4 °C. The MRS- and BHI-broth was cooled down on the bench and stored 

in room temperature.  

4.2 Lactic acid bacteria 

To make a stock of the bacteria for the experiments 1.5 ml of overnight bacteria culture were 

mixed with 300 µl 87 % glycerol in sterile 1.8 ml Cryo Pure tubes and stored at -80 °C.  

When needed for experiments bacteria were taken up two days before experiments and grown 

anaerobically on MRS-agar plates in a 2.5 l container with an anaerobic sachet at 37 °C. On 

the day of the experiment all the preparation except the centrifugation, (adjusting to 1×10
8
 

cfu/ml) and measuring of OD was done in a sterile bench. 

L. reuteri mm4-1a (ATCC PTA 6475) mutants were a kind gift from Jan-Peter van Pijkeren at 

the Michigan state University (MI), and made as previously described (van Pijkeren & Britton 

2012).  

4.3 Preparing the bacteria for experiments 

Bacteria were scraped from MRS-agar in 5 ml of DPBS, and transferred with a pipet boy to 

separate 15 ml plastic tubes. The tubes were centrifuged at 3000 rpm for 10 min. The 

supernatant was discarded and the pellet re-suspended in 5 ml sterile DPBS (hereafter referred 

to as bacterial concentrate). The bacterial concentrate was then used to adjust the optical 

density (OD) (Table 1) to achieve a concentration of 1×10
8
 cfu/ml. The OD for each 

individual strain was adjusted at 600 nm as shown in Table 1. This solution was centrifuged at 

3000 rpm for 10 min, the supernatant discarded and the pellet was re-suspended in a tenth of 

the volume of sterile DPBS to up-concentrate the bacteria to 1×10
9
 cfu/ml. The E. coli K12 

was grown overnight in 5 ml BHI-broth at 37 °C before experiments. The over-night culture 

was then centrifuged, the supernatant discarded, and the pellet re-suspended in 5 ml DPBS. 
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To control the bacterial concentration used in each experiment, the bacterial suspension was 

plated on MRS-agar plates by the use of a WASP spiral plater and incubated anaerobically at 

37 °C for 48 h. The bacterial suspension of E. coli K12 was plated on BHI-agar plates and 

incubated anaerobically at 37 °C for 24 h. After the incubation time the colonies on the plates 

were counted using a colony counter. 

Table 1. OD-adjustment of the LAB. 

Strain OD600 (10
8
 cfu/ml) 

L. reuteri DSM 20016 0.605 

L. reuteri DSM 17938 0.655 

L. plantarum MF1298 0.750 

L. plantarum NC8 0.425 

L. plantarum 299v 0.695 

L. rhamnosus GG 0.940 

L. reuteri mm4-la (ATCC PTA 6475) 0.635 

4.4 Preparing UV-inactivated bacteria 

Live bacterial suspension of 1×10
9
 cfu/ml was spread out in tissue culture dishes, put on a 

swinging board at 20 RPM in an opaque box with an UV-lamp inside. The bacteria were 

radiated with UV-light for 20 min. The suspensions were aliquoted at 500 µl in 1.5 ml 

eppendorf-tubes and frozen at -80 °C. To investigate whether the UV-inactivation had 

successfully killed the bacteria, the bacterial suspension was plated on MRS-agar plates by 

the use of a WASP spiral plater and incubated anaerobically at 37 °C for 48 h. Only 

suspensions with confirmed dead bacteria were used in the experiments. 

4.5 Maintenance of THP-1 cells  

The human monocytic leukemia cell line THP-1 was grown in RPMI 1640 culture medium 

supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin and 100 µg/ml 

streptomycin (P/S), 2 mM L-Glutamine and 0.005 mM 2-mercanptoethanol at 37 °C and 5% 

CO2 in a humidified atmosphere. Cells were sub-cultured three times per week. As the cells 
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change their properties after long periods in culture, the cells were discarded after 25 passages 

and replaced by frozen stocks. 

4.6 Cell experiments 

24 h prior to experiments, THP-1 cells were seeded out in 12-well tissue culture plates, at the 

concentration 3×10
5
 cells/ml. 

To differentiate the THP-1 cells to macrophages 100 ng/ml Phorbol 12-myristate 13-acetate 

(PMA) diluted in cell culture medium was added to 1×10
6
 cells/ml in 12-well tissue culture 

plates immediately after the cells were seeded out (Zhou et al. 2010). PMA targets protein 

kinase C (PKC) which is involved in the regulation of cell differentiation and other cellular 

functions (reviewed by Schwende et al. (1996)). The differentiation was started 48 h prior to 

experiments. On the day of the experiment with macrophages, the cell culture medium with 

PMA was removed, and the cells were washed once with sterile Dulbecco’s Phosphate 

Buffered Saline (SDPBS), 1 ml/well. Afterwards new RPMI 1640 cell culture medium 

(containing 10% FBS, (100 U/ml/100 µg/ml P/S depending on the experiment), 2 mM L-

Glutamine and 0.005 mM 2-mercanptoethanol) without PMA was added to the wells, 1.5 

ml/well. This was done immediately before the experiment started. 

The cells were exposed to different concentrations of LAB, and for different incubation times. 

The cells were also exposed to E. coli K12 and LPS from E. coli O55B:5 at different 

concentrations. 

Based on pilot experiments, the test concentration of bacteria was set to 1×10
8 

cfu/ml and the 

test incubation time was set to 6 h. 

4.7 Enzyme-Linked Immunosorbent Assay 

The cytokine concentrations in the cell culture supernatants were determined using enzyme-

linked immunosorbent assay (ELISA). 

 

4.7.1 The method 

The day before running the ELISA, MaxiSorp™ ELISA plates were coated with an antibody 

against the cytokine to be measured. Table 2 shows the concentration of the antibodies used. 
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The antibodies were diluted in coating buffer. After adding of the coating solution the plate 

was sealed and incubated overnight at 4 °C. 

Table 2. Coating antibody end concentration. 
Antibody End concentration 

IL-6 2 µg/ml 

IL-8 1 µg/ml 

IL-10 1 µg/ml 

TNF-α 2 µg/ml 

 

Before experiments, the plates were washed 3 times with washing buffer using a plate washer, 

Wellwash AC. If not otherwise stated in the following description, the plate washer was used 

in the washing steps. After washing, the plates were incubated with 70 µl of blocking solution 

per well on a swinging board for at least 1 h. All incubation hereafter was carried out on the 

swinging board at room temperature. 

Before adding the samples, the plate was washed five times with washing buffer (100 

µl/well). The samples were diluted in HPE-buffer (Table 3 and Table 4).  

Table 3. Dilution of samples from THP-1 cells. 

Cytokine Control Samples LPS and E. coli K12 

TNF-α 1:1 1:5 1:5 

IL-8 1:1 1:200 1:40 

IL-10 1:1 1:1 1:1 

 

Table 4. Dilution of samples from macrophages. 

Cytokine Control Samples LPS and E. coli K12 

TNF-α 1:1 1:100 1:100 

IL-6 1:1 1:1 1:20 

IL-8 1:100 1:2000 1:500 

IL-10 1:1 1:1 1:1 
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The standard (recombinant human IL-6, IL-8, IL-10 and TNF-α) was diluted in 1:1 mixture of 

HPE-buffer and cell culture medium to the right concentrations (Table 5). 

Table 5. Standard curves and concentrations. 
 IL-6 IL-8 IL-10 TNF-α 

S1 0 pg/ml 0 pg/ml 0 pg/ml 0 pg/ml 

S2 1.4 pg/ml 2 pg/ml 4.1 pg/ml 4.1 pg/ml 

S3 4 pg/ml 6 pg/ml 12.3 pg/ml 12.3 pg/ml 

S4 12 pg/ml 18 pg/ml 37 pg/ml 37 pg/ml 

S5 37 pg/ml 55.5 pg/ml 111.1 pg/ml 111.1 pg/ml 

S6 111.1 pg/ml 166.6 pg/ml 333.3 pg/ml 333.3 pg/ml 

S7 333.3 pg/ml 500 pg/ml 1000 pg/ml 1000 pg/ml 

S8 1000 pg/ml 1500 pg/ml 3000 pg/ml 3000 pg/ml 

S9 3000 pg/ml 3000 pg/ml 5000 pg/ml 5000 pg/ml 

Control 50 pg/ml 50 pg/ml 50 pg/ml 50 pg/ml 

 

The standards were added in duplicate, 50 µl/well. The samples were analyzed in triplicate, 

50 µl/well. The control was added last and in six wells, 50 µl/well. The plate was then 

incubated for 1.5 h. 

The samples were removed from the plate with a multi-channel pipette. The tips were 

changed for every new sample. Afterwards, the plate was washed six times manually with a 

multi-channel automatic pipette. The detection antibody, diluted in HPE-buffer, was added, 

50 µl/well. The concentration of detection antibodies are shown in Table 6. 
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Table 6. Detection antibody concentration. 

Antibody Concentration 

IL-6 1 µg/ml 

IL-8 1 µg/ml 

IL-10 0.25 µg/ml 

TNF-α 0.5 µg/ml 

 

The plate was incubated for 1 h, and washed five times with the washing buffer, 100 µl/well. 

0.6 µl HRP was added to 6 ml HPE buffer, and 50 µl of the solution was added to each well. 

The plate was protected from light and incubated for 30 min. 

Following this, the plate was washed 5 times with washing buffer. The plate was soaked with 

the washing buffer for at least 30 sec between each wash steps. The 30 sec soak is important 

to remove all the excess HRP. 

50 µl of substrate solution was added to each well. The plate was protected from light and 

incubated for 10 min. The reaction was stopped with 2 N H2SO4, 50 µl/well. The absorbance 

was measured at 450 nm using the SPECTROstar
Nano

. The detection limit for the cytokines 

were 1.4 pg/ml for IL-6, 2 pg/ml for IL-8, and 4.1 pg/ml for IL-10 and TNF-α. 

The data from the plate reader was imported into a computing program, Mars. The deviating 

values were deleted. The mean values were then imported to a work sheet in excel and the 

secretion was calculated according to the dilution factors.  

4.8 Statistics 

Statistics were performed in GraphPad Prism version 5.02 for windows. To test if the data 

were normally distributed, the Kolmogorov-Smirnov (KS) Normality test was performed. As 

the vast majority of the data were normally distributed, we assumed that the data was 

normally distributed. The data were analyzed with one-way Analysis Of Variance (ANOVA), 

and Dunnets Test was used as a post-hoc test. Statistical significant difference was set to p < 

0.05 for all analysis. The data is presented as mean ± standard error of the mean (SEM). The 

figures were created in GraphPad Prism.  
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5. Results 

THP-1 cells and macrophages were stimulated with L. plantarum MF1298, NC8 and 299v, L. 

reuteri DSM 20016, DSM 17938 and mm4-1a, L. rhamnosus GG, live mutant strains of L. 

reuteri mm4-1a (only THP-1 cells), live E. coli K12 (1×10
8
 cfu/ml) and LPS (100 and 1000 

pg/ml). In addition, basal secretion (cell medium, control) from non-treated cells was also 

measured. LPS and E. coli K12 were used as positive controls because they are known to 

induce cytokine secretion (Chanput et al. 2010; Parlesak et al. 2004). 

Both live and UV-inactivated LAB were included in the experiments as LAB might exert an 

effect even when they are dead (Kataria et al. 2009). The use of UV-inactivated LAB gives 

important information about the true effect of the bacteria as problems with bacterial growth 

and production of metabolites are eliminated.  

The effect of selected LAB on the cytokine secretion from THP-1 cells and macrophages 

were tested and measured with ELISA. The IL-8, IL-10 and TNF-α secretion were 

measurable in both THP-1 cells and macrophages, while IL-6 was only secreted in 

measurable amounts by the macrophages. The results are presents in this chapter. 

5.1 Pilot experiments to optimize the test system 

The experiments were optimized to ensure the right LAB concentration, incubation time, and 

presence of antibiotics. All pilot experiments were performed with THP-1 cells. 

The effects of 4 different LAB concentrations (1×10
4
, 1×10

6
, 1×10

7
 and 1×10

8
) were tested in 

order to find the optimal concentration for stimulation of cytokine secretion (data not shown). 

Based on the measured cytokine secretion, 1×10
8
 cfu/ml was set as the optimal concentration, 

because lower concentrations did not induce cytokine secretion detectable by the ELISA (data 

not shown). We did not test higher concentrations of LAB, as that is not a realistic number of 

bacteria that survives the hostile environment of the human gut (Johansson et al. 1993; Vesa 

et al. 2000). 

Two different incubation times were tested for co-culture between THP-1 cells and LAB: 6 h 

and 24 h. Based on the results (data not shown) a co-culture time of 6 h were chosen as it gave 

a good response and TNF-α secretion decreased after 6 h. Furthermore, it is easier to control 

the bacterial growth and the production of metabolites with short incubation time. An 

incubation time of 24 h can increase the possibility for secondary effects on the cells, as the 
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secreted cytokines might bind to receptors on the cells and elicit a stimulating effect 

(autocrine effect). 

In order to prevent uncontrolled growth of the live LAB during co-culture and adverse effects 

of acid production, antibiotics were used. P/S was first tried out, but some strains still grew 

(data not shown). In order to inhibit the growth but not kill the live bacteria, gentamicin was 

tested. Three different concentrations were tested, 50, 100 and 150 µg/ml, and only the 

highest concentration of gentamicin inhibited the bacterial growth sufficiently (data not 

shown). The tendency of cytokine secretion was the same with both antibiotics (data not 

shown).  

5.2 Cytokine secretion by THP-1 cells exposed to live lactic acid bacteria 

The secretion of IL-8, IL-10 and TNF-α from THP-1 cells exposed to live LAB, E. coli K12 

and LPS (100 and 1000 pg/ml) for 6 h is shown in Figure 1. 
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Figure 1. Cytokine secretion after stimulation with selected live LAB. Secretion of IL-8 (A), IL-10 (B) 

and TNF-α (C) by THP-1 cells after 6 h co-culture with live LAB, E. coli K12, and LPS in original cell 

culture medium with gentamicin. Data are presented as mean ± SEM from 3-7 experiments performed 

in duplicate. * indicate p ≤ 0.05 (ANOVA with Dunnets post hoc test, treatment vs. control). 
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The same tendency was observed for IL-8 and TNF-α secretion: E. coli K12 stimulated a 

higher cytokine secretion than the live LAB, and the 1000 pg/ml LPS stimulated higher 

cytokine secretion than the 100 pg/ml LPS (Fig. 1A and 1C). 

All the live LAB, except L. plantarum NC8 and L. rhamnosus GG, stimulated the THP-1 cells 

to secrete statistically significant more IL-8 than the basal secretion (Fig. 1A). E. coli K12 and 

LPS (both concentrations) also stimulates the THP-1 cells to secrete statistically significant 

more IL-8 than the basal secretion. Of the LAB, the strains L. reuteri DSM 20016 and mm4-

1a stimulated the THP-1 cells to secrete the highest level of IL-8. 

There was no statistically significant difference in IL-10 secretion from the THP-1 cells 

between the live LAB, E. coli K12, LPS (both concentrations) and the basal secretion (Fig. 

1B). 

Of the 7 strains of live LAB, only L. reuteri mm4-1a stimulated the THP-1 cells to secrete 

statistically significant more TNF-α than the basal secretion (Fig. 1C). E. coli K12 and 1000 

pg/ml LPS also stimulated the THP-1 cells to secrete statistically significant more TNF-α than 

the basal secretion (Fig. 1C). 

5.3 Cytokine secretion by THP-1 cells exposed to UV-inactivated lactic 

acid bacteria 

The secretion of IL-8, IL-10, and TNF-α from THP-1 cells following exposure to UV-

inactivated LAB, and LPS 100 and 1000 pg/ml for 6 h is shown in Figure 2. 
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Figure 2. Cytokine secretion after stimulation with selected UV-inactivated LAB. Secretion of IL-8 

(A), IL-10 (B) and TNF-α (C) by THP-1 cells after 6 h co-culture with UV-inactivated LAB and LPS in 

original cell culture medium with P/S. Data are presented as mean ± SEM from 2-4 experiments 

performed in duplicate. * indicate p ≤ 0.05 (ANOVA with Dunnets post hoc test, treatment vs. control). 

 

L. rhamnosus GG was the only UV-inactivated strain that stimulated the THP-1 cells to 

secrete statistically significant higher levels of all the cytokines compared to the basal 

secretion (Fig. 2A-C). 

Except for the strains L. plantarum NC8 and 299v, all the UV-inactivated LAB stimulated the 

THP-1 cells to secrete statistically significant higher levels of IL-8 compared to the basal 

secretion (Fig. 2A). No statistically significant effect was observed following incubation with 

LPS (both concentrations). 

Figure 2B shows that UV-inactivated L. reuteri DSM 20016, mm4-1a, L. rhamnosus GG and 

both concentrations of LPS stimulated the THP-1 cells to secrete statistically significant more 

IL-10 than the basal secretion. The UV-inactivated L. plantarum NC8 and L. plantarum 299v 

resulted in low levels (corresponding to the basal secretion) of IL-10 (Fig. 2B). 

The UV-inactivated L. plantarum MF1298 and L. rhamnosus GG were the only UV-

inactivated strains that stimulated the THP-1 cells to secrete statistically significant more 
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TNF-α than the basal secretion (Fig. 2C). Furthermore, incubation with LPS (both 

concentrations) stimulated the THP-1 cells to secrete more TNF-α than the basal secretion 

(Fig. 2C). 

5.4 Cytokine secretion by macrophages exposed to live lactic acid 

bacteria 

Figure 3 shows the secretion of IL-6, IL-8, IL-10 and TNF-α from macrophages exposed to 

live LAB, E. coli K12 and LPS (100 and 1000 pg/ml) for 6 h. 
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Figure 3. Cytokine secretion after stimulation with selected live LAB. Secretion of IL-6 (A), IL-8 (B), 

IL-10(C) and TNF-α (D) by macrophages after 6 h co-culture with live LAB, E. coli K12 and LPS in 

original cell culture medium with gentamicin. Data are presented as mean ± SEM from 2-6 

experiments performed in duplicate. * indicate p ≤ 0.05 (ANOVA with Dunnets post hoc test, treatment 

vs. control). 

 

LPS and E. coli K12 stimulated the macrophages to secrete statistically significant higher 

levels of all cytokines compared to the basal secretion (Fig. 3A-C). 
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No statistically significant effect was observed for IL-6 secretion after exposure to live LAB. 

However, L. reuteri DSM 17938 showed a tendency to induce a higher IL-6 secretion than the 

other LAB (Fig. 3A). 

All the live bacteria stimulated the macrophages to secrete statistically significant higher 

levels of IL-8 than the basal secretion (Fig. 3B). The strains L. plantarum NC8, L. rhamnosus 

GG and E. coli K12 had the least effect on the IL-8 secretion (Fig. 3B).  

Figure 3C shows that none of the live LAB had a statistically significant effect on the IL-10 

secretion from the macrophages, but L. reuteri DSM 17938 revealed a tendency to stimulate a 

higher IL-10 secretion than the other live LAB. 

The L. reuteri strains, L. plantarum 299v and E. coli K12 stimulated the macrophages to 

secrete statistically significant higher levels of TNF-α compared to the basal secretion (Fig. 

3D). L. plantarum MF1298, NC8 and L. rhamnosus GG had no statistically significant effect 

but showed a tendency to induce a higher TNF-α secretion than the basal secretion (Fig. 3D). 

5.5 Cytokine secretion by macrophages exposed to UV-inactivated lactic 

acid bacteria 

Figure 4 shows IL-6, IL-8, IL-10, and TNF-α secretion from macrophages after exposure to 

UV-inactivated LAB and LPS (100 and 1000 pg/ml) for 6 h. 

 

 

 

 

 

 



38 

 

C
ontr

ol (
n=4

)

L. r
eu

te
ri
 D

SM
 2

00
16

 (n
=6

)

L. r
eu

te
ri
 D

SM
 1

79
38

 (n
=6

)

L. r
eu

te
ri
 m

m
4-

1a
 (n

=6
)

L. p
la

nta
ru

m
 M

F12
98

 (n
=6

)

L. p
la

nta
ru

m
 N

C
8 

(n
=5

)

L. p
la

nta
ru

m
 2

99
V
 (n

=6
)

L. r
ham

nosu
s 

G
G
 (n

=6
)

LPS
 1

00
 p

g/m
l (

n=4
)

LPS
 1

00
0 

pg/m
l (

n=4
)

0

50

100

150

200

500

1000

1500

2000

2500

*
*

A.
IL

-6
-s

e
c
re

ti
o

n
 (

p
g

/m
l)

b
y
 m

a
c
ro

p
h

a
g

e
s

C
ontr

ol (
n=6

)

L. r
eu

te
ri
 D

SM
 2

00
16

 (n
=6

)

L. r
eu

te
ri
 D

SM
 1

79
38

 (n
=6

)

L. r
eu

te
ri
 m

m
4-

1a
 (n

=6
)

L. p
la

nta
ru

m
 M

F12
98

 (n
=6

)

L. p
la

nta
ru

m
 N

C
8 

(n
=6

)

L. p
la

nta
ru

m
 2

99
V
 (n

=6
)

L. r
ham

nosu
s 

G
G
 (n

=6
)

LPS
 1

00
 p

g/m
l (

n=4
)

LPS
 1

00
0 

pg/m
l (

n=4
)

0

100000

200000

300000

400000

* * *
* *

*
*

*

B.

IL
-8

-s
e
c
re

ti
o

n
 (

p
g

/m
l)

b
y
 m

a
c
ro

p
h

a
g

e
s

 

C
ontr

ol (
n=6

)

L. r
eu

te
ri
 D

SM
 2

00
16

 (n
=6

)

L. r
eu

te
ri
 D

SM
 1

79
38

 (n
=6

)

L. r
eu

te
ri
 m

m
4-

1a
 (n

=6
)

L. p
la

nta
ru

m
 M

F12
98

 (n
=6

)

L. p
la

nta
ru

m
 N

C
8 

(n
=6

)

L. p
la

nta
ru

m
 2

99
V
 (n

=6
)

L. r
ham

nosu
s 

G
G
 (n

=6
)

LPS
 1

00
 p

g/m
l (

n=4
)

LPS
 1

00
0 

pg/m
l (

n=4
)

0

100

200

300

*
*

*

*

*

*

*

C.

IL
-1

0
-s

e
c
re

ti
o

n
 (

p
g

/m
l)

b
y
 m

a
c
ro

p
h

a
g

e
s

C
ontr

ol
 (n

=7
)

L. r
eu

te
ri
 D

S
M

 2
00

16
 (n

=7
)

L. r
eu

te
ri
 D

S
M

 1
79

38
 (n

=6
)

L. r
eu

te
ri
 m

m
4-

1a
 (n

=7
)

L. p
la

nt
ar

um
 M

F12
98

 (n
=8

)

L. p
la

nt
ar

um
 N

C
8 

(n
=8

)

L. p
la

nt
ar

um
 2

99
V
 (n

=8
)

L. r
ha

m
no

su
s 

G
G
 (n

=7
)

LP
S
 1

00
 p

g/m
l (

n=
8)

LP
S
 1

00
0 

pg/
m

l (
n=7

)

0

2000

4000

6000

8000

10000

*
*

*

*
*

*

*

D.

T
N

F
- 

-s
e
c
re

ti
o

n
 (

p
g

/m
l)

b
y
 m

a
c
ro

p
h

a
g

e
s

Figure 4. Cytokine secretion after stimulation with selected UV-inactivated LAB. Secretion of IL-6 

(A), IL-8 (B), IL-10 (C) and TNF-α (D) by macrophages after 6 h co-culture with UV-inactivated LAB 

and LPS in original cell culture medium with P/S. Data are presented as mean ± SEM from 2-4 

experiments performed in duplicate. * indicate p ≤ 0.05 (ANOVA with Dunnets post hoc test, treatment 

vs. control). 

 

Figure 4 shows that LPS (both concentrations) stimulate the macrophages to secrete 

statistically significant higher levels of all the cytokines compared to the basal secretion. 

Furthermore, UV-inactivated L. plantarum NC8 had hardly any effect on the secretion of the 

measured cytokines (Fig. 4A-D). 

All the UV-inactivated LAB showed a tendency to stimulate to a small increase in the level of 

IL-6 from the macrophages, none being statistically significant different from the basal 

secretion (Fig. 4A). However, co-culture with LPS (both concentrations) induced massive IL-

6 secretion (Fig. 4A). 

All the UV-inactivated LAB, except for L. plantarum NC8, stimulated the macrophages to 

secrete statistically significant more IL-8 than the basal secretion, and at approximately the 

same levels as LPS (Fig. 4B). L. plantarum NC8 induced low levels of IL-8 (Fig. 4B). 
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All the UV-inactivated LAB, except for L. plantarum NC8 and 299v, stimulated the 

macrophages to secrete statistically significant more IL-10 than the basal secretion. With the 

exception of L. rhamnosus GG, they all stimulated lower secretion of IL-10 than LPS (both 

concentrations) (Fig. 4C). L. plantarum NC8 and 299v stimulated the macrophages to secrete 

low levels of IL-10 (Fig. 4C). 

LPS (both concentrations) and all the UV-inactivated LAB, except L. plantarum NC8 and 

299v, stimulated the macrophages to secrete statistically significant more TNF-α than the 

basal secretion, with no major differences between the UV-inactivated strains (Fig. 4D). L. 

plantarum NC8 and 299v induced low levels of TNF-α secretion from macrophages (Fig. 

4D). However, they showed a tendency to stimulate the macrophages to produce more TNF-α 

than the basal secretion (Fig. 4D). 

5.6 Cytokine secretion by THP-1 cells exposed to putative surface protein 

mutant strains of L. reuteri mm4-1a 

As the levels of cytokine secretion after stimulation with selected live and UV-inactivated 

LAB correlates with the adhesion properties of the LAB (Jensen et al. 2012), it was desirable 

to investigate the effect of putative surface proteins on L. reuteri mm4-1a on the cytokine 

secretion from THP-1 cells. The experiments with L. reuteri mm4-1a mutants were only 

performed with THP-1 due to time-shortage. 

Figure 5 shows IL-8, IL-10 and TNF-α secretion from THP-1 cells after stimulation with live 

L. reuteri mm4-1a and live mutant strains of L. reuteri mm4-1a for 6 h. 
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Figure 5. Cytokine secretion after stimulation with live mutant strains of L. reuteri mm4-1a and L. 

reuteri mm4-1a. Secretion of IL-8 (A), IL-10 (B) and TNF-α (C) by THP-1 cells after 6 h co-culture 

with live mutant strains of L. reuteri mm4-1a and L. reuteri mm4-1a in original cell culture medium 

with gentamicin. Data are presented as mean ± SEM from 3 experiments performed in duplicate. * 

indicate p ≤ 0.05 (ANOVA with Dunnets post hoc test, treatment vs. L. reuteri mm4-1a). 

 

The only statistically significant difference in Figure 5 was that incubation with L. reuteri 

130_A resulted in a statistically significant lower secretion of IL-8 compared to the wild type 

strain L. reuteri mm4-1a (Fig. 5A). None of the other mutant strains induced statistically 

significant differences in secretion of IL-8, compared to the wild type L. reuteri mm4-1a (Fig. 

5A). However, they revealed a possible tendency to lower secretion of IL-8 from THP-1 cells 

compared to the wild type strain L. reuteri mm4-1a, especially L. reuteri S1065_E and 

S647_E (Fig. 5A). 

IL-10 secretion from THP-1 cells was about the same for mutant strain S214_E as for the wild 

type strain, whereas L. reuteri S655_H, 1696_H2, 130_A, S1065_E and S647_E showed a 

tendency to give a lower secretion of IL-10 from THP-1 cells compared to the wild type strain 

L. reuteri mm4-1a (Fig. B). 

The mutant strains L. reuteri S655_H, 1696_H2, S1065_E and S647_E showed a tendency to 

stimulate the THP-1 cells to secrete more TNF-α than the wild type strain L. reuteri mm4-1a 
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(Fig. 5C). On contrary, L. reuteri 130_A and S214_E stimulated the THP-1 cells to secrete 

approximately the same levels of TNF-α as the wild type strain L. reuteri mm4-1a (Fig. 5C).   
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6. Discussion 

In this study the focus has been on the immune stimulatory properties of selected 

Lactobacillus strains. The secretion of IL-6, IL-8, IL-10 and TNF-α from THP-1 cells and 

THP-1 derived macrophages after exposure to live and UV-inactivated LAB were 

investigated. The aim of the study was to compare the strains immunomodulatory properties 

and to compare the effect of live versus UV-inactivated bacteria. Furthermore, the cytokine 

secretion from THP-1 cells exposed to 6 mutant strains of L. reuteri mm4-1a was measured to 

investigate a possible correlation between putative surface proteins and cytokine secretion. 

The majority of other in vitro studies have used inactivated (e.g. UV, heat) or bacterial 

products (e.g. conditioned medium, fatty acids) from LAB to measure immunomodulatory 

properties. This study is one of few which investigate the effect of live LAB. 

6.1 The Methods 

The THP-1 cell line and macrophages were chosen because they elicit a measurable immune 

response when exposed to bacteria. THP-1 cells were chosen as they are well known to give 

similar results as peripheral blood mononuclear cells (PBMC) (Sharif et al. 2007) and are 

commonly used in the literature (Gonsalves & Kalra 2010; Lund et al. 2004; Zeng et al. 

2010). 

A test set-up like the one in this study, where one expose live human cell lines to live bacteria 

will naturally give variance because both the cells and LAB vary from one day to another. 

Reasons for this can be a variation in the number of both cells and bacteria due to manual 

procedures. Furthermore, differentiation from THP-1 cells to macrophages may differ from 

day to day, and well to well, resulting in cell cultures with a mixed state of differentiation. 

Moreover, the dilution of the supernatants before ELISA, and all the technical steps in the 

ELISA itself, may vary from experiment to experiment as the methods are hands-on. 

However, caution was taken to do the procedures as carefully and similar as possible. The 

ELISA method was adapted in the Nofima laboratory in collaboration with an experienced 

immunology group, and we trusted the method to be satisfactory. However, it seemed the 

method for the IL-8 ELISA was more reproducible than the IL-10 and TNF-α ELISA. It may 

have been beneficial to use some more time in optimizing the dilution of the antibodies for the 

ELISAs in question. 
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In general, the macrophages had higher levels of cytokine secretion than the THP-1 cells for 

IL-8 and TNF-α. A reason for this may be that the PMA used to differentiate THP-1 cells to 

macrophages induced macrophages to secrete higher levels of cytokines at the basal level. 

The basal secretion of IL-8 was 13.3 pg/ml from the THP-1 cells versus 8405.8 pg/ml from 

the macrophages. Similarly, the basal TNF-α secretion was also lower from THP-1 cells (6.1 

pg/ml) than from macrophages (58.2 pg/ml). However, the basal secretion of IL-10 was 

higher from the THP-1 cells (50.2 pg/ml) than from the macrophages (0.3 pg/ml). IL-6 

secretion was only measured from macrophages. In future studies it might be beneficial to 

allow the macrophages to rest a day or two in absence of PMA before experiments, in order to 

be sure that the PMA have no further effect on the macrophages besides the differentiation. 

The co-culture time for the experiments was set to 6 h. Pilot experiments using 24 and 6 h 

incubation time was performed. In this study 6 h incubation time was chosen to measure the 

initial response of cytokines. If the incubation time had been longer the cells may have been 

affected by the cytokines secreted and ignite a response to the cytokines and not to the LAB. 

Chanput et al. (2010) show that from THP-1 cells stimulated with LPS the secretion of TNF-α 

and IL-10 peaked at 6 h, whereas the secretion of IL-6 and IL-8 kept on rising until 30 h after 

stimulation. In the same study, macrophages stimulated with LPS revealed increasing 

secretion of IL-6, IL-8 and IL-10 up to 18 h, while the secretion of TNF-α peaked at 6 h 

(Chanput et al. 2010). 

Many studies have induced an inflammation response in THP-1 cells, in order to investigate 

whether LAB (or metabolites of LAB) have an inhibitory effect on the inflammation response 

(Jones et al. 2011; Kim et al. 2007; Kim et al. 2006; Lin et al. 2008; Thomas et al. 2012). In 

the current study, stimulating the THP-1 cells and macrophages by adding LPS 30 min after 

addition of LAB was tried out. However, the cytokine secretion from these experiments was 

high, and no differences between the strains could be detected (data not shown). 

In this study, inactivation of LAB by UV radiation was chosen, as it is a more gentle way to 

inactivate the LAB thereby keeping the surface molecules intact (that may be degraded if heat 

is used). Stimulation with UV-inactivated bacteria will reveal whether the bacterium itself or 

the metabolites produced by the live bacterium is responsible for the induced cytokine 

secretion. 

The pilot experiments and initial experiments were performed with UV-inactivated LAB, in 

the presence of the antibiotics P/S. During the initial experiments with live LAB problems 
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with growth of bacteria for some strains were experienced, killing or suppressing the viability 

of the human cells. To overcome this problem gentamicin was used as antibiotics in the cell 

medium during co-culture with live LAB. Gentamicin is commonly used in similar studies 

(Gaudana et al. 2010; Pathmakanthan et al. 2004). Interestingly, the use of gentamicin did not 

affect the cytokine secretion compared to P/S. Due to time constraints, the experiments 

initially performed with UV-inactivated bacteria and P/S were not repeated with gentamicin. 

6.2 Cytokine secretion from THP-1 cells and macrophages 

The main findings from co-cultures of live LAB with THP-1 cells or macrophages were that 

the three L. reuteri strains stimulated a high secretion of the cytokines compared to the other 

strains, while L. rhamnosus GG and L. plantarum NC8 induced low cytokine secretion 

compared to the other strains. In addition, the results from this study showed that bacteria 

belonging to the same species show the same tendencies in cytokine response. In general, not 

many studies are done with live LAB: Most are performed with inactivated or just metabolites 

of LAB. Furthermore, investigating the immune response in vitro, many studies have been 

performed with L. rhamnosus GG, some with L. plantarum 299v, while only a few have 

investigated the effect of L. reuteri DSM 17938. 

Lactobacillus reuteri DSM 17938 is a commercially available probiotic bacterium which has 

been extensively tested in clinical trials and in vivo (see introduction for details). However, 

relatively few studies investigating the immune stimulatory properties of L. reuteri strains in 

vitro have been performed. In the present study, L. reuteri strains induced overall higher 

levels of secreted cytokines compared to the other strains investigated. Interestingly, L. reuteri 

strains have shown superior properties compared to other strains in in vitro experiments, such 

as good ability to survive gastric and intestinal juices in vitro (Jensen et al. 2012), to adhere to 

IEC  in vitro (Christoffersen et al. 2012; Jensen et al. 2012; Wang et al. 2008), and to possibly 

strengthen the epithelial barrier in vitro (Jensen et al. 2012). 

In general, the secreted levels of IL-6, IL-8 and TNF-α were higher than the levels of secreted 

IL-10. This can probably be explained by the nature of the cytokines: IL-6, IL-8 and TNF-α 

are pro-inflammatory cytokines and will be secreted early in the immune response, whereas 

IL-10 is an anti-inflammatory cytokine that will be secreted later in the immune response. 

This may explain the low levels of IL-10 that was measured after 6 h. 
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It has been demonstrated that immune stimulation in the gut from commensal bacteria is 

advantageous for the development of important gut defenses (Rakoff-Nahoum et al. 2004). 

Furthermore, it is obvious that LAB should not elicit as strong immune response as the 

positive controls LPS and E. coli K12 used in this study. In the current study, LPS (both 

concentrations) induced statistically significant higher secretion of IL-6 compared to the 

control, and compared to the LAB (both live and UV-inactivated) the LPS induced a much 

higher IL-6 secretion. The same was the case for E. coli K12. The secretion of TNF-α from 

THP-1 cells induced by the positive controls was overall higher than the TNF-α secretion 

induced by the LAB. The secretion of TNF-α from the macrophages showed overall no big 

difference between the secretion induced by the LAB and E. coli K12 and LPS. There were 

no big differences between the LAB and the positive controls regarding the secretion of IL-8 

and IL-10. IL-10 secretion from macrophages stimulated with E. coli K12 and LPS induced 

statistically significant higher secretion from the macrophages compared to the basal 

secretion.  

6.2.1 Cytokine secretion from THP-1 cells and macrophages incubated with live 

lactic acid bacteria 

The immune stimulatory properties of live LAB were mostly the same in THP-1 cells and 

macrophages. The main difference was that the L. reuteri DSM 20016 and DSM 17938 and L. 

plantarum 299v induced lower TNF-α secretion in THP-1 cells compared to the macrophages. 

This study has shown that all the live LAB induced statistically significant higher levels of IL-

8 from the macrophages compared to the basal secretion. Furthermore, all the live strains 

induced statistically significant higher IL-8 secretion from THP-1 cells compared to the basal 

secretion, except for L. plantarum NC8 and L. rhamnosus GG. Not many studies have been 

performed to investigate the immune effect of live bacteria on cell lines. Zhang et al. 

(2005)showed that Caco-2 cells exposed to a high dose (1×10
7
 cfu/ml) of live L. rhamnosus 

GG induced a higher secretion of IL-8 than the control (cells exposed to cell culture medium), 

while lower doses did not induce any difference in the secretion of IL-8 compared to the 

control. Vizoso Pinto et al. (2007) observed that live L. rhamnosus GG down-regulated IL-8 

cytokine secretion, whereas two L. plantarum strains induced increased secretion of IL-8 from 

HT-29 cells compared to control (HT-29 cells incubated with only cell culture medium). 

Furthermore, the IL-6, IL-10 and TNF-α secretion could not be determined in the supernatants 

from the cells treated with the live bacteria (Vizoso Pinto et al. 2007). On contrary, another 



46 

 

study done by Vizoso Pinto et al. (2009) on HT-29 cells treated with live L. rhamnosus GG, 

show that the bacterium did not induce statistically significant higher secretion of IL-8 

compared to the control (cells exposed to cell culture medium).  

In the current study, THP-1 cells and macrophages stimulated with live LAB did not have 

statistically significant different IL-10 secretion compared to the basal secretion, and there 

were no major differences between the strains. The findings in the current study correlates 

with a study conducted with live L. rhamnosus GG and DCs which demonstrated no 

statistically significant effect of the bacterium on the secretion of IL-10 (Elmadfa et al. 2010). 

On contrary, Kim et al. (2006) found elevated levels of IL-10 from mouse bone marrow-

derived immortalized macrophages (BMDIM) after stimulation with L. rhamnosus GG, 

compared to the control (cell culture medium).  

In this study live L. rhamnosus GG induced the lowest TNF-α secretion from macrophages 

compared to the other LAB, although still higher than the basal secretion. Another study also 

demonstrated that live L. rhamnosus GG in comparison to other bacteria was a poor inducer 

of TNF-α secretion in a BMDIM (Kim et al. 2006). The positive control E. coli K12 induced 

statistically significant higher TNF-α secretion from macrophages compared to the basal 

secretion in the current study. Kim et al. (2006) demonstrated the same, as BMDIM exposed 

to a live strain of E. coli secreted much higher levels of TNF-α compared to the control (cell 

medium). 

The difference between the results from the current study and other studies could be due to 

the use of different cell lines, and differences between laboratory practice for growing both 

bacteria and human cell lines. In addition, both bacteria and human cells may change 

properties over time during culture in growth medium. Furthermore, different concentrations 

of bacteria and human cells may also be factors contributing to different results. 

6.2.2 Cytokine secretion from THP-1 cells and macrophages incubated with UV-

inactivated lactic acid bacteria 

As reviewed by Kataria et al. (2009) probiotic LAB may be effective even as heat-killed, UV-

inactivated or fragmented. The results from the current study revealed no major differences 

between live bacteria and UV-inactivated bacteria in their ability to induce cytokine 

production in THP-1 cells/macrophages, with the exception of L. rhamnosus GG. UV-



47 

 

inactivated L. rhamnosus GG induced higher cytokine secretion compared to live L. 

rhamnosus GG. The reason for this is unknown, and needs further investigations. 

The results in this study showed that with the exception of IL-8 secretion from macrophages, 

the UV-inactivated L. plantarum 299v did not induce the cells to secrete statistically 

significant more cytokines than the basal secretion. Contrary to this, Christensen et al. (2002) 

showed that in murine DCs exposed to inactivated L. plantarum 299v, the IL-6, IL-10 and 

TNF-α secretion was higher than in control cells (cell culture medium). 

In the present study, UV-inactivated L. rhamnosus GG gave statistically significant higher IL-

8 secretion compared to basal secretion when tested on both THP-1 cells and macrophages. 

However, Zhang et al. (2005) found that Caco-2 cells treated with heat-killed L. rhamnosus 

GG secreted slightly elevated levels of IL-8 compared to control cells (cell culture medium). 

Furthermore, another study done on HT-29 cells demonstrated that heat-killed L. rhamnosus 

GG induced the cells to secrete statistically significant less IL-8 than the control (Wallace et 

al. 2003). 

In the current study UV-inactivated L. rhamnosus GG stimulated the THP-1 cells and 

macrophages to secrete statistically significant higher levels of IL-10 compared to the basal 

secretion. These results are in accordance with the results from another study where 

mononuclear cell cultures (from blood donors) exposed to two strains of UV-inactivated L. 

rhamnosus secreted statistically significant higher levels of IL-10 compared to the control 

(cell culture medium) (Hessle et al. 1999). Furthermore, the results from the current study 

showed that UV-inactivated L. plantarum strains overall induced low levels of IL-10. Hessle 

et al. (1999) also found that two strains of L. plantarum stimulated mononuclear cell cultures 

to secrete relatively low levels of IL-10 compared to the other strains. The UV-inactivated L. 

plantarum strains in the current study did not stimulate the THP-1 cells to secrete statistically 

significant more IL-10 than the basal secretion. A study done with a heat-killed L. plantarum 

strain on THP-1 cells also demonstrated the same (Kim et al. 2007). While THP-1 and 

macrophages with UV-inactivated L. plantarum 299v in the current study induced only low 

levels of IL-10, Christensen et al. (2002) demonstrated high levels of IL-10 secretion from 

DCs stimulated with heat-killed L. plantarum 299v compared to the control (cell culture 

medium). 

UV-inactivated L. rhamnosus GG induced statistically significant higher levels of TNF-α than 

the basal secretion in both cell-types in the current study. The results from this study were 
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consistent with the results from another study done with a macrophage cell-line (RAW 264.7) 

where heat-killed L. rhamnosus GG stimulated to a lot higher secretion of TNF-α than the 

control (cell culture medium) (Lin et al. 2011). The current study shows that the three UV-

inactivated L. reuteri strains induced statistical significantly higher levels of TNF-α than the 

basal secretion, from the macrophages. The findings from this study is in accordance with a 

study done with macrophages from mice, where it was shown that a strain of gamma 

irradiated L. reuteri induced a lot higher secretion of TNF-α compared to the control (non-

stimulated macrophages) (Marcinkiewicz et al. 2007). In the current study the UV-inactivated 

L. plantarum strains stimulated the cells to secrete different amounts of TNF-α. L. plantarum 

MF1298 stimulated the cells to secrete statistically significant higher levels of TNF-α than the 

basal secretion, whereas L. plantarum NC8 and 299v did not. L. plantarum MF1298 has 

previously shown promising probiotic properties in vitro compared to other L. plantarum 

strains (Klingberg et al. 2005). 

It was an aim to compare immune stimulation by UV-inactivated and live LAB, as it might 

lead to clues regarding the mechanisms for the immunological effects. The immunological 

effects from live LAB may be due to secreted metabolites, and surface proteins, whereas the 

immunological effects from UV-inactivated LAB may be caused by surface proteins as they 

are preserved in the process. The results did not show big differences between the effects 

from live LAB versus UV-inactivated LAB, indicating that the bacteria themselves and not 

their metabolites are responsible for the observed immune response. 

6.3 The effect of putative bacterial surface proteins on cytokine secretion 

The initial results with THP-1 cells and macrophages revealed overall a high cytokine 

secretion after stimulation with L. reuteri strains and a low level of cytokine secretion after 

stimulation with L. plantarum strains. It was recently shown that L. reuteri strains possess a 

very good adhesion capacity to IEC, whereas L. plantarum strains adheres poorly (Jensen et 

al. 2012). To investigate a possible connection between putative bacterial surface proteins and 

cytokine secretion, 6 L. reuteri mm4-1a mutants were studied: 4 LPXTG mutant strains, 1 C-

terminal membrane anchor protein mutant strain and 1 sortase mutant strain. All mutant 

strains are knock-out mutants where the targeted proteins are not expressed, thus they are all 

putative surface protein mutants. 

One of the LPXTG mutant strains (S214_E) has an almost complete loss of adhesion capacity 

to IEC (unpublished results). However, the results showed that the mutant strain S214_E lead 
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to approximately the same amount of secreted cytokines from THP-1 cells as the wild type 

strain, indicating that the surface protein that is important for adhesion to IEC is not important 

for the ability to induce cytokine secretion from THP-1 cells. However, it is likely that the 

mechanism for cytokine induction is different in IEC compared to THP-1 cells. Thus, the 

immune stimulatory effect of mutant strain S214_E should be tested on intestinal epithelial 

cell lines. 

L. reuteri mm4-1a 130_A, the sortase mutant, induces statistically significant lower IL-8 

secretion from THP-1 cells compared to the wild type. This indicates that sortase activity 

might be important for the induction of IL-8. The mechanism for this is unknown and should 

be further investigated. 
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7 Conclusion 

The aims for this thesis were to compare selected strains of LAB in their ability to modulate 

the immune response of THP-1 cells and macrophages, to compare the effects of live versus 

UV-inactivated LAB, and to investigate the effect of putative bacterial surface proteins on the 

cytokine secretion from THP-1 cells. 

The selected LAB strains induce different cytokine profiles, as measured in THP-1 and 

macrophages. The L. reuteri strains induced an overall higher cytokine secretion than the 

other strains investigated, whereas L. plantarum NC8 and live L. rhamnosus GG induced low 

cytokine secretion. Most of the UV-inactivated LAB had the same immune stimulatory 

capacity as the corresponding live bacteria, indicating that it is the bacteria themselves and not 

their metabolites that are responsible for the observed immune response. Interestingly, the 

UV-inactivated L. rhamnosus GG induced high levels of secreted cytokines compared to live 

L. rhamnosus GG. The reason for this difference is unknown and needs further testing. 

Of the putative bacterial surface proteins tested, a protein which is essential for adhesion to 

IEC was not important for the cytokine secretion from THP-1 cells. However, sortase activity 

showed a possible importance for the induction of IL-8 secretion.  
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8 Future perspectives 

The effect of live versus UV-inactivated L. rhamnosus GG on cytokine secretion should be 

further investigated as they gave different immune responses. Other methods for inactivating 

the LAB (eg. heat, other types of radiation) should be tested, as different methods may affect 

the LAB differently. Heat treatment may denaturize surface proteins on the LAB, while UV-

inactivation does not affect the surface proteins this way. The different treatments may affect 

how the LAB are perceived by the cells of the immune system. 

Furthermore, it would be interesting to test the effects of the LAB on peripheral blood 

mononuclear cells (PBMC) or on intestinal epithelial cell lines (like Caco-2) to investigate 

whether the cytokine secretion are comparable to the results obtained in this thesis. Testing 

the effects of the LAB on a sandwich system consisting of Caco-2 cells and PBMC for 

immune responses should also be performed as it would be more similar to the in vivo 

situation.  

In addition, investigating more mutant strains of LAB with regard to cytokine secretion and 

putative surface proteins would also be interesting, as this could reveal the mechanisms for 

the immune stimulatory effect of probiotics. 
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