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Abstract 

 

The aim of this study was to investigate, through stochastic simulation, the potential 

of using genome information and more particularly, information on the identified IPN 

resistance QTL in salmon breeding program in Norway. The breeding goal of the simulation 

was composed of two traits. The first trait was measured on the selection candidates as a 

growth rate whereas the second was measured only on full-sibs of the breeding candidates. 

The IPN resistance QTL had a very strong effect and was responsible for 83% of the genetic 

variation. Thus, the potential of using GAS was also tested on a QTL with a small effect only 

responsible for 20% of the genetic variation. Different values for genetic correlation between 

these two traits have been tested, 0 and -0.36. The genetic model assumed for the second trait 

was composed of a QTL segregating together with polygenes. Thus, two schemes were 

implemented, Gene-Assisted Selection (GAS) - which takes into account QTL information - 

and Standard Phenotypic Selection (PHE). The genetic gain from GAS and PHE obtained by 

combining BLUP EBVs and optimum contribution were compared at the same rate of 

inbreeding. The results showed that GAS led to a faster fixation of the favourable allele and 

achieved more gain for the second trait in short-term than the PHE. This increased gain is due 

to the utilization of the optimum contribution procedure. However, after the fixation time, the 

genetic gain was not maintained and resulted in a long-term loss compare to PHE. In previous 

publications, it has been showed that using optimization of the weight given to the QTL in 

Optimized Gene-Assisted selection (GAO) had an effect on avoiding long-term loss. 

Therefore, it could be interesting to implement GAO in salmon breeding program for the IPN 

resistance QTL. 

 

Key Words: Gene-Assisted Selection, Genetic Gain, IPN Resistance QTL, Salmon Breeding 

Program. 
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Introduction 

 

In 2009, aquaculture production represented 38% of the global production of fish, 

crustaceans and molluscs. Indeed, during the last ten years, aquaculture has strongly been 

developed worldwide and production has almost doubled from 34 million tons to 56 million 

tons (www.fao.org). This trend will continue in the future since fisheries have reached a 

maximum. Norway, Spain, Denmark, Italy and France are the main producers in Europe. 

Atlantic salmon is the main produced species in Norway, representing 88% of the total 

production. In 2007, Norwegian aquaculture production represented a value of US$ 2.9 

billion.  

 

Presently, aquaculture faces issues such as disease outbreak. Despite strict sanitary 

rules and costly biosecurity procedures (McLoughlin & Weigall, 2002), the spread of disease 

is responsible for major losses in fish farming and thus represents a high economic cost. In 

Canada, the United States, and Europe, Infectious Pancreatic Necreosis (IPN) is considered 

one of major diseases within salmon farming. Brun (2003) observes that an IPN outbreak is 

associated with high fish losses, of 10-20% on average, reaching up to 100%. Fish which 

survive the infection become life-long virus carriers and participate both in horizontal 

transmission (between fish of the same cohort) and in vertical transmission (from parent to 

offspring via sperm ovarian fluids or eggs) (Bootland et al., 1991). This disease affects both 

fry in freshwater and post-smolt, just after transfer in seawater. There are currently no 

treatments for IPN but vaccines have been available since 1995. However, these vaccines 

with IPN virus antigens do not efficiently prevent IPN outbreaks in post-smolts (Brun, 2003; 

Ramstad & Midtlyng 2008). Despite considerable effort, the disease has proved to be difficult 

to control either by vaccination or biosecurity controls. In fish as well as in vertebrates, the 

first antiviral defence is processed by the innate immune system, using interferons. These 

interferons activate the expression of many antiviral genes, which are involved in building 

individual resistance to infection (Verrier et al., 2011). Midtlyng et al., in 2002, showed that 

family resistances in mortality among Atlantic salmon fry can vary as much as 80% between 

families with the greatest and least incidence, suggesting the presence of a genetic component 

in IPN susceptibility. Moreover, Wetten et al., (2007) and Guy et al., (2006) have shown a 

moderate estimated heritability of the trait: 0.31 and 0.43 respectively. These results indicate 

that resistance to virus is at least partially based on genetic. Thus, breeding resistant 
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individuals as parents for the next generation to increase resistance to IPN is a good 

opportunity to provide effective and sustainable control of the disease. 

 

In 1971, Norway was the first country to implement breeding programs to improve 

performance and adaptation to Atlantic salmon farming. Since this period, breeding programs 

have evolved and now include traits such as growth performance, sexual maturation age, 

disease resistance and quality traits such as flesh colour and fat content (Gjøen, 1997). For 

growth rate and sexual maturation age, selection is directly applied on breeding candidates. 

However, for disease-resistant family selection, selection is based on challenge-tested fish for 

which survival rates of sib-groups are recorded. Those fish which cannot be used as breeding 

candidates because of vertical transmission risks. Thus, within-family selection cannot be 

applied and only half a genetic variance for IPN resistance is exploited. Moreover, this 

method to measure disease-resistance is not only difficult but expensive and disconcerting for 

animal welfare. 

 

On the other hand, progress in genomics has started to be included in animal breeding 

programs in recent years. Indeed, for many species, genetic markers have been located on the 

genome and organized in genetic maps. Genetic markers are DNA sequences that exist in two 

or more alleles and chose inheritance can be followed. Thus, they are used to detect loci that 

affect single-gene traits or quantitative traits (QTL). There are three different markers, as 

denoted by Dekkers (2004); 1) LE markers - loci that are in population-wide linkage 

equilibrium with the functional mutation; 2) LD markers - loci that are in population linkage 

disequilibrium with the functional mutation. These markers are also located close (1-5cM) to 

a QTL; 3) Direct markers which code directly for the functional mutation. They are difficult 

to find because it is hard to prove that the marker is responsible for a functional mutation. 

Direct and LD markers possess a great interest in selection plans. They allow selection on 

genotypes across the population because marked genotypes are associated to particular 

phenotypes. This information gives us the possibility to increase response to selection using 

marker-assisted selection (MAS) or gene-assisted selection (GAS). This is particularly 

interesting for traits that are difficult to improve due to a low heritability and complex 

phenotypic measurements. This is typically the case for disease resistance (Dekkers 2004).  

 

Houston et al. (2008) and Moen et al. (2009) present a genetic variance in IPN 

resistance in Atlantic salmon from Scottish and Norwegian origin respectively. In the 
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Norwegian study by Moen et al. (2009), a genome scan with 136 microsatellite markers was 

done on post-smolt fish that died or survived after IPN-challenge-test. The study pointed out 

two significant QTL for IPN resistance from 10 full-sib families of post-smolt. A minor QTL 

was positioned on chromosome 4 and was responsible of 0.9% of the genetic variation. A 

major QTL was located on chromosome 21 as it has been found by Houston et al. (2008) in 

the Scottish population. After linkage-based fine-mapping of this major QTL, the position of 

the QTL has been estimated to range between 23-26 cM on the chromosome. The QTL was 

responsible for 29% of the phenotypic variation and 83% of the genetic variation. Thus, this 

QTL explains most of the genetic variation for IPN resistance. Moreover, the major effect 

QTL on chromosome 21 had a strong effect also for fry resistance. Fry and post-smolt are 

two life stages taking place in different environments, in fresh and salt water, respectively. 

During the transition between these two environments, the metabolism undergoes many 

modifications. Thus, these results imply that the gene underlying IPN resistance is part of 

innate immune system and that the genetic component of this trait is mainly under control of 

one major QTL and probably one or two linked genes (Moen et al., 2009). Linkage analysis 

at the population level showed that there was significant linkage disequilibrium between 

markers in the QTL region with probable strong linkage disequilibrium between markers and 

the polymorphism underlying the QTL. A haplotype composed of four markers has proved to 

be the best predictor of alleles at the underlying polymorphism (Moen et al., 2009). Finding 

markers linked to QTL or gene(s) controlling IPN resistance in Atlantic salmon is a major 

issue. Indeed, genotypes at the linked marker(s) can be used to select the best genotypes 

among breeding candidates. In 2007, Aqua Gen started to use the major QTL found by Moen 

et al. (2009) in the breeding program. Within-family marker-assisted selection (MAS) was 

implemented to select the most IPN-resistant fish as parents for the next generation. 

However, MAS can be only carried out within family and within offspring of parents of 

known QTL genotype. In addition, the four-marker haplotype used is distributed on 10 cM 

and its stability over generation is not proven (Moen et al., 2009). More information about 

the position of the QTL is needed in order to improve MAS for IPN resistance in salmon. The 

development of genomic tools will allow map generation with higher density of markers of a 

type’s single nucleotide polymorphisms (SNP) which are a variation in a single nucleotide on 

the genome and are very frequent. A 16 000 SNPs chip has been developed at the Center of 

Integrative Genetics (CIGENE).  
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Many studies have attempted to predict the potential extra rates of genetic gain from 

marker-assisted selection in a mixed inheritance model where a QTL is segregating with 

polygenes. Simulations studies from Gibson (1994), Larzul et al. (1997) and Pong-Wong & 

Woolliams (1998) used standard truncation selection where selected parents contributed 

equally to the next generation. Moreover, equal emphasis was set up on estimated breeding 

value (EBV) for the QTL and polygenes. Pong-Wong & Woolliams (1998) found that using 

MAS on an additive QTL (explaining 5% of the phenotypic and 20% of the genetic variance) 

can improve the rate of genetic gain in a short term but this gain was not maintained in the 

long-term compared to phenotypic selection. Villanueva et al. (1999) used BLUP and 

optimum contribution (OC) to estimate the benefits of using QTL information in the 

estimation of breeding value for increasing short and long-term selection gain. Optimum 

contribution constrains inbreeding by reducing the increase of the average relationship while 

optimizing genetic gain (Meuwissen, 1997). Moreover, Dekkers & van Arendonk (1998) 

have optimized weight on the QTL to maximize response over multiple generations.  In 2004, 

Villanueva et al, combined both these methods, from Villanueva et al. (1999) and Dekkers & 

van Arendonk (1998), to increase the rate of genetic gain by optimizing the contributions of 

selected candidates and by optimizing the emphasis given to the QTL. In this study, the trait 

selected was controlled by an infinite number of additive loci with an infinitesimal effect, 

plus a single biallelic QTL with alleles B and b. They compared - using stochastic simulation 

- three different methods to estimate breeding value:  

1) Standard phenotypic selection: EBV was calculated using the phenotypic values of the 

candidates without taking into account the QTL genotype. 

2) Standard gene-assisted selection (GAS): EBV for polygene was calculated using 

information on the QTL to calculate the breeding value due to the QTL for each individual.  

3) Optimized gene-assisted selection (GAO) (Villanueava et al., 2004): EBV for the polygene 

and BV for the QTL were calculated as in GAS. However, BV due to the QTL was optimized 

and λ denoted the optimal weight given to BV according to Dekkers & van Arendonk (1998) 

and Dekkers & Chakratory (2001). 

 

For each of the three selection methods, two selection procedures were compared. The 

first one was based on linear index (standard truncation selection) and the second one on a 

quadratic index (optimum contribution ) that optimizes the numbers of parents and their 

contribution to the next generation in order to maximize genetic gain while constraining the 

rate of inbreeding (Villanueva et al., 1999). For dominant and additive QTL, results of this 
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study showed that using optimum contribution improved the rate of genetic gain and the sum 

of genetic gain over generations in comparison to standard truncation selection. But optimum 

contribution in GAS did not prevented loss of genetic gain in long-term. However, when the 

weight of the QTL was optimized as in GAO, the loss in long-term was less important than 

when GAS was applied. It has also been shown that using optimum contribution led to a 

faster increase in the frequency of the favourable allele and its accelerated fixation. After 15 

generations, the highest value for the sum of genetic gain over generations was obtained with 

GAO for a quadratic index selection strategy. For additive QTL, it was 2.5 and 2.8% higher 

than conventional phenotypic selection and GAS, respectively. This study showed that a 

significant extra genetic gain can be obtained and maintained over multiple generations using 

optimum contribution and optimization of the emphasis given to the QTL. These results have 

been obtained without increasing of inbreeding because of the optimization of the 

contribution of the selective candidates. 

 

Thus it is interesting to study - through stochastic simulation – the possible impacts of 

implementing GAS selection in Norwegian salmon breeding programs using genotypic 

information for IPN-resistance. A simulation program already exists and allows calculating 

and predicting genetic gain over multiple generations for two traits (Skaarud et al., 2012). 

One can be directly measured on breeding candidates as growth rate, and the second trait can 

be measured on dead fish as quality trait or disease resistance. For this second trait, records 

are available only on sib-group. Thus, only family breeding values will be attributed to live 

candidates and all candidates from a same full-sib family will obtain the same breeding value. 

This means all individuals from the same family will have a similar selection index. If the 

truncation selection is not restricted, this leads to the selection of individuals of the same 

family which will increase the rates of inbreeding. In aquaculture, the number of individuals 

selected from each family is limited to avoid this problem. But this static criterion is not the 

best way to restrict inbreeding. In recent years, dynamic selection tools have been developed 

to optimize the genetic contribution from breeding candidates while constraining inbreeding. 

Optimum contribution (OC) is now recommended in most livestock breeding programs. In 

aquaculture, simulation studies looked at the benefits of using OC (Sonesson, 2005). 

However, some difficulties have been reported when applying optimum contribution to fish 

breeding programs because the number of families and the size of full-sib group are preset 

due to facilities limitations and tagging costs. Thus, Skaarud et al. (2010) have tested four 

different ways of applying optimum contribution. Among them, OC individual (OCI) seems 
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to be the most efficient application of OC in fish breeding program. It yielded 6% more 

genetic gain than others OC methods when h²=0.25 and 200 families which is a typical 

scheme in fish breeding program. Therefore, OCI has been used in the simulation program to 

optimize the contribution of selected individuals to the next generation.  

 

The aim of our study is to evaluate, through stochastic simulation, the potential extra 

genetic gain obtained from gene-assisted selection (GAS) for IPN resistance in Norwegian 

salmon breeding programs by using BLUP estimated breeding values and optimum 

contribution of selected individuals. The selection program will simulate a first quantitative 

trait with underlying polygenic variation as growth rate and a second trait where a single 

quantitative trait is segregating with polygenes as IPN resistance. EBVs for the first trait will 

be estimated using BLUP procedure and two different methods will be used to calculate 

EBVs for IPN resistance:  

1) Conventional BLUP selection, where the total EBV was calculated without correction for 

QTL genotype.  

2) Standard gene-assisted selection (GAS), where information on the QTL is used to estimate 

the breeding value of individuals.  
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1. Material and methods 

 

Our simulation study is based on the program developed and used by Skaarud et al. 

(2012) for “Optimizing resources and management of variation in fish breeding schemes with 

multiple traits”. The aim of this paper was to investigate, using stochastic simulation, the 

effect on the genetic gain of increasing the number of families in a breeding program with 

selection on two traits. The first trait was measured on all breeding candidates while the 

second only on full-sibs. In this study, two methods of implementing optimum contribution 

have been tested: one based on optimizing the contribution from families and the other one 

from individuals.  

 

1.1 Generating simulated populations 

 

Stochastic simulation is used to generate populations with discrete generations. Each 

generation is composed of nfam families obtained by random mating. Each family had no of 

candidates for selection (with equal number of males and females) and ninf informative full-

sib. These informative animals are the fish on which the second trait is measured. Indeed, to 

measure and to provide information for this trait, the informative fish need to be killed and 

thus cannot be selected themselves. The selection was then applied for two traits, growth rate 

(trait 1) and IPN resistance (trait 2). A polygenic infinitesimal model was assumed ie the trait 

1 was assumed to be determined by an infinite number of unlinked loci, each with an 

infinitesimal effect (polygenes). It was measured on breeding candidates and on both sexes. 

The trait 2 was also composed of polygenes plus a biallelic (B and b) QTL. Therefore, the 

genetic value of an individual is composed of the genotypic value due to the QTL and the 

polygenic effect. This polygenic effect was measured on full sibs. Furthermore, according to 

Skaarud et al. (2012), genetic value for trait 1 and the polygenic effect of trait 2, Gi, of 

unrelated base population animals (generation 0) were sampled from the 

distribution
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standard normal distribution. σA1 and σA2 are respectively genetic standard variation for trait 

1 and trait 2 and ρ is the genetic correlation between the two traits. Moreover, a genetic value 

due to the QTL was adding to the genetic value of trait 2. This value corresponded to a for 

individuals with genotype BB, d for individuals with genotype Bb or bB and –a for 

individuals with genotype bb. In the base population, the additive genetic variance explained 

by the QTL was σ²q= 2p(1-p)α² where p is the frequency of the favourable allele and α is the 

average effect of gene substitution equal to a+( 1-2p)d.  Alleles at the QTL were chosen at 

random according to the probabilities given by the frequency of the favourable allele. 1, 2, 3 

and 4 were the values attributing to genotype bb, Bb, bB and BB respectively where the first 

letter indicated the allele received from the sire. It was assumed that the QTL and polygenes 

were in linkage phase equilibrium.  

When we combined the parental genotypes to construct genotypes for the offspring, we first 

corrected the genotypes of the parents for the effect of their QTL alleles. Only the polygenic 

parts of the genotypes for the parents were added together including a random factor 

accounting for mendelian sampling as follows: 

 

 

 

 

Gs, Gd and Fs, Fd are genotypes and inbreeding coefficients of the sire and dam, respectively. 

The environmental covariance between the traits was assumed to be equal to zero because 

they are measured on different individuals. Phenotypic values (Pi) were obtained by adding to 

the total genetic value, a normally distributed environmental component with mean zero and 

variance σe². 
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1.2 Estimation of Breeding Values 

 

BLUP procedure was used to estimate breeding value (EBVs) both for trait 1 and the 

polygenic effect of trait 2. The candidate EBVs varied among individuals for the first trait, 

because it was based on observations on both the breeding candidates and the informative 

ones. On the contrary, for the polygenic breeding value of trait 2, only family breeding values 

were available on the live candidates since all candidates from a given full-sib family 

received the same breeding values from informants. An index has been constructed where 

equal weight was put on each trait. For the PHE the index is calculated as 

I=1/2(EBV1+EBV2), and for GAS I=1/2(EBV1) + 1/2(EBV2+BV) where EBV1 and EBV2 

are estimated breeding value for trait 1 and 2 respectively. This index was used in Optimum 

Contribution (OC) procedure developed by Meuwissen (1997) to maximize the genetic gain 

while constraining increase in inbreeding, ΔF, to a pre-defined level. Moreover, candidates 

were genotyped for the QTL and two different schemes were compared to the QTL estimate 

breeding value: Conventional Phenotypic Selection with no information on the QTL (PHE) 

and standard Gene-Assisted Selection with utilization of QTL information (GAS) (Villanueva 

et al., 2004). 

 

Conventional Phenotypic Selection - PHE: 

In this scheme, information on the QTL was ignored when BLUP selection was used to 

calculate EBV. The total initial genetic additive variance (σ²q+σ²u) and phenotypic values 

uncorrected for the QTL effect were used to obtain the total EBV. 

 

Standard Gene-Assisted Selection - GAS: 

In this scheme, information on the QTL was used. The total estimated breeding value is 

composed of the estimated polygenic breeding value (EBV) plus the breeding value linked to 

the QTL (BV). The EBV was obtained from the standard BLUP using the polygenic variance 

(σ²u) and the phenotypic values corrected for the QTL effect (Pi-a). The breeding value (BV) 

for the QTL was 2(1-p)α for genotype BB, (1-2p)α for Bb and -pα for bb. p corresponds to 

the frequency of the favourable allele and was updated every generation. EBV and BV were 

equally weighted to calculate the total estimated breeding value for trait 2. 
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1.3 Selection and Mating 

 

For the two different schemes, the selection strategy used was based on optimum 

contribution of individual (OCI). Optimum Contribution (OC) procedure developed by 

Meuwissen (1997) maximizes the genetic gain while constraining ΔF to a pre-defined level: 

1% per generation. The genetic level at generation t+1 can be defined by Gt+1=ct’EBVt, where 

ct is a vector of genetic contributions, and EBVt is a vector of estimated breeding values for 

the selection candidates in generation t. In our study, optimum contribution individuals have 

been implemented according to Skaarud et al. (2012), who compared this method with OC 

Amer (OCA). They found that in fish breeding programs when the number of families 

increase, OCI always increased the genetic gain while OCA reaches a maximum around 200 

families. In OCI, the estimation of contribution is based on the individual’s breeding value of 

best males and females from each family. To accelerate the simulation, only nsel (number of 

selected individual) best males and nsel best females within each family received an 

estimated contribution coefficient, cm and cf. Therefore, these selection candidates can 

contribute as sires or dams to a number of families proportional to their own individual 

contribution coefficient. Individuals with high contribution coefficient will be used to create 

several families while individuals with low contribution coefficient will not contribute to any 

families. Note that with OCI, each sire and dam may now be used in more than one mating 

depending on their individual quota. The selected sires and dams were mated at random. 

 

1.4 Parameters studied 

 

One of the first parameters to consider when setting up a breeding program is the 

number of families used as this factor will decide the size and costs of facilities needed. In 

fish breeding, family selection is used. The larger is the number of families, the higher is the 

pressure of selection. This results in a larger genetic gain (Woolliams et al., 1999). Skaarud et 

al. (2012) demonstrated that an adequate size for fish breeding programs is between 200 and 

300 families when using optimum contribution individuals. Thus, the number of families was 

set up at 250 with the number of offspring no = 50 in each family, and number of informative 

fish ninf =15. The first trait of this study has a heritability set up at 0.3. The second trait was 

controlled by a polygene and a QTL where the initial allelic frequency of the favourable 

allele was 0.15. Moreover, when implementing marker-assisted selection, it is also crucial to 

know the part of the genetic variation explained by the QTL. Two different values for QTL 
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effect are then tested. The first objective is to simulate a breeding program based on two 

traits: growth rate and IPN resistance. Thus, the genetic variation explain by the QTL is set 

up at 83% for genetic variance and 29% for phenotypic variation (σ²q). These are values 

found by Moen et al. (2009) for the QTL for IPN resistance in Atlantic salmon of Norwegian 

origin. The environmental and polygenic variance was set up to σ²e = 0.65 and σ²u = 0.06 

respectively. Thus, the heritability for this trait in these conditions is 0.35. The average effect 

of gene substitution α is then equal to 1.07 under the condition of an additive QTL a = 1.07 

and d = 0. The effect of this QTL is very large compared to other effects QTL has found in 

past years. A second value for the QTL effect is then set up at 20% of the genetic variation 

and 5% for phenotypic variation (σ²q). The environmental and polygenic variance was set up 

to σ²e = 0.75 and σ²u = 0.2 respectively. Thus, the heritability for this trait in these conditions 

is 0.25. The average effect of gene substitution α is equal to 0.443 under the case of the 

additive QTL a = 0.443 (Pong-Wong & Woolliams, 1998). Moreover, a lack of information 

about genetic correlation between IPN resistance and other commercial traits have been 

reported in literature. However, Drangsholt et al., (2011) found a negative correlation 

between the growth rate and the resistance to the viral disease furonculosis in vaccinated fish 

whereas no correlation was observed in unvaccinated fish. These results supposed that 

resistant fish used more energy in immune system than in growth. Thus, both a negative,       

ρ = -0.36, and a null ρ = 0 genetic correlation between the two traits were investigated for 

both values of QTL effect considered. 

 

In summary, two breeding value estimation schemes, PHE and GAS, were run for two 

different QTL effects (83% and 20%) and two genetic correlations between traits (0 and -

0.36) for a total of 12 different schemes tested (Table 1).  



European Master in Animal Breeding and Genetics 

16 

 

 

Table 1. Different schemes and conditions tested in this study and the abbreviations used. PHE is the 

standard phenotypic selection and GAS is the gene-assisted selection. L refers to the large QTL effect 

(83% of the genetic variation) and S refers to a small QTL effect (20% of the genetic variation). 0 and -

0.36 refer to the genetic correlation between trait 1 and 2.  

   

  

Schemes 

QTL effect 

Genetic correlation 

between trait1 and 2 PHE GAS 

83% (large) 
0 PHE-L0 GAS-L0 

-0,36 PHE-L-0,36 GAS-L-0.36 

20% (small) 
0 PHE-S0 GAS-S0 

-0,36 PHE-S-0,36 GAS-S-0,36 

 

 

Each round of simulation was done for 15 generations, i.e. 14 generations of selection 

repeated 50 times. The first generation was obtained by random mating of individuals of base 

population without selection. The average genetic gain and the change in frequency of the 

favourable allele were used to compare the two different schemes. It is also interesting to 

evaluate the changes in allele frequencies over time and quantify how fast the favourable 

allele can be led to fixation in gene-assisted selection compared to conventional BLUP 

selection in a salmon breeding program. Moreover, Pong-Wong & Woolliams (1998) showed 

that standard gene-assisted selection led to a long-term loss of genetic gain. Thus we compare 

in each scheme; 1) the number of generations needed to fix the favourable allele in the 

population and; 2) the genetic gain over generations.  
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2. Results 

 

2.1 Rate of inbreeding 

 

First, the optimum contribution procedure succeeded in restricting the rate of inbreeding 

to 1% per generation in both the PHE and the GAS scheme, for different values of the QTL 

effect and for different genetic correlations between traits 1 and 2 (Table 2).  

 

Table 2 Average and standard deviation of the rate of inbreeding per generation for different schemes 

and parameters tested. 

 ΔF s.d. 

PHE-L0 0,0098 0,0001 

GAS-L0 0,01 0,0001 

PHE-L-0,36 0,0099 0,0001 

GAS-L-0,36 0,01 0,0001 

PHE-S0 0,0099 0,0001 

GAS-S0 0,0099 0,0001 

PHE-S-0,36 0,01 0,0001 

GAS-S-0,36 0,0101 0,0001 

 

2.2 Evolution of the frequency of the favourable allele 

 

Figures 1 and 2 show the changes in the frequency of the favourable allele for the 

schemes with a QTL effect of 83 and 20%, respectively. As might be expected, using 

genotype information in the GAS scheme led to a faster fixation of the favourable allele 

compare to the PHE. This result was observed for both a large and a small QTL effect and 

regardless of the genetic correlation. Indeed, after five generations, the allele is fixed in the 

GAS scheme while, in the PHE, a minimum of thirteen generations (obtained for PHE-L0) is 

needed to fix the allele. However, in the case PHE-L0, the frequency reached 0.98 after eight 

generations, whereas it took four generations more to fix the allele completely. Moreover, the 

fixation of the QTL was not reached at all within 14 generations of selection in the case of a 

small QTL effect with the PHE.  It can be noted that in the GAS scheme, the development of 

the frequency is very similar for both genetic correlations tested 0 and -0.36, whereas there 

was a slight difference in the progress of the frequency with the PHE scheme when the 

genetic correlation was 0 compared to -0.36. 
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Figure 1 The development of the frequency of the favourable allele during the 14 generations of selection 

for the PHE and the GAS selection on a large effect QTL (83%) for ρ = 0 and ρ = -0.36. 

 

Figure 2 The development of the frequency of the favourable allele during the 14 generations of selection 

for PHE and GAS selection on a small effect QTL (20%) for ρ = 0 and ρ = -0.36. 

 

2.3 Genetic gain for trait 1 

 

Cumulative genetic gain during the 14 generations of selection for the different 

schemes and sets of parameters are presented in Figure 3. This figure shows that genetic gain 

for trait 1 is always higher when the GAS scheme is used, compared to the PHE scheme. For 

a large QTL effect, GAS resulted in 2.1% and 4.1% greater than the PHE for genetic 

correlations of 0 and -0.36, respectively. For a small QTL effect, GAS resulted in 0.9% and 
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1% greater genetic gain than with the PHE. In this second instance, we can see that the 

highest genetic gain is obtained for a large effect QTL with no genetic correlation between 

traits.  

 

 

Figure 3 Cumulative genetic gain for trait 1 during the 14 generations of selection for trait 1 for PHE and 

GAS selection on large and small effect QTL for ρ = 0 and ρ = -0.36. 

 

2.4 Genetic gain for trait 2 

 

When investigating the cumulative genetic gain for trait 2, we first needed to adjust 

the results to start at the same level for both sizes of the QTL effect. Thus, the values of 

genetic gain are corrected by the expected QTL effect equal to p²×a + 2p(1-p) × d – (1-p)² ×a 

or p² × a - (1-p)² × a (since d = 0) where p is the initial frequency of the favourable allele and 

a the additive effect. This value is equal to -0.742 and -0.3101 for a large and a small QTL 

effect, respectively.  Figure 4 shows the evolution of the cumulative genetic gain during the 

14 generations of selection for different schemes under a set of parameters. For the 4 sets of 

parameters tested, we can see that the genetic gain quickly increased until the frequency of 

the favourable allele approached 1 (Figure 4) in the PHE and GAS scheme for a large QTL 

effect. After that, for ρ = 0, the genetic gain per generation started to be lower, but still 

positive (Table 3). This resulted in a slight increase of the cumulative genetic gain. However, 

in the case of ρ = -0.36, when the allele frequency approaches 1, the genetic gain became 
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negative (Table 3) and the cumulative genetic gain started decreasing (Figure 4). Moreover, 

after fixation, the cumulative genetic gain in the PHE scheme is greater than in the GAS 

scheme (Figure 4). Therefore, there is a long-term loss of genetic gain with GAS. When 

looking at the results for the small QTL effect, we can also observe a peak in the cumulative 

genetic gain with GAS when the allele is fixed, while the cumulate genetic gain was more 

constant for the PHE scheme, for which the favourable allele is not fixed. It is also important 

to note that the cumulative genetic gain for trait 2 is greater when the QTL underlying this 

trait has a small effect than when the QTL has a large effect (Figure 4). 

 

 

Figure 4 Cumulative genetic gain for trait 2 during the 15 generations of selection for trait 2 for PHE and 

GAS selection on large and small effect QTL for ρ = 0 and ρ = -0.36. 

 

 



European Master in Animal Breeding and Genetics 

21 

 

 

Table 3 Genetic gain per generation for trait 2 for PHE and GAS selection on large and small effect QTL 

for ρ = 0 and ρ = -0.36. 

 

2.5 Average genetic gain per generation for trait 1 and 2 

 

The results summarized in Figure 5 represent the average genetic gain per generation 

for the two schemes and for all parameters tested. Notable is the negative impact of a 

negative genetic correlation on the genetic gain in trait 2. For a large QTL in the GAS 

scheme, the negative genetic correlation led to 29% lower genetic gain than the scheme with 

no genetic correlation. Moreover, the average genetic gain per generation for trait 2 is close 

to zero for the PHE while this average is negative in the GAS schemes when the QTL effect 

is small and the genetic correlation is negative.  

 

 

 

Generation 

 

PHE-L0 

 

GAS-L0 

 

PHE-L-0,36 

 

GAS-L-0,36 

 

PHE-S0 

 

GAS-S0 

 

PHE-S-0,36 

 

GAS-S-0,36 

1 0 0 0 0 0 0 0 0 

2 0,6654 1,6875 0,5597 1,6235 0,3702 0,6954 0,1377 0,4751 

3 0,4056 0,2018 0,3579 0,0403 0,1706 0,3581 0,0023 0,1746 

4 0,4149 0,0194 0,3624 -0,0866 0,1775 0,1716 0,0076 -0,0185 

5 0,2921 0,043 0,1512 -0,0839 0,1948 0,1471 0,0346 -0,0377 

6 0,1712 0,0277 0,0339 -0,0833 0,1961 0,1369 0,0356 -0,0595 

7 0,0954 0,0246 -0,0251 -0,092 0,1827 0,1151 0,0176 -0,065 

8 0,0474 0,0344 -0,0677 -0,0826 0,1889 0,1174 0,0144 -0,0503 

9 0,039 0,0286 -0,0708 -0,0799 0,1954 0,1211 0,0016 -0,0633 

10 0,0465 0,0144 -0,0809 -0,0889 0,1701 0,1215 -0,0306 -0,0714 

11 0,0265 0,0271 -0,0786 -0,0855 0,1742 0,1398 -0,0136 -0,0565 

12 0,0285 0,0358 -0,0789 -0,0826 0,1604 0,1393 -0,0252 -0,0486 

13 0,0249 0,0219 -0,0801 -0,0828 0,1457 0,1073 -0,0387 -0,0597 

14 0,0205 0,0146 -0,0831 -0,0902 0,1262 0,1144 -0,0436 -0,0687 

15 0,015 0,0194 -0,0809 -0,0775 0,1378 0,1105 -0,0398 -0,0755 
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Figure 5 Average genetic gain for trait 1 and trait 2 for PHE and GAS selection scheme, with small and 

large QTL effect and for ρ = 0 and ρ = -0.36. 
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3. Discussion  

 

Today, the development of molecular genomics provides more and more information 

about QTLs and genes with larger or smaller effects on economical important traits. Previous 

papers such as Villanueva et al. (2004), have studied the potential extra genetic gain of 

introducing genome information and more particularly information on an identified QTL in a 

breeding program. Our study investigates more specifically the impact of using information 

on the IPN resistance QTL in breeding programs for Atlantic salmon for the first time. 

Moreover, this study gives the possibility to analyse the effect of the GAS on a two traits 

breeding program; a trait controlled by polygenes and measurable on breeding candidates and 

a second trait controlled by polygenes plus a QTL. Both the GAS and the PHE has been 

implemented with the use of BLUP EBVs and optimum contribution procedures. The GAS 

led to a faster fixation of the favourable allele and the OC procedure has fully succeeded in 

restricting inbreeding to a predefine rate of 1% per generation. From this point, we were able 

to compare these schemes against each other. 

 

First, the cumulate genetic gain for trait 1 is constantly increasing during the 14 

generations of selection for the PHE and the GAS scheme for small and large QTL effects 

and both genetic correlations tested. The difference observed between schemes after 14 

generations of selection is very small and the genetic variation for trait 2 is very similar and is 

slightly decreasing (Figure 6). These results can be explained by the fact that the selection 

procedure for trait 1 is the same between PHE and GAS. 
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Figure 6 Evolution of the genetic variation for trait 1 during the 15 generation of selection for PHE and 

GAS selection on small and large QTL effect for ρ = 0 and ρ = -0.36. 

 

With the PHE, selection is based on individual performance of full-sibs without any 

information on the QTL. The difference in genetic gain among these PHE schemes can be 

explained by the fact that the large QTL effect is responsible for 29% of the phenotypic 

variation while the small QTL effect is only responsible for 5%. Thus, individuals who carry 

the favourable allele for the QTL have a higher chance to be selected in the case of a large 

QTL effect, resulting in a quicker response to selection compared to a selection on a small 

QTL effect. 

 

Figure 7 Evolution of the genetic variation for trait 2 during the 15 generation of selection for PHE and 

GAS selection on small and large QTL effect for ρ = 0 and ρ = -0.36. 
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Thirdly, when comparing large and small QTL effects, the highest cumulative genetic 

gain is obtained by the PHE and the GAS schemes in the condition of a small QTL effect for 

a null genetic correlation, 2.5926 ± 0.0368 and 2.593 ± 0.0374 phenotypic standard deviation, 

respectively. In contrast, the PHE and the GAS schemes applied on a large QTL effect with 

no genetic correlation between traits have a cumulate genetic gain of 2.2862 and 2.1944.  

Thus, the genetic gain for the PHE and the GAS scheme on a small QTL effect was 

respectively, 11.8% and 15.4% higher than the PHE and the GAS scheme on a large QTL 

effect. The most likely explanation for this result is that the polygenic variance is much larger 

in small QTL effect than in large QTL effect conditions (Figure 7). Indeed, after the first few 

generations, when the QTL is not fixed, the cumulate gain is larger for selection schemes on 

large QTL effects because the polygenic variance is higher (Figure 7). But for the later 

generations, when the allele is fixed, the scheme with the small QTL effect has more 

polygenic variation to select from (Figure 7). Thus, the cumulative genetic gain of the small 

QTL effect is catching up on the genetic gain of the large QTL effect. In contrast, when the 

genetic correlation is set up to -0.36, the cumulative genetic gain is higher for selection on a 

large QTL effect than on a small QTL effect. The genetic gain becomes negative when the 

frequency of the favourable allele becomes or approaches 1 and results in decreasing the 

cumulative genetic gain. Indeed, in this condition, the positive selection for trait 1 results in a 

negative selection for trait 2.  

 

When comparing scheme with (GAS) and without (PHE) information on the QTL, we 

can differentiate three different periods (Villanueva et al., 1999). 1) When the QTL is 

segregating in both the PHE and the GAS. 2) When the favourable allele has been fixed in the 

GAS but not in the PHE. 3) When the favourable allele is fixed in both schemes.  In the first 

period, the GAS gives higher genetic gain due to higher increase in the frequency of the 

favourable allele but the genetic variation is decreasing (Figure 6). In the second period, the 

GAS reaches the highest genetic gain and the lowest genetic variation whereas the PHE is 

still giving gain due to the presence major gene and a higher genetic variation (Figure 6). In 

the last period, the genetic gain in the PHE scheme is higher than the gain obtained with the 

GAS. The cumulative genetic gain realized after 14 generations of selection becomes higher 

with the PHE and results in a long-term loss for cumulative genetic gain for the GAS scheme. 

The results of the study are consistent with those where the benefit obtained in genetic gain in 

early generations could not be maintained in long-term when using the GAS scheme (Pong-

Wong & Woolliams, 1998; Villanueva et al., 2004). In the four different conditions, the PHE 
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selection always results in a higher cumulative genetic gain after 14 generations of selection. 

Villanueva et al., (1999) also suggest that this loss was due to the reduction of selection 

intensity applied on the polygene underlying the trait 2. This reduction of selection intensity 

is due to the increased differences in the selective advantage between genetic groups. 

Therefore, using BLUP EBVs and optimum contribution was not enough to keep a positive 

genetic gain in a long-term. Moreover, the emphasis given to the QTL was fixed and then not 

optimal.  

 

Different methods in the prevention of this long term loss by optimizing the allele 

trajectory have been described. Several of these studies used a continuous time model of the 

process of fixing an allele based on discrete generation models such as Liu & Woolliams 

(2010) and others. For the latter, different approaches have been studied within a predefined 

time horizon (Dekkers & van Arendonk, 1998), constrain to a constant rate of inbreeding 

(Villanueva et al., 2002) or through maximizing progress over the long-term (Pong-Wong & 

Woolliams, 1998; Villanueva et al., 2004). Villanueva et al., (2004) implemented BLUP 

EBV, optimum contribution and optimized weight from Dekkers & van Arendonk (1998) in 

order to maximizing the genetic gain over multiple generations with quantitative trait locus 

selection and control of inbreeding. In this study, stochastic simulation has been used to 

evaluate the extra genetic gain obtained from Optimized Gene-Assisted selection (GAO) 

which implements both optimum contribution of selected candidates and optimum weight 

given to the QTL. In GAO, the selection criterion was EBV + λ BV where EBV and BV were 

obtained from a simple GAS scheme and λ corresponds to the optimized weight given to the 

breeding value of the QTL. This optimal weight was obtained by using the deterministic 

model published by Dekkers & Chakraborty (2001). The aim of their study was to find 

optimal solutions that maximize the sum of mean total genetic values by generation over the 

planning horizon of T generation: 

 

R =  

 

Where Gt is the mean total genetic value at the generation t and T is the total number of 

generations of selection. Truncation selection is applied on an index, I, composed of the QTL 

and the polygenic breeding value:  

 

Iijmt = bjmt × gmt + (ûijmt – ûmt)     (1) 
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Iijmt is the index for individual i of sex j and genotype m at generation t. gmt correspond to the 

mean total breeding value for individuals of genotype m at generation t, deviated from the 

mean total breeding value of individuals with genotype Bb (u2,t):  

 

gmt = nm [a + (1 – pst – pdt)d] + (umt – u2,t) = nm α + (umt – u2,t) 

 

nm is an indicator variable equal to 1 for genotype BB, 0 for Bb and bB and -1 for genotype 

bb. pst and pdt are the frequencies of the favorable allele B in selected sires and dams at 

generation t. αt = a + (1 – pst – pdt)d and then g1t = t + û1t – û2t ; g2t = 0 ; g3t = û3t - û2t and g4t = -

αt + û4t - û2t. Thus, in this index, the differences between different QTL genotypes are due to 

the QTL and also due to the linkage disequilibrium generated between the QTL and the 

polygenes. umt is the mean polygenic breeding value by genotype at generation t and it 

assumes that umt can be estimated as the average estimated polygenic breeding value by 

genotype, umt = ûmt. In equation 1, ûijmt is the estimated polygenic breeding value for 

individual i and ûmt is the average estimated polygenic breeding value of individuals with 

genotype m. This value is obtained from BLUP using the polygenic variance and the 

phenotypic values corrected for the QTL effect. 

 

Selection on the index I imposes truncation selection and maximizing Gt can be 

formulated as an optimal control problem. Then, optimal fractions selected, fjmt, is used as 

decision variables instead of the index weight. Dekkers and van Arendonk (1998) 

demonstrated how the truncation points xjmt , corresponding to the fraction of individuals 

selected from each genotype at generation t, can be transformed to weights for index I on the 

standard breeding value for the QTL: 

 

bjmt = σ j (xjmt – xj2t) / gmt 

 

bjmt is then the optimized weight of the QTL breeding value for individuals of sex j and 

genotype m at generation t corresponding to λ. In standard gene assisted selection, this weight 

is fixed while in optimized gene-assisted selection, bjmt is the value that must be optimized in 

order to maximize the objective function R. This weight differs by sex, genotype and 

generation. Thus, six different weights are calculated per generation. xjmt is the truncation 

point corresponding to the fraction of individuals selected, fjmt, from sex j and genotype m at 
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generation t. σ j is the standard deviation of polygenic EBV within each genotype equal to 

rj×σpol where σpol is the polygenic standard deviation and rj is the accuracy of polygenic EBV 

for sex j. Optimal fractions selected, fjmt, were derived using optimal control procedures 

(Dekkers & van Arendonk, 1998).  

 

This procedures implied truncation selection. Therefore, weights could not be derived 

directly because selection was based on optimum contribution that changed the fraction 

selected every generation. Thus, optimal weights at generation t were derived assuming 

truncation selection of the number of parents selected with optimum contribution in the GAS 

scheme at the same generation t. GAO was run in two steps, 1) first, the GAS scheme was 

run to obtain, through optimum contribution, the optimized number of males and females 

selected, 2) in a second time, this number was used as input for the optimal control procedure 

and the optimized the weights given to the QTL in the GAO scheme. 

 

In 2004, Villanueva et al., compare the genetic gain obtain from selection on an identify 

QTL with optimized gene-assisted selection (GAO), standard gene-assisted selection (GAS) 

and standard phenotypic selection (PHE). In their study, the method described by Dekkers & 

van Arendonk (1998) have been modified to include unequal selection for both sex, 

nonadditive QTL, multiple QTL and discounted response. Moreover, Villanueva et al., 

(2004) took into account the reduction of the polygenic genetic variance which was not the 

case in the model by Dekkers & van Arendonk (1998). They have shown that extra genetic 

gain can be obtained when QTL information is in use with the optimum contribution of 

selection candidates and the optimum weight given to the QTL in GAO. Moreover, GAO 

prevented the long-term loss usually observed in the GAS scheme. When the GAO scheme 

with optimum contribution was applied on additive QTL, the genetic gain was the same than 

in the PHE and produced 4% higher gain than the GAS. This study showed that most of the 

increase of gain was produced by optimization of the selection candidates’ contributions. 

However, the optimization of the weight given to the QTL had a greater effect on avoiding 

the long-term genetic loss. Therefore, the conflict usually observed between short and long-

term genetic gain have been avoided when both procedures, optimum contribution and 

optimized weight, was implemented.  
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4. Conclusion 

 

The result of our study is important because the effect of using QTL information in 

salmon breeding program is now known. It has been demonstrated that using GAS instead of 

PHE on two traits does not give higher benefits in term of genetic gain for the second trait i.e. 

IPN resistance. Utilization of the GAS led to a faster fixation of the favourable allele and a 

decrease in the genetic variation. Therefore, it is essential to optimize the weight given to the 

QTL and then to optimize the allele trajectory. The aim is to keep a high genetic variation to 

increase the response to selection. Therefore, it would be interesting to investigate the 

benefits that could bring the utilization of Optimized Gene-Assisted selection in this case. It 

has already been showed that higher benefits are realized when optimum contribution of 

selection candidates and optimum weight given to the QTL are combined (Villanueva et al., 

2004). It is very important today to investigate the benefits of using QTL information since 

genomic tools are developed. Indeed, it is expected that more information on the QTL 

affecting commercial trait will be available in the future. However, implementing GAS in 

breeding programs has to be seen from an integrative point of view and has to take into 

account business goals and market needs. Indeed, GAS requires development and integration 

of procedure for genotyping, for DNA collection and storage and for data analysis that have a 

certain cost (Dekkers, 2004).  

 

Moreover, the International Collaboration to Sequence the Atlantic Salmon Genome 

expresses the objective of sequencing the Salmon genome (Davidson et al., 2010). The aim is 

to produce a genome sequence that identifies and physically maps all of the genes in the 

Salmon genome. Once the sequence is established, a SNP-chip can be developed. This 

technology allows to have genotype individuals for a large number of markers mapped on the 

genome, upon which breeding values can be estimated from these data. This is genomic 

selection. The relationship matrix among the animals is estimated from the markers instead of 

the pedigree and the accuracy of EBVs approach 1 (Goddard, 2009). Genomic selection 

could be implemented in a close future in salmon breeding programs. 
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