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Abstract 

Several strategies to reduce stress among fish in aquaculture are currently under 

development. A biologically conserved feature of the stress response in vertebrates is the role 

of the brain serotonergic (5-hydroxytryptamine, 5-HT) signalling system in controlling the 

endocrine response to stress, primarily production of the steroid hormone cortisol through the 

hypothalamus-pituitary-adrenal axis (HPA, or HPI [interrenal] in fishes). The precursor of the 

monoamine neurotransmitter 5-HT is the amino acid tryptophan (TRP). Plasma levels of TRP 

directly affect 5-HT production in the brain. Dietary TRP treatment has previously been 

shown to inhibit the cortisol response to stress in both fishes and mammals. Altering 

monoaminergic neurotransmission and stress responsiveness may have enduring effects on 

neural plasticity, but it is not known whether the effect of TRP remain also after exogenous 

supplementation has been terminated. In the current study, three groups of juvenile Atlantic 

salmon (Salmo salar) were tagged and acclimated during 10 weeks. Thereafter, the fish were 

treated with three different diets (TRP 1x = standard commercial feed, and TRP 2x and 3x = 

2 and 3 times standard level of TRP) during 1 week, whereupon standard food were given 

until the end of the experiment. In order to investigate the long-term effect of TRP on the 

stress response, fish were subjected to an acute stressor during 1 hour at two different 

occasions, 1 and 3 weeks after TRP treatment, and blood samples were obtained to analyse 

plasma levels of the fish corticosteroid hormone cortisol after stress. Fish fed with TRP3 

showed a decrease of plasma cortisol levels during both occasions, specifically as compared 

to TRP 2x at sampling 1 and both TRP 2x and TRP 1x and sampling 2. Notably, fish fed with 

TRP 2 showed a significant elevation of plasma cortisol at first sampling, however, this effect 

was abated after 3 weeks. These results demonstrate that neuroendocrine effects of dietary 

TRP are both time- and dose-dependent. I hypothesize that long term effects of TRP on 

cortisol levels, are mediated by the fish brain serotonergic system. Chronic stress in fish 
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cause brain damages, loss of appetite, impaired growth and muscle wasting, brain effects, 

immunosuppression, decreased reproduction and mortality. Consequently, dietary TRP 

should be further evaluated in aquaculture production in order to maintain animal welfare, 

and limit economic losses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 | P a g e  

 

Index 
1. Introduction ...................................................................................................................... 7 

1.1 Aquaculture in a historical perspective ........................................................................................ 7 

1.2 Study species ................................................................................................................................. 8 

1.3 Welfare and Aquaculture .............................................................................................................. 9 

1.4 The stress response..................................................................................................................... 11 

1.5 Tryptophan, serotonin and cortisol: a close relationship. .......................................................... 13 

2 Material and methods ......................................................................................................... 18 

2.1 Experimental facilities and fish ................................................................................................... 18 

2.2 Experimental design .................................................................................................................... 22 

2.3 Stress treatment and sampling ................................................................................................... 25 

2.4 Cortisol analysis .......................................................................................................................... 26 

2.5 Statistical methods ...................................................................................................................... 26 

3 Results .................................................................................................................................. 27 

3.1 Statistical results by samplings ................................................................................................... 27 

3.2 Feed intake and growth .............................................................................................................. 30 

4 Discussion ............................................................................................................................ 31 

4.1 Possible Implications for Aquaculture ........................................................................................ 35 

5. Conclusion .......................................................................................................................... 36 

6. References ........................................................................................................................... 37 

 

  



7 | P a g e  

 

 

1. Introduction 

1.1 Aquaculture in a historical perspective 

 

Aquaculture refers to the cultivation of aquatic species, either plants or animals, for human 

consumption. This practise is not a recent innovation in human history. Finfish aquaculture 

(using common carp, Cyprinus carpio) is considered to have originated in the Chinese 

civilization around 2000-1000 B.C. Today, aquaculture is considered perhaps the most 

sustainable alternative for fish production, as an alternative to more destructive fishing 

techniques. In fact, a recent report by Worm et al. (2006) predicts the collapse of all species 

of sea fish by 2048, with the current fishing methods and development. 

 Currently, 50% of the global fish production is coming from aquaculture, and fish farming is 

the fastest growing sector within animal-derived food production. The growth rate in 

freshwater fish was 7.2% between 1980-2010 (FAO, 2012). Norway is the largest producer in 

Europe, accounting for 39,95 %, followed by Spain (10,00%), France (8,89%) and UK 

(7,97%). On the species level, Atlantic salmon (Salmo salar) leads the worldwide aquaculture 

production around 1,5 millon tonnes, followed milkfish (chanos chanos) by 0,8 millon tonnes  

and rainbow trout (Oncorhynchus mykiss) 0,7 millon tonnes (FAO, 2012).  

Industrial production of salmonid fish began in Norway in the late 1970´s, spurred by 

research at the Norwegian University of Life Sciences. Atlantic salmon is a relatively new 

species in breeding, currently undergoing domestication. Consequently, this species is likely 

less well adapted to the rearing environment, which is very different from its natural 

environment, compared to most terrestrial production animals (Huntingford, 2005). This is 

partly countered by intensive breeding programmes and/or genetic strategies (Gjedrem, 1976; 

Andersen,1977; Elvingson, 1992; Hulata, 2002). Nevertheless, fish in aquaculture (salmon as 
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well as other species) are exposed to a range of stressors imposed by rearing in capture, 

which may affect both production parameters and welfare of the animals. This MSc thesis 

considers a dietary intervention – supplement of the essential amino acid tryptophan – as an 

alternative strategy to minimise stress in aquaculture. The biological principle behind the 

method is specifically reviewed in chapter 1.5, and further background for the study is given 

in the following.  

1.2 Study species 

 

The study species in this thesis is Atlantic salmon. In the wild, this species is anadromus, i.e. 

reproduction and early growth occurs in fresh water, whereas from the smolt stages until 

sexual maturation occurs fish reside in the sea. Following homing to native rivers and 

upstream migration, female salmon dig reds in gravel in shallow water to spawn. Mature 

Atlantic salmon may return to the sea but they need at least two years to reproduce again 

(Edwards, 1978). In their natural environment eggs will normally hatch to larvae (alevines) 

after two to three months, depending on the temperature. During the first phase, alevines 

obtain nutrition from their yolk sacs. Subsequently, as the yolk sack is consumed larvae 

become more active and start looking for food. This particular period is known as the “swim 

up” period after which follows a period of growth for typically 18 to 24 months; whereupon 

the fish migrates to the sea (Edwards, 1978).  

Collectively, the many processes involved in the development of seawater tolerance prior to 

migration are known as smoltification. Several studies showed that during smoltification 

several physiological, behavioural and morphological changes occur (Damsgaard and 

Arnesen, 1998; McCormick and Saunders, 1987; Hoar, 1988). For example, 

hypoosmoregulatory capacity increases (McCormick and Saunders, 1987; Björnsson et al., 

1989; Sigholt et al., 1995) and the fish start to swim downstream towards the sea (Eriksson, 
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1984; Lundqvist and Eriksson, 1985). Subsequently, salmon will live in the ocean during one 

to five years before reproductive maturation, whereupon they return to freshwater, typically 

to the river in which they were born (Edwards, 1978; Stabell 1984).  

The life cycle described above concerns wild conditions. For practical and economic reasons, 

this life cycle is compressed and growth rates greatly increased in aquaculture production 

environments, which offer optimized conditions for fish development.  

1.3 Welfare and Aquaculture 

 

In line with the sharply rising public interest, fish welfare in aquaculture has become a main 

legislative and research issue. The welfare concept suffers from lack of a clear definition and 

how it should be applied to different organisms is debated (Huntingford et al., 2006). 

Generally, most definitions of animal are categorized into three different groups: “feeling-

based” definitions, referring to subjective mental state of the animal with absence of 

suffering; “function-based” definitions, referring to the animal’s ability to adapt to new 

environments; and “nature-based definitions”, referring to an inherent biological nature that 

every animal keeps and that must be expressed (Duncan & Fraser, 1997; Fraser, 1999).  

In aquaculture various stressors may occur, such as for instance accumulation of inadequate 

densities in the same rearing unit, poor water quality, handling and removing from water 

during routine husbandry procedures, unnatural light-dark regimes, and food deprivation. 

This type of actions can create aggressive interactions between fish, prolong adverse 

physiological states, and possibly increase the transmission of diseases (Huntingford et al., 

2006). 

Even if there are a number of differences between fish and “higher” vertebrates, stress 

responses are similar in both cases. Behavioural responses against threats, such as predators, 

poor food availability and other suboptimal environmental conditions, represent a first line of 
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defence (Huntingford et al., 2006). Physiological stress responses are virtually identical as in 

mammals (Bonga, 1997), with fish secreting cortisol from the interrenal tissue (the 

homologue to adrenal cortex in mammals, see details in next section) in response to 

adenocorticotrophic hormone under stress (Weld et al., 1987; Okawa et al., 1992; Sumpter, 

1997). Therefore, even knowing that physiological stress responses alone do not correspond 

to welfare, monitoring stress responses might be considered as a good indicator of fish 

welfare (Huntingford et al., 2006)., especially when combined with other measures. Such a 

welfare approach is provided by Turnbull et al. (2005), including two physical (condition of 

body and fins) and two physiological observations (plasma concentration of glucose and 

cortisol). 

There are several examples of research aiming to reduce stress in aquaculture. For example, 

Jobbling et al. (1993) trained Arctic char (Salvelinus alpinus) fishes by exposing them to 

moderate water currents for prolonged periods leads to improvements in physiological 

performance. Recently including the essential amino acid tryptophan (TRP) as a part of the 

daily diet has been shown to reduce both aggression (Winberg et al., 2001) and the 

physiological stress response (Lepage et al. 2002; Lepage et al., 2003) in rainbow trout. 

Similar results have been obtained with different species like Atlantic cod (Gaus morhua) 

(Höglund et al. 2005); Cirrhinus mrigala (Tejpa et al. 2009) or European sea bass 

(Dicentrarchus labrax) (Herrero et al. 2007).  
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1.4 The stress response 

 

The concept of stress has been defined differently throughout history by biologists, 

neurologists, and psychologists. Some consensus was reached around the definition by 

Chrousos and Gold (1992), who stated that stress is ``a condition in which the dynamic 

equilibrium of animal organisms called homeostasis is threatened or disturbed as a result of 

the actions of intrinsic or extrinsic stimuli, commonly defined as stressors´´. 

Barton and Iwama (1991) drew attention to the fact that during stress, which alters 

physiological and psychological states, animals will mount both neuroendocrine and 

behavioural responses. Therefore, the impact of the stressor may be measured by quantifying 

the amount of these responses. The most well studied physiological response to stress is an 

increase in cortisol and catecholamine (adrenaline and noradrenaline) concentrations in 

plasma. Under a stressful situation, individuals demand higher amounts of oxygen, and 

metabolic pathways are also affected (Barton & Iwama, 1991). Fish and mammals have 

comparable neuroendocrine stress responses (Wendelaar-Bonga, 1997; Donaldson, 1981; 

Mazeaud, and Mazeaud, 1981). In mammals, the steroid-synthesizing cells involved in the 

stress response form a compact mass located in the adrenal cortex. However, in teleost fishes, 

these cells are located in layers, cords or isolated groups along the cardinal vain and in head 

kidney interrenal tissue. Hence, in fish one refers to the hypothalamic-pituitary-interrenal 

(HPI) axis, and cortisol secretion is regulated by this axis (Milano et al, 1997; Wendelaar-

Bonga, 1997). 

Commonly, the physiological stress response is described as a hormonal cascade divided into 

several discrete steps. Initially, a release of catecholamine’s is stimulated by the sympathetic 

nervous system. This response co-occurs with the secretion of corticotropin-relasing hormone 

(CRH) from the hypothalamus, which in turn promotes the release of adrenocorticotrophic 

hormone (ACTH) from the anterior pituitary into the general blood stream. ACTH then 
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activates the synthesis and secretion of cortisol (corticosterone in rodents and birds) by the 

steroidogenic tissues.  

Secondly, these stress hormones reach their target areas and stimulate or inhibit a range of 

physiological processes, such as mobilization of energy substrates, heart rate, oxygen uptake 

and hydromineral balance, among others. In the case of acute stress, cortisol concentrations 

return to pre-stress levels within hours of exposure to a stressor (Pickering and Pottinger, 

1989; Waring et al., 1992). 

A so-called tertiary response occurs when fish cannot escape the stressor or the stressful 

stimulus is episodic or intermittent. In other words, the physiological stress response becomes 

chronic.  This can result in compromised welfare and poor production, including loss of 

appetite, impaired growth and muscle wasting, immunosuppression and suppressed 

reproduction. (Bonga, 1997; Pickering, 1981; Pickering and Pottinger, 1995; Wedemeyer, 

Barton and  McLeay, 1990).  

The relevance of stress responses, in particular of the tertiary responses, for the rearing of fish 

in aquaculture was illustrated by Pickering and Stewart (1984), who showed that growth rate 

and feeding behaviour, was altered when fish density inside the rearing unit became too high. 

Also, the effect of stress on the reproductive ability of rainbow trout (Salmo gairdneri), 

Atlantic salmon, brown trout, (Salmo trutta L.) or rainbow trout (Oncorhynchus mykiss) has 

been investigated from several studies. (Pankhurst and Van Der Kraak, 2000; Campbell et al. 

1994; Pickering and Pottinger, 1995; Pottinger, and Carrick, 1999; Pickering, 1987). 

It is important to keep in mind that the stress responses are not always negative. According to 

Huntingford and Adameriwims., 2005 ``the stress response has evolved to assist the survival 

of the animal under demanding conditions in the natural environment´´. However, in general 

stress is viewed as something one wants to avoid in aquaculture. 
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1.5 Tryptophan, serotonin and cortisol: a close relationship. 

 

Cortisol (hydrocortisone) is a steroid hormone, or glucocorticoid, produced by the adrenal 

gland. It is released in response to stress and also fluctuates in daily cycles. Plasma levels of 

glucocorticoids are in themselves important regulators, as there is extensive physiological 

feedback regulation of the production of this hormone. Its primary functions are to increase 

blood sugar through gluconeogenesis; suppress the immune system; and aid in fat, protein 

and carbohydrate metabolism (Tao Le et al, 2009). 

Cortisol is considered a “universal” stress indicator because of its concentration level 

increases radically during exposure to all kinds of stress; compared to resting levels 

(Wendelaar-Bonga, 1997). After a stressor, plasma cortisol levels require some time for 

returning to normal levels. In an aquaculture environment, fish can be exposed to continuous 

stressors like for example handling, poor water quality, organic pollution, temperature and 

pH fluctuations and a range of other environmental perturbations. If exposure to such 

stressors is prolonged, the physiological stress response might become chronic and cortisol 

levels might remain high over longer periods (Barton and Iwama, 1991; Brown, 1993; and 

Donaldson, 1981). Pickering and Pottinger (1985) reported on blood plasma cortisol levels 

for stressed and unstressed fish of 10-100 ng/ml and < 5ng/ml, respectively. Long-term 

exposure to high levels of cortisol damages cells in the hippocampus in mammals (McAuley, 

2009) and this damage results in impaired learning. Furthermore, it has been shown that 

cortisol inhibits memory retrieval of already stored information (de Quervain et al, 1998; de 

Quervain et al, 2000). However, recent studies showed that a low level in short-term 

exposure to low levels of cortisol was associated with increased brain cell proliferation 

(Sorensen et al, 2011; Von Krongh et al, 2010; Peterson et al, 2007). 

Peptide hormones controlling cortisol secretion, CRH released by the hypothalamus and 

ACTH released by the pituitary, are also regulated by other signalling molecules, including 
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the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). In both teleost fishes and 

mammals there is a well-documented link between brain 5-HT neurotransmission and the 

regulation of the magnitude of the stress response at the levels of the HPI axis (as well as the 

sympathetic nervous system) (Chaouloff, 1993, Winberg and Nilsson, 1993). Serotonin is 

involved in the control of behavioural stress responses as well as regulation of 

neuroendocrine and autonomic functions (Winberg and Nilsson, 1993; Lepage et al., 2003). 

Stress induces increased 5-HT, which is generally associated with behavioural inhibition, 

recognized by for example reduced aggressive behaviour (Winberg and Nilsson, 1993), 

locomotor activity (Øverli et al., 1998), and feeding (De Pedro et al., 1998; Øverli et al., 

1998).  

In addition to its direct functions as a neurotransmitter, 5-HT has been shown to stimulate 

structural processes in the brain such as adult neurogenesis. This is the generation of new 

neurons in the adult brain from neural stem and progenitor cells (Jacobs, 2002). In mammals, 

adult neurogenesis is restricted to two brain regions; the olfactory bulb and the hippocampus 

(Duman et all, 2001). The functional significance of adult neurogenesis has for a long time 

remained unclear. However recently it was shown that adult-born hippocampal neurons are 

essential for normal expression of the endocrine and behavioural components of the stress 

response in mice (Snyder et al., 2011). 

It has also been shown that the immediate effect of 5-HT is inhibitory on hippocampal 

neuronal activity. This will reduce negative feedback inhibition on the hypothalamus and thus 

indirectly stimulate ACTH and cortisol release (Dinan, 1996). Moreover, Mattson (2004) 

identified brain-derived neurotropic factor (BDNF) and 5 HT as signals regulating neural 

plasticity in multiple brain regions. The consequences of this are that long-term effect of 

chronic 5-HT activation has a trophic effect on the hippocampus, stimulating a number of 

developmental processes including neuronal cell division, migration, neurite outgrowth, and 
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synapse formation. (Patel and Zhou, 2005) The outcome of this stimulation may be enhanced 

hippocampal inhibitory signalling to the hypothalamic CRF neurones. In other words, the net 

effect of enhanced 5-HT stimulation on the magnitude of the cortisol response to stress is 

likely time-dependent, with short bursts of 5-HT activity being stimulatory and long-term 5-

HT exposure acting inhibitory. The latter possibility has not been well researched, and non-

invasive manipulation of overall brain 5-HT activity through dietary levels of the 5-HT 

amino acid precursor tryptophan (TRP) provides a tenable research tool. 

Fish and mammals synthesize 5-HT from the essential amino acid tryptophan (TRP) 

(Fernstrom, 1983; Fernstrom ad Wurtman, 1997; Winberg et al., 2003). The conversion of 

TRP to 5-HT is catalysed by the enzyme tryptophan hydroxylase. This enzyme’s saturation is 

linked to the brain TRP concentration and is in fact the rate-limiting step in the synthesis of 

5-HT (Gessa et al. 1975).  In mammals, the concentration of TRP in the brain and thus brain 

5-HT levels in turn depend of the concentration of free TRP in blood plasma, and the 

transport mechanism though the blood-brain barrier for which TRP is competing with other 

large neutral amino acids (LNAAs: tyrosine, phenylalanine, leucine, isoleucine valine and 

methionine) and TRP. (Biggio et al., 1974; Gessa et al., 1975; Fernstrom, 1983;  Fernstrom & 

Wurtman, 1997) This competition between TRP and LNAA for uptake into the brain is 

probably less significant in  fish than in mammals (Aldegunde, 2000). Rozas et al. (1990) 

obtained results in rainbow trout which suggest that total plasma TRP directly determines 

brain levels, since TRP is largely found in the free state. In both fish and mammals, feed 

manipulations affect both plasma TRP/LNAA ratios and the brain 5-HT system. Feed 

manipulations have been used in studies about behaviour, mood and cognition in humans 

(Markus et al. 1999, 2000) and physiological responses to stress both in fish (Wimberg et al. 

2001; Lepage et al 2002, 2003; Höglund et al, 2005) and in other vertebrates such as a rats 
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(Tanke et al., 2007); cows (Bruschetta et al., 2010) and pigs (Meunier-Salaun et al., 1991; 

Henry et al., 1996). 

 Winberg et al. (2001) demonstrated that dietary supplementation of TRP enhanced plasma 

and brain TRP levels in rainbow trout, with enhanced 5-HT neurotransmission and inhibition 

of aggressive behaviour as a result. TRP has also been given to humans and animals, in 

disorders involving low levels of serotonin. Such disorders include for instance depression 

(Sandyk, 1992), aggression (Shea et al., 1990; Hierden et al 2004) and obsessive-compulsive 

disorders (McDougle et al., 1999; Weld et al., 1998; Young and Leyton, 2002). After 

consumption of TRP-enriched diets, the subjects show elevated rates of 5-HT synthesis and 

metabolism (Johnston et al., 1990; Aldegunde et al., 1998, 2000; Winberg et al., 2001). 

Although TRP appears to reduce aggression in fish. TRP-supplemented feed has not yet been 

utilised extensively by the aquaculture industry. Rather, the industry relies on alternative 

strategies to limit aggression like for example manipulation of rearing densities and feed 

distribution. Effective strategies to limit stress, apart from selection of stress resistant 

genotypes (Øverli et al., 2005) have however not been developed. Lepage and colleagues 

(2002, 2003) carried out two experiments in which the relationship between dietary intake of 

TRP and post stress plasma cortisol levels were investigated in rainbow trout.  In both 

studies, these authors isolated fish in individual compartments and acclimated them for one 

week. During their first experiment fish were fed for 7 days with different amounts of 

supplemented TRP feed. After the initial seven days fish were stressed by lowering the water 

level in the aquaria for two hours, and blood and brains samples were taken for cortisol and 

brain monoamines analysis. The results showed fish fed TRP had significantly lower plasma 

cortisol. However in 2003, the experimental period was 3, 7 and 28 days and the same 

stressor was applied. At this time the results displayed significant elevation of plasma cortisol 

in fish fed with commercial diet and in fish fed with TRP diet during 3 and 8 days. Fish fed 
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with TRP diet during 7 days did not show any significant elevation of plasma cortisol after 

stressor. These results illustrate how the effect of TRP treatment on HPI-axis regulation is 

strongly dependent on time and context. Long term TRP treatment would however be very 

costly, and it is an open question whether continuous supplementation is necessary or 

whether the effect prevails after treatment has been terminated.  

In the current study, in view of 5-HT’s effects on brain structural plasticity referred to above, 

we propose that TRP enrichment fish still produce higher amount of 5-HT and lower cortisol 

levels after 16 and 29 days start the treatment in large juvenile groups of Atlantic salmon. 
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2. Material and methods 

 

2.1 Experimental facilities and fish 
 

The experiment was conducted at the Danish Technological University Aqua (DTU) research 

facility located in Hirtshals, Denmark, from the 31
st
 of August to the 19

th
 of December 2010.  

One thousand two hundred Atlantic salmon were obtained from Fister Smolt AS/ Marine 

Harvest and transported to the experimental aquaculture facility. Fish were equally 

distributed in 12 circular tanks (Diameter 95cm and 119 cm height) (Fig 1), containing an 

approximate volume of 650 L. Biomass per tank corresponded to 14.13 kg on average). Fish 

were then left to acclimate for a period of 43 days. Salinity conditions started at ~ 15 ppt 

seawater, which was maintained for a period of two weeks. Followed by an increase to ~ 35 

ppt, which was maintained for the rest of the experiment.  

Tanks were supplied with a flow of aerated freshwater and seawater to obtain desired 

salinities. The freshwater was pumped from a re-circulating bio-filter system and seawater 

was supplied by a pipe connected to the Nordsøen Oceanarium. The total volume of the 

system (tanks, bio-filter, piping etc) was approximately 13.5 m
3
. Water was replaced in the 

system at a constant rate of ~4 L min
-1

. Following periods of oxygen uptake measurements 

(10 min every hour, see below), an additional volume of new water (~1 m
3
) was replaced. 

Water quality parameters were monitored daily and did not exceed safe levels throughout the 

course of the study, NO3
-
 < 100 mgL

-1
, NO2

-
 = 0-1mgL

-1
, total ammonia NH3/NH4

+
 = 0-1 

mgL
-1

, average water pH was 7.53±0.18. The high water flow through the tanks resulted in a 

theoretical hydraulic retention time of less than 10 min, which further eliminated any 

difference in water quality between tanks.  
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Figure 1: Holding tanks at DTU aqua, each used to 

house n=200 one year old Atlantic salmon smolts. A 

total of 12 tanks were used for the purpose of this 

experiment. 

The tank system, modified from the system described by McKenzie et al. (2007), consisted of 

each tank containing an internal standpipe with a diameter of 30 cm creating a circular canal 

(width 35 cm) within the tank in which water could circulate. The water current drove 

uneaten feed and faeces into a central drain, situated below the pillar. The drain from each of 

the 12 tanks was fitted with a whirl separator for collecting uneaten pellets prior to returning 

water to the central biofilter. A three-way valve was also placed in the system in order to 
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maintain internal recirculation of the tank water. Water was delivered back to each tank from 

a central reservoir, through a vertical injection pipe (Ø 20mm, 70cm length) fixed to the wall 

of each tank. As the water was pumped through a series of small holes (~4 mm diameter) 

along the length of the pipe, a high velocity was obtained, generating water current. The 

velocity of the current was controlled by a valve situated at the outlet and adjusted to 0.9 

body lengths s
-1

 (BL s
-1

), when measured at the centre of the canal between the internal 

standpipe and the tank wall. 

Each tank was equipped with diffuser supplying pure oxygen, and the injection of oxygen 

was controlled by a transmitter, coupled to an oxygen electrode in each tank (Oxyguard 

Standard, Oxyguard International A/S, Birkerød, Denmark) and an oxygen flow meter.  

Fish were kept under a simulated photoperiod of 14 hours light (7.30 – 21.30) and 10 hours 

dark.  The light system consisted of eight lamps situated two meters over the tanks and nine 

around the facility. Each lamp consisted of two 21w/865 fluorescent tubes, measuring 16x849 

mm. Fish were fed ad libitum a diet consisting of dry pellets from Biomar at a feeding ratio 

of 1.75% of their body mass. Automated clock belt feeders provided by Biomar were used to 

distribute the feed from 8:00 to 14:30 each day.  Temperature in the system was maintained 

between 12.3º- 13.1 ºC. Temperature control was monitored by a heater (manufactured by 

Billund Aqua at DTU), consisting of 100 meters of plastic pipe twisted around in a bulk, with 

hot water running in and laying in the sump, with flow rates controlled by a temperature-

sensitive switch. 
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2.2 Experimental design 

 

Fish were tagged in order to individually recognize them, by means of a pit-tag system (JOJO 

Automasjon, Stavanger, Norway). All fish in tanks 1, 3 and 5 were tagged (representing each 

of the experimental feed diets); whilst in the remaining tanks only 30% of the individuals 

were marked because these tanks were replicates. This was done in order to control weight 

gain, since individual X-ray pictures were obtained from all tagged fish two times during the 

experiment (see timeline in fig. 2), in order to estimate the amount of TRP ingested. All food 

contained ballotini beads (small glass balls), trackers placed in the feed in order to control 

how much feed was consumed by each individual fish by means of an X-ray picture. Marked 

fish in tanks 2, 4, 6, 7, 8, 9, 10, 11, 12, had their adipose fins clipped to facilitate visual 

recognition. During the experiment, food containing different levels of TRP was added 

during two different periods (first 7, then 8 days) separated by 22 days of standard food. X-

ray pictures were taken from PIT-tagged fish at the end of each TRP treatment, to control 

whether individual feed intake was affected by TRP. For the purpose of investigating the 

effect of TRP treatment on overall growth rates, start weights were registered from all fish 5 

days prior to the start of the initial TRP-treatment. Individual fish weights were then 

registered at the end of the 1st and 2nd treatment periods (c.f. fig.2, W2 and W3, 

respectively). Due to the short time span between W1 and W2 (12 days), in the data analysis 

SGR’s were calculated between W1 (start) and W3 (end) only. 

All tanks were initially (i.e. during the acclimation period) given a standard diet (STD) from 

Biomar, which contained normal levels of tryptophan and without glass beads. STD was also 

used during the period intervening tryptophan treatments, and as the initial of diets containing 

three different levels of TRP in the treatments periods (referred to as TRP1 below).  
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Two additional diets were prepared by adding increasing quantities of crystalline tryptophan 

(table 1). The use of crystalline amino acids was preferred, since amino acids ingested in this 

form are absorbed directly into the blood stream. All feed types were provided by Biomar; the 

TRP1 diet corresponded to a standard feed without TRP enrichment, TRP2 was a standard 

feed enriched diet, representing 2 times more TRP (2x) compared to the control diet, and 

TRP3 represented 3 times more TRP (3x) than the control diet. All diets contained an equal 

concentration of glass beads for x-ray analysis. The 12 available tanks were divided into 3 

groups, thus yielding 4 tanks for each diet.  

These diets were maintained in a freezer at a temperature of -80⁰C during the acclimation 

period. Meanwhile after feeding (during the experimental period), the diets were kept 

refrigerated at -4⁰C. 

 

Diet Tryptophan g/100g 

TRP1 0,417 

TRP2 0,855 

TRP3 1,241 

 

Table 1. Concentration of tryptophan in experimental 

feeds. Diets were produced from the same batch of 

standard feed (Biomar) but the TRP 2 and TRP 3 feeds 

were supplemented with tryptophan to a level 

corresponding to two and three times the amount of 

tryptophan found in non-supplemented standard feed 

(TRP 1).  
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2.3 Stress treatment and sampling 

 

In order to investigate whether TRP treatment had a lasting effect on the stress response, 

blood samples were obtained at two different occasions, 7 and 21 days after the termination 

of the TRP treatment. Before sampling, fish were exposed to a standardized acute stressor, 

which consisted of lowering the level of the water for a period of 60 min. Immediately after 

this, fish were taken from each tank (3 from tanks 2, 4, 6, 7, 8, 9, 10, 11, 12 and 9 fish each 

from tanks 1, 3 and 5, since in this tanks all fish were tagged allowing for individual 

recognition), in order to obtain blood. To serve as control, equal amounts of fish per tank 

were sampled right before exposure to the acute stressor.  

Fish were first anesthetized with a lethal dose of ethyl-m amino benzoate methanesulphonate 

(500mg*l
-1

) until there were no body or opercular movements observed. Immediately after 

this, blood was collected from the caudal vasculature using a syringe containing EDTA 

powder. Blood was immediately transferred to individually marked Eppendorf tubes that 

were kept at a temperature of -4 ºC. Tubes were then centrifuged on an Eppendorf Minispin 

Plus at 14.5x1000 rpm, at a temperature 4ºC for 7 min. The plasma was separated from the 

blood cells and transferred to previously marked Eppendorf tubes and stored at -80ºC for later 

analysis.  
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2.4 Cortisol analysis  

 

The Eppendorf tubes with the plasma blood were transferred to the Norwegian Veterinary 

School in Oslo to calculate the levels of the cortisol in the plasma by conducting a 

radioimmunoassay (RIA). RIA buffer containing 0.05% NaN3 (2 ratio1) was mixed with 

plasma and treated for 1h at 80
O
C. The supernatant was extracted after centrifugation and 

stored at 4
O
C for hormone assay. Samples were assayed in duplicate, and all tubes contained 

200 μl of cortisol antibody (Abcam, ab1949) and 50 μl of hydrocortisone (1, 2, 6, 7-
3
H(N)) 

(Mayer, 1990). 

2.5 Statistical methods 

 

All values are presented as mean ± standard error of mean (SEM). Levels of cortisol and 

SGR between treatment and control groups were analysed by one-way analysis of variance 

(ANOVA) with tryptophan treatment as the categorical variable and plasma cortisol 

concentrations and/or SGR as independent variables. Least significance difference post hoc 

test was used to assert between-group differences, homogeneity of variance was confirmed 

by Levene’s test, and normality was confirmed by the Kolmogorov-Smirnov method. All 

analysis was performed using Statistica software (StatSoft, Tulsa, Oklahoma). 
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3 Results 

3.1 Statistical results by samplings  

 

Cortisol concentrations in fish ranged from 0.4-1.5 ng/ml pre-stress  20-100 ng/ml post stress 

(i.e. crowding stress for 1 hour). The ANOVAs indicated that 7 days of TRP treatment had 

long-term effects on post stress plasma cortisol. This was observed at both 7 (F (2, 49) =14.83, 

p<0.001***) and 21 days (F (2, 51) =9.6, p<0.001***) after the last meal containing crystalline 

TRP. In sampling 1, TRP supplementation at 2x more than the standard feed (TRP2) led to a 

statistically significant increase in post-stress cortisol levels (post hoc probability TRP1 vs 

TRP2: p=0.003***). TRP supplementation at 3x standard, on the contrary, not only 

counteracted this effect but also led to a small, non-significant, decrease in plasma cortisol 

concentrations after stress (TRP1 vs TRP3, p=0.16, TRP2 vs TRP3, p<0.001***). Results 

from sampling 1 are graphed in figure 3.  
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Figure 3: Plasma levels of cortisol (average ± SEM) at sampling 1 in juvenile Atlantic 

salmon fed diets containing  3 different levels of the serotonin precursor, TRP. See text for 

ANOVA statistics. The letters (a and b) indicate statistically significant differences  

 

On the 2
nd

 sampling occasion, i.e 21 days after the termination of TRP treatment, plasma 

cortisol levels were no longer significantly different between TRP1 and TRP2 (PostHoc 

Turkey p=0.32). However, post stress plasma cortisol levels were now significantly reduced in 

TRP3 groups compared to both TRP1 and TRP2, (PostHoc Turkey, TRP 1 vs TRP3 p=0.02*; 

TRP2 vs TRP3 p<0.001***) (Fig. 4). 
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 Figure 4: Plasma levels of cortisol (± SEM) in juvenile salmon fed 3 different TRP 

enriched diets corresponding to: a standard amount of TRP (TRP1), 2x (TRP2) and 3x 

(TRP3) after 21 days. TRP1-TRP2: not significant (a). TRP3-TRP1 p<0.02; TRP3-

TRP2 p<0.001.  
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3.2 Feed intake and growth 

 

The results from linear regression analyses performed to investigate relationships between 

numbers of ballotini beads in x-rayed fish, the day after tryptophan (pre-treatment) and 

plasma cortisol levels, were not significant (F (2,44)= 1.0 p= 0.15). All fish ingested the same 

amount of ballotini beads and TRP. There was also no significant difference in specific 

growth rate (SGR) between treatment groups (F (2,370) = 0.8, p=0.45) 
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4 Discussion 

 

The purpose of this thesis was to investigate the possible long-term effect of TRP dietary 

supplementation on the physiological stress response, specifically, cortisol production. 

Previous studies show short term counteractive effects on stress reactivity after seven days of 

feeding with TRP enriched feed (Lepage et al., 2002; Lepage et al., 2003; Wimberg et al., 

2001; Basic et al., 2012). This was further demonstrated in a recent study, where the stress 

reducing effects of TRP seemed to be limited to one day after termination of TRP treatment 

in cod (Basic et al. 2012). This is somewhat in contrast to the long-term effects, demonstrated 

in the present study. However, the above studies have all been performed in socially isolated 

fish, and 5-HT neurotransmission is affected by social experience, which integrates the 

behavioural and endocrine response to a stressor (reviewed by Winberg and Nilsson, 1993 

(Summers and Winberg, 2006; Øverli et al., 1999). Thus, the social context potentially could 

influence the stress reducing effects of dietary TRP treatment. In the present study fish was 

group reared, and it is possible that the contrasts between the present study and the study 

performed by Basic et al. (2012) are related to differences in the social context. Moreover, the 

salmon where kept in sea water in the current study, a factor that may be involved in 

generating the contrasting results between the current study and those conducted on rainbow 

trout (Lepage et al., 2002; Lepage et al., 2003; Lepage et al., 2005a). For example, seawater-

acclimated coho salmon (Oncorhynchus kisutch), have been shown to be more responsive to 

stress compared to fish kept in sea water. This was demonstrated in terms of mortality, ion 

regulatory capacity, plasma levels of cortisol and prolactin, compared to fish kept in 

freshwater (Avella et al., 1991; Barton et al., 1985). However, it cannot be excluded that the 

long term effects of TRP presented here are specific for Atlantic salmon. 

The underlying mechanisms for the long-term effects observed in this study is likely related 

to that TRP is the main precursor for 5-HT in the brain, and that an increase in 5-HT may 
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lead to increased serotonergic signalling, which may in turn lead to a trophic effect on the 

hippocampus. Amongst these effects, there is enhanced hippocampal inhibitory signalling to 

the hypothalamic CRF neurones, and in consequence, a less pronounced activation of the 

HPA-axis (Patel and Zhou, 2005; and see overview in Introduction).The short-time inhibitory  

effect of TRP treatment on post-stress cortisol levels (Lepage et al., 2002; Lepage et al., 

2003; Wimberg et al., 2001, Basic et al. 2012) may be related to immediate post-synaptic 

effects or other forms of neural plasticity such as altered 5-HT receptor expression.. Long-

term effects of TRP on cortisol release, could, on the other hand, indicate trophic effect in 

brain parts involved in the stress response.  

The current experiment addressed post-stress cortisol production, and the results show that 

effects of TRP on cortisol are both time- and dose-dependent. Specifically, in sampling 1 

(after 7 days of continuous TRP supplementation), the lowest treatment dose (TRP2) was 

associated with significantly higher post-stress cortisol levels than what was seen in both 

untreated controls (TRP1), and in fish receiving the highest dose (TRP3).  Together with 

ample evidence from both mammalian and fish studies (Chaouloff, 1993; Winberg et 

al.,1997; Lepage et al., 2002,2003; Höglund et al., 2002; Winberg and Nilsson, 1993; Dinan, 

1996), this observation indicates a complex interaction between 5-HT signalling and 

neuroendocrine control of corticosteroid release. Other pharmacological tools which have 

been used to investigate serotonergic input on the HPI-axis have similarly yielded both dose- 

and context dependent results. For instance, 8-OH-DPAT, a selective 5-HT1A receptor 

agonist, may have either stimulatory or inhibitory effects on HPI axis activity in rainbow 

trout, depending on the dose and context. In undisturbed fish 8-OH-DPAT stimulates the 

HPI-axis (Winberg et al., 1997; Höglund et al., 2002), whereas if administrated at low doses 

to stressed fish, 8-OH-DPAT suppressed stress-induced elevation of plasma ACTH and 

cortisol (Höglund et al., 2002).  
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The more novel outcome of the current study is that TRP-supplementation leaves a lasting 

inhibitory effect on post-stress cortisol production, even after the treatment itself has been 

terminated. On the final sampling, individuals fed the TRP3 diet (which contained three times 

more TRP than the standard diet) displayed lower levels of post-stress plasma cortisol, 

compared to both the other diets.  This observation is in support of the suggestion that TRP-

enhanced serotonergic signalling leads to changes in brain structural plasticity, which are of a 

long-lasting or even permanent nature. It should be noted however that other studies in 

rainbow trout have considered an alternative mechanism for both physiological and 

behavioural effects of TRP, namely enhanced production of the 5-HT derivate melatonin 

(Lepage et al. 2005). It is however hard to envisage that enhanced melatonin production 

could still be effective 21 days after the termination of the treatment (c.f. figure 4).  

Lepage, et al. (2002) reported how different concentrations of enriched TRP diets affect post 

stress plasma cortisol levels, dependent on their dose (applied over 7 days). While fish fed 

with 4x TRP displayed lower cortisol levels compared to control groups, 8x TRP led to 

higher cortisol levels. On the other hand, Winberg et al. (2001) and Lepage et al. (2003) fed 

fish with TRP during 3 days but obtained no significant differences in plasma cortisol levels 

and/or aggressive behaviour in rainbow trout. These results suggest that feeding fish with an 

enriched TRP diet for less than 7 days does not yield a measurable effect in neither fish stress 

physiology or behaviour, another indication that some kind of modulation of brain structural 

plasticity is involved in mediating TRP’s effect. The results of the current experiment are in 

accordance with this suggestion, and, in addition I observed a long-term effect of using 

tryptophan-enriched diets to reduce cortisol levels after stress. As far as I am aware, this is 

the first time periodic (as opposed to continuous) TRP treatment has been implemented and it 

may represent an important contribution to control stress regulation in aquaculture. 
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It has been previously reported that in fish high serotonergic levels in the telencephalon 

(which contains homologous structures to the mammalian hippocampus), diminishes their 

response to chronic stress, helping the organism cope better with this situation (Winberg et al. 

2001; Lepage et al., 2002; Lepage et al 2002, 2003; Höglund et al, 2005). Additionally, there 

may be reason to believe that the direction of TRP-induced alterations to HPI-axis output 

changes with time. Since LNAA compete for transporters at the blood brain barrier, levels of  

[TRP] may be affected over time by competition with other LNAA, this may explain how 

during sampling 1, TRP (2x) lead to a significant increase in plasma cortisol, while in 

sampling 2 the effect of TRP was inhibitory (although, it should be noted that the dose used 

to obtain this effect was also higher (3X)). .  

The delayed effect of TRP on the serotonergic system may depend on a similar mechanism as 

the one reported during treatment with specific serotonin re-uptake inhibitors (SSRI’s). 

SSRI’s such as fluoxetine (Prozac) are used in order to treat humans suffering from 

depression and the effect is only evident after 3 weeks (Mongeau et al., 1997, Nutt et all., 

1999). Although the mechanism regulating this effect is not yet fully understood, it appears to 

be maintained across vertebrates (Winberg and Nilson, 1996). Other possibilities  suggest an 

effect of  a range of determinants of neural plasticity, such as synapse densities (Niitsu et al., 

1995) or the changes of the activity of 5-HT transporter proteins (Horschitz et al., 2001).  

In this experiment, there was no significant relationship between ingested ballotini beads and 

cortisol response. This supports the claim that it is the [TRP]/[LNAA] ratio and not the 

absolute ingested TRP that is important for the effects of dietary TRP. Although, its 

important to mention that some suggest that the competition between TRP and other LNAA’s 

across the blood-brain barrier is less important in rainbow trout than in mammals; since TRP 

is largely found in a free state in the total plasma pool and is available for uptake into the 

brain. (Aldegude et al. 2000, Rozas et al. 1990). As brain [TRP], [LNNA] and [5-HT] were 
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not quantified during this experiment, it would be of particular interest to analyse the effects 

of these parameters in future studies.  

 4.1 Possible Implications for Aquaculture  

 

The groups in this experiment showed no statistical differences in growth rate. This leads us 

to conclude that TRP diets did not compromise the growth rates, but have the potential to 

minimize stress. Tryptophan supplementation in the diet during seven days has an effect on 

plasma cortisol after an acute stressor at least up to 21 days after last ingested. High cortisol 

concentrations have a detrimental effect on cell proliferation and neurogenesis, which may 

lead to loss of cognitive function, memory and brain damage (Johnston et al., 1990; 

Aldegunde et al., 1998). TRP enriched diets may help reduce these effects  in aquaculture 

through the reduction of post-stress plasma cortisol levels (Wimberg et al. 2001; Lepage et 

al., 2002; Lepage et al., 2003; Höglund et al, 2005). 

This could potentially represent a solution for minimizing the stress effects caused by the 

different activities carried out in the aquaculture industry (e.g. vaccination, transfer, 

slaughtering, etc). In this way, it could be possible to reduce the occurrence of problems 

associated with stress, such as; disease, appetite inhibition, aggression, and death. Höglund et 

al. (2005, 2006) discuss how feeding fish with dietary TRP (for 7 days) attenuates stress-

induced anorexia. Furthermore, they showed that in juvenile Atlantic cod fed with enriched 

TRP diets over 7 days reduces the amount of aggressive behaviour. Applying these measures 

may aid into obtaining more homogeneous fish growth rates in aquaculture tanks. In addition, 

the long-term effects of TRP diets possess an economical advantage, since, because of its 

long term effect, it is not necessary to feed fish for extended times with increased dietary 

TRP which is more expensive than regular feed. I have in this study showed a long-lasting 

effect of TRP treatment, but the extent of the duration of such effects should clearly be 

investigated in further studies. 
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5. Conclusion 

 

The present study shows that there is a long term effect (21 days) in reduction of post stress 

plasma cortisol levels in juvenile salmon fed for 7 days an enriched TRP diet. This effect is 

believed to be mediated by the brain serotonergic system and its link to cortisol regulation. 

Decreased cortisol levels are associated with a decrease stress response in fish and this could 

aid in the avoidance of chronic stress in aquaculture systems. Since it is only necessary to 

feed fish for seven days in order to obtain effects for up to 3 weeks, this could become a 

common practice in the aquaculture industry, in order to reduce diseases, dominance 

hierarchies and heterogeneous growth rates.   
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