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Abstract 

 

Due to their quantitative and qualitative implications on milk yield and its component traits, 

casein loci have been and would remain the subject of intense research. Our work was also 

intended to resolve haplotype structures and diversity, and to study the additive and 

dominance effects of casein SNPs and SNP haplotypes on milk production traits in the 

Norwegian goats and their French Alpine crosses (crosses). Our analysis used 376 does (216 

Norwegian goats and 160 crosses) that have phenotypic records on test day milk yield and 

genotype data. Linkage disequilibrium (LD) resolution and haplotype construction were done 

using 38 SNP markers detected in the entire casein loci block of the two goat populations. 

Our result showed that, there was extensive LD, especially for αS1- and κ-casein loci; 

however, the LD is relatively weak in the crosses. The extent of LD varies across the casein 

loci segment from nearly zero to almost complete LD. The intra-locus LD was stronger than 

the LD found for inter-loci. Due to extensive LD, the numbers of plausible haplotypes 

constructed were by far less than what were expected. The diversity of plausible haplotypes is 

high for the crosses especially for β- and κ-casein. Therefore, more tagger SNPs were 

detected for the crosses. Our results from SNP halpotypes additive and dominance fixed effect 

analysis of the entire casein loci and of the individual casein genes showed significant effect 

on studied milk production traits except lactose percentage. Therefore, this genetic variation 

observed among haplotypes can be used in the genetic improvement program of Norwegian 

goats through haplotype assisted selection. We also found significant effect of some casein 

SNPs on milk production traits, especially for αS2- and κ-casein SNPs. The SNP effect is, 

however, localized within a segment of adjacent SNPs even at locus level. SNP 14 deletion 

(D) of exon12 in αS1-casein has significant additive genetic effect on FFA and urea content 

of the milk and a significant dominance effect of AD genotype on SCC. Our analysis showed 

that the frequency of D allele for Norwegian goats has reduced to 0.66, which showed that the 

selection program is against this allele. Among studied traits, the Norwegian goats and the 

crosses significantly differ for lactose percentage only. However, the crosses were as good as 

the Norwegian goats in the rest of the traits, which indicates the importance of this 

crossbreeding program beyond creating genetic variation. Therefore, comparative study at 

pure breed level would be a plausible option to substantiate whether this difference is due to 

heterotic effect or real genetic difference between breeds.  
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Norsk sammendrag  

 

På grunn av deres kvantitative og kvalitative effekter på melkeproduksjonen og 

melkekomponenter, har kaseinloci vært og vil fortsatt være gjenstand for intens forskning. 

Vårt arbeid var også ment å studere haplotypestrukturer og –diversitet og additive og 

dominante effekter av kasein-SNPer og haplotyper på melkeproduksjonstrekk i norske geiter 

og deres franske alpinkryssinger (kryssinger). Vår analyse brukte 376 geiter (216 norske 

geiter og 160 kryssinger) som har fenotypiske registreringer på test dagen av 

melkeproduksjonen og genotypedata slik at en kunne beregne faste additive- og dominans-

effekter av SNPer og haplotyper på studerte trekk. Analyse av koplingsulikevekt (LD) og 

haplotypekonstruksjon ble gjort med 38 SNP markører i alle kaseinloci for de to 

geitepopulasjoner. Våre resultater viste at det er omfattende koplingsulikevekt, spesielt for 

αS1- og κ-kasein, men LD er relativt svak for kryssingene. Omfanget av LD varierer fra null 

til fullstendig mellom loci. Kopling innen locus var sterkere enn på tvers av loci. På grunn av 

omfattende LD var antallet plausible konstruerte haplotyper langt mindre enn forventet antall. 

Mangfoldet av plausible haplotyper er høyt for kryssingene særlig for β- og κ-kasein. Derfor 

ble mer tagger-SNPer observert i kryssingene. Våre resultater fra analyse av SNP-

haplotypenes additive- og dominans- fast effekt og av effektene av hele kaseinloci og 

individuelle kaseingener viste signifikante effekt på melkeproduksjonen og dens komponenter 

bortsett fra laktoseprosent. Derfor kan denne genetiske variasjonen blant haplotypene brukes i 

det genetiske forbedringsprogrammet for norske geiter gjennom haplotypeassistert seleksjon. 

Vi fant også signifikant effekt av noen kasein-SNPer på melkeproduksjonsegenskaper, 

spesielt for αS2- og κ-kasein. Denne SNP-effekten er imidlertid lokalisert innenfor et segment 

av tilstøtende SNPer innen ett locus. SNP 14 delesjon (D) i exon12 i αS1-kasein har betydelig 

additiv genetisk effekt på FFA og urea-innholdet i melk og det er en betydelig dominans 

effekt av AD-genotypen på SCC. Analysen av vårt materiale viste at frekvensen av D-allelet 

er redusert til 0,66, noe som viser at seleksjonsprogrammet virker mot dette allelet. Blant de 

studerte egenskaper hadde de norske geitene og kryssingene betydelige forskjeller bare for 

laktoseprosent. Men kryssingene er like gode som de norske geitene for resten av 

egenskapene, - noe som viser betydningen av dette kryssingsprogrammet utover det å skape 

genetisk variasjon. Derfor ville sammenlignende studier på renrasenivå være et alternativ for å 

dokumentere hvorvidt denne forskjellen skyldes heteroseeffekt eller skyldes reelle genetiske 

forskjeller mellon rasane. 
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1. Introduction 

 

Goat milk is increasingly a valuable source of protein in many African, Asian and European 

countries (Hayes et al 2006). As a result; the world goat population has increased by 66%, 

and parallelly goat milk and cheese production have increased from 1.7 to 2.5 million tons 

and 132 to 180 thousand tons from 1985 to 2005, respectively (Dubeuf and Boyazoglu 2009). 

Europe is a home for 4% (26, 092, 000) of the world’s 710 million goat population (Scherf 

2000) and produces 18% of the total world goat milk (Dubeuf 2005). Dairy goat farming is an 

ancient practice in Norway (Dubeuf et al. 2004) and accounts for 99% of goats’ use and 1% 

of the country’s milk production (Sæther 2002).  

 

Milk is probably the best known food with respect to its biosynthesis and composition, and 

the chemical structure of its individual components (Martin and Grosclaude 1993). Milk 

proteins are classified into two major groups caseins (αS1- , αS2-, β- , and κ-CN) and whey 

proteins (Trujillo et al 2000). Caseins are the major milk proteins and in ruminants, the four 

caseins represent about 80% of the milk proteins (Ramunno et al 2004; Sulimova et al 2007; 

Sztankóová et al  2009) and they account for 95% of the milk protein together with whey 

proteins (Martin and Grosclaude 1993; Martin et al 2002). The four caseins: CSN1S1, CSN2, 

CSN1S2, and CSN3, respectively coding for proteins αS1-CN, β-CN, αS2-CN, and κ-CN and 

are encoded by 4 closely linked genes (Threadgill and Womack 1990; Martin and Grosclaude 

1993; Martin et al 2002; Caroli et al 2006; Caroli et al 2007; Gigli et al 2008).  

 

These evolutionarily related casein genes; the so-called “Calcium-sensitive” (Ca-sensitive) 

caseins α-s1 (CSN1S1 or Csna), β- (CSN2 or Csnb), and α-s2 (CSN2S2, A and B, or Csng and 

Csnd)) and the physically and functionally linked κ-casein (CSN3 or Cnsk) gene (Rijnkels 

2002) in that order, located within 250kb genomic DNA region of caprine chromosome 6 

(Martin and Grosclaude 1993; Martin et al 2002; Marletta et al 2007; Vacca et al 2009). 

Figure 1 showed the graphical representation of the casein genes cluster. As a result casein 

genes are usually inherited from parents to progeny as haplotype (Caroli et al 2007).  
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Figure 1. Genomic organization of the bovine/goat casein loci.  

(Source: Martin et al 2002) 

 

The analysis of caseins in goat species is quite complex due to large number of mutations 

involving the four coding genes (Caroli et al 2006; Caroli et al 2007). Therefore, extensive 

genetic polymorphisms in caprine casein have been the focus of research due to their effects 

on milk production taits, milk quality and milk composition, dairy performance, and 

technological properties of milk (Lundén et al 1997; Martin et al 1999; Marletta et al 2007; 

Gigli et al 2008; Kevorkian et al 2009). Many of the processing properties of milk are also a 

function of its structure and relative concentrations of its protein components (Martin and 

Grosclaude 1993).  

 

The proportion of milk protein components show individual variation due to environmental 

and genetic factors (Lundén et al 1997; Marletta et al 2005). Genetic variation is caused by 

alleles associated with differences in the level of expression (Marletta et al 2005). Therefore, 

genetic variation in milk yield and its component traits can be studied at molecular level using 

SNPs and/or haplotype information. However, the tendency for haplotype analysis increased 

power over SNP analysis because SNPs most likely affect phenotypes through their joint 

effects (Templeton et al 2005), even though, the effect of individual SNP on milk production 

traits was also reported (Hayes et al 2006).  

 

Moreover, due to tight linkage among casein genes (Ådnøy et al 2006; Caroli et al 2006), the 

variability of the whole haplotype has to be considered when analyzing the goat caseins 

(Caroli et al 2006). For example; the caprine αS1 and beta-casein genes are 12-kb apart 

(Leroux and Martin 1996) and they might be convergently transcribed and the alleles of these 

genes can be inherited as haplotype (Leroux and Martin 1996; Marletta et al 2005). Therefore, 

the study of casein haplotypes could provide more information than the study of individual 
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casein genes (Hayes et al 2006; Gigli et al 2008). This shows that haplotypes information can 

be used for genetic selection (Marletta et al 2005; Gigli et al 2008) and for optimal estimation 

of genetic relationship among breeds (Moioli et al 2007). Therefore, casein haplotypes could 

be used in the selection program instead of a single locus (Sacchi et al 2005). There are a 

number of papers dealing with the wide heterogeneity of the individual casein genes; 

however, studies on the combined effect of the casein loci are relatively limited (Marletta et al 

2007). 

 

Comparative analysis of the casein gene cluster region shows the unusual high divergence of 

the casein genes coding regions (Rijnkels 2002). Therefore, having the knowledge of genetic 

polymorphism at goat casein loci allows the set up of breeding plans targeted in the 

improvement of milk production traits (Feligini et al 2005). Compared to sheep, much has 

been done on casein genes polymorphism in goats. However, it remains a focus of further 

research due to its high polymorphic nature. The genetic variant of milk protein is a heritable 

trait and they differ from breed to breed in their occurrence and frequency (Garg et al 2009). 

For example, the relative frequencies of the αS1-casein alleles show marked differences 

between breeds (Moatsou et al 2004). 

 

Moreover, exon12 deletion at αS1-casein creates the unique multi-allelic SNP in Norwegian 

goats (Hayes et al 2006). This deletion is segregating in the population with high frequency 

(Ådnøy et al 2003; Hayes et al 2006) inspite of its negative effect on dry matter content of the 

milk. Surprisingly, this is against the objective of the national goat breeding program (Hayes 

et al 2006). This might indicate the special importance of this unique deletion, which requires 

further studies. 

 

The national goat and sheep breeding program carried out a crossbreeding of Norwegian 

goats by using French Alpine semen in 2007. This crossbreeding program is aimed at testing 

the influence of crossbreeding on milk production traits of the Norwegian goats in selected 

flocks. Therefore; the effect of this crossbreeding program on milk production traits requires 

comparative studies between Norwegian goats and the crosses. This is because crossbreeding 

is considered to be one of the practical ways of improving economically important traits in 

goats (Shrestha and Fahmy 2007) and it can be used for the exploitation of breed differences 

through attainable heterotic advantages (Rincon et al 1982). In response to this concern, our 

study has tried to address the following objectives: 



European Master in Animal Breeding and Genetics 

 

4 
 

1) To study the extent of linkage disequilibrium (LD) among casein genes SNPs in the 

Norwegian goats and their French Alpine crosses;  

2) To study haplotypes diversity in the Norwegian goats and their French Alpine crosses;  

3) To study casein genes’ SNPs additive and dominance effect on milk production traits 

of Norwegian goats and their French Alpine crosses; 

4) To study casein genes’ haplotypes additive and dominance effect on milk production 

traits of Norwegian goats and their French Alpine crosses;  

5) To study the effect of αS1-casein exon 12 deletion on milk yield and its component 

traits and 

6) To study the effect of crossbreeding on milk production traits.  
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2. Review of Literatures 

 

Caseins are a group of acidic, proline-rich, phosphoproteins aggregated to form large, 

spherical, micellar structures in colloidal suspension with calcium phosphate in milk (Rijnkels 

2002; Marletta et al 2007). Caseins are the main source of amino acids, calcium, and 

phosphate and provide several bioactive peptides (Rijnkels 2002). For example, the 

concentration of calcium and phosphate in milk is highly correlated with milk casein content 

(Chanat et al 1999). 

 

2.1. Casein polymorphism 

 

A number of genetic variants of the casein genes that affect milk production traits have been 

described (Hayes et al 2006). High polymorphism has been found at the 4 genes CSN1S1, 

CSN2, CSN1S2, and CSN3 within the goat CN cluster  (Caroli et al 2007) and research has 

continued to reveal the extensive casein polymorphism (Marletta et al 2007). As a result, the 

genetic polymorphism of the casein fraction and the chemical structure of its individual 

components are well documented (Martin et al 1999) especially for alpha s1 casein (Raynal–

Ljutovac et al 2005).  

 

The high molecular divergence in the caseins appears to have resulted from both the variation 

in the splicing patterns of exons (Chessa et al 2007; Marletta et al 2007) and  due to point 

mutations involving insertion/deletion (Martin and Grosclaude 1993; Marletta et al 2007). It 

also can be resulted from amino acid substitutions (Martin and Grosclaude 1993), 

evolutionary divergence (Rijnkels 2002) and by posttranslational modifications (Martin et al 

2002; Chessa et al 2007), in addition to environmental effects (Chessa et al 2007). Casein 

heterogeneity in milk can also be caused by post-translational modifications (Neveu et al 

2002; Marletta et al 2007), such as different levels of phosphorylation and glycosylation 

(Marletta et al 2007). Therefore, the qualitative and quantitative variability of goat caseins 

originates from the high level of genetic polymorphisms (Chessa et al 2007). However, most 

of the casein alleles differ from each other by a few base substitutions that cause one or two 

amino acid changes in the protein (Lien et al 1995). The structural organization of the casein 

genes is presented in Figure 2. 
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Figure 2. Structural organization of the four bovine casein transcription units. 

 

Open bars in Figure 2 represent introns, and exons are depicted by large, stippled (5' and 3' 

uncoding regions), black (part of exons encoding the signal peptide) and open (exons and part 

of exons encoding matured proteins) boxes. Sizes of exons are indicated in base pairs 

(Source: Martin and Grosclaude 1993). 

 

2.2. Goats’ casein 

 

Like thier ruminant counterparts, caprine casein also composed of four genes: αS1- ,  β- , αS2- 

and κ-casein. 

 

2.2.1. αS1-casein, CSN1S1 

 

The goat CSN1S1 gene extends over 16785bp including 1138bp of exonic regions and 

15647bp of intronic regions. It contains 19 exons ranging in size from 24 (exons 5, 6, 7, 8, 10, 

13 and 16) to 385 bp (exon 19) and 18 introns from 90 bp (intron 10) to 1685 bp (intron 2) 

(Ramunno et al 2004). CSN1S1 (casein alpha-S1) is the main calcium sensitive casein in 

ruminant milk (Sztankóová et al 2007), which exhibits a high degree of unusual 

polymorphism (Neveu et al 2002; Moatsou et al 2004). As many as 18 different alleles have 

been identified for CSN1S1 (Hayes et al 2006). Therefore, CSN1S1 is distingushed and 
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characterized by high quantitative and qualitative variation that have qualitative and 

quantitative implications (Trujillo et al 2000; Feligini et al 2005; Chiatti et al 2007; 

Sztankóová et al 2007).   

 

Based on the milk content of casein alpha-s1, the CSN1S1 variants can be classified into 4 

groups: strong alleles (A, B1, B2, B3, B4, C, H, L, and M) producing almost 3.5 g/l of casein 

alpha-S1 each; intermediate alleles (E and I; 1.1 g/l); weak alleles (D, F and G; 0.45 g/l); and 

null alleles (01, 02, and N) producing no αS1-casein (Sztankóová et al 2007) and the 

references therein. Therefore, milk produced by goats with different CSN1S1 genotypes 

shows a variable amount of αS1-casein, ranging from 7 g·L−1 in strong allele homozygous 

goats, to 0.9 g·L−1 and 0 g·L−1 in weak and null homozygotes, respectively (Marletta et al 

2007).  

 

2.2.2. β-casein, CSN2 

 

β-casein can represent up to 60% of total casein in goat milk (Neveu et al 2002). The CSN2 

gene is smaller than the other two Ca-sensitive casein genes, consisting of 9 exons ranging 

from 24 to 492 bp (Marletta et al 2007). The β-casein gene structure has undergone fewer 

duplications and rearrangements than the other α-ike casein genes (Rijnkels 2002) and  most 

likely due to this it has long been considered to be monomorphic (Neveu et al 2002; Marletta 

et al 2007). Greater conservation of the β-casein gene might be due to its proposed function in 

determining certain structural properties of the casein micelle (Rijnkels 2002).  

 

2.2.3. αS2-casein, CSN1S2 

 

Alphas2-casein is the most phosphorylated casein (Trujillo et al 2000). In goats CSN1S2 

locus at least seven alleles characterized by different levels of expression have been identified 

(Marletta et al 2004; Chessa et al 2007; Vacca et al 2009). These alleles are associated with 

three different levels of αS2-casein in milk (Vacca et al 2009). The strong alleles A, B, C, E 

and F are associated with a normal αS2-casein content (about 2.5 g/l for allele), D allele with 

an intermediate content (1.5 g/l) and the “null” allele 0 in homozygosis is associated with the 

apparent absence of αS2-casein in milk (Ramunno et al 2001, reviewed by Vacca et al 2009). 
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2.2.4. κ-Casein, CSN3 

 

κ-casein constitutes about 15% of the total caseins (Reale et al 2005). The caprine κ-CN gene 

comprises five exons with the coding region for mature protein contained in exons 3 (9 amino 

acids) and 4 (162 amino acids) (Yahyaoui et al 2003). The number of goat CSN3 variants has 

reached 16 (Caroli et al 2006; Chiatti et al 2007) and are corresponding to 13 κ-CN variants, 

and 3 synonymous mutations (Caroli et al 2006). The κ-casein gene includes 5 exons, 4 of 

them carrying more than 90% of the information encoding for mature protein (Marletta et al 

2007). CSN3 is not evolutionarily related to the “calcium-sensitive” casein genes, but is 

physically linked to this gene family, and is functionally important in stabilizing the Ca-

sensitive caseins in the micelle (Rijnkels 2002). κ-casein also determines the size and specific 

function of milk micelles, and its cleavage by chymosin is responsible for milk coagulation 

(Yahyaoui et al 2003). However, the influence of CSN3 on milk production traits still remains 

to be evaluated (Hayes et al 2006). 

 

Compared to the Ca sensitive caseins, CSN3 exhibits distinctive properties: it is the only 

glycosylated and hydrophilic casein, so it is soluble in a broad range of calcium ions and 

presents a lower phosphorylation level (Marletta et al 2007). κ-CN differs from other caseins 

in its solubility over a broad range of calcium ion concentrations and contains a hydrophilic 

C–terminal region (Yahyaoui et al 2003). Overall the selective pressure on CSN3 appears to 

be the strongest compared to other casein genes; this may be due to its role in casein micelle 

structure organization (Rijnkels 2002). 

 

2.3. Effects of casein genes on milk production traits 

 

Factors affecting milk production generally belong to three categories: zootechnical, 

environmental and genetical (Feligini et al 2005). The protein and fat contents are variable 

among the different caprine breeds and they are genetically controlled, especially by the αS1-

casein locus (Moatsou et al 2004). This genetic polymorphism in goat milk is strongly related 

to the casein content (Trujillo et al 2000). For example, goat milk contains at least one null 

type genetic variant for CSN2 showed poorer coagulation properties (Albenzio et al 2009). 

Moreover, several alleles of the 3 calcium-sensitive CN (αS1-CN, β-CN, and αS2-CN) are 

associated with a null or reduced expression of the specific protein (Caroli et al 2007). For 
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example, polymorphism in CSN1S1 is associated with different concentrations of αS1-CN in 

milk (Gigli et al 2008).  

 

In goats, the CSN1S1 gene has an important effect on the protein content of goat milk and a 

smaller effect on total protein yield (Sztankóová et al 2007). It could be, therefore, useful to 

select animals with strong alleles at CSN1S1 and CSN2 destined to produce milk for cheese 

making. Animals with weak or null alleles for CSN1S2 and CSN1S1 should be used in 

breeding programs aimed at producing milk with hypoallergenic properties (Albenzio et al 

2009). This is because, the characteristics of the casein fraction are important for the cheese 

making properties of caprine milk (Moatsou et al 2004). Even though there are 

inconsistencies among different findings, the association between kappa casein and cheese-

making is generally accepted (Feligini et al 2002). 

 

2.4. Linkage disequlibrium in casein genes 

 

Associations between casein alleles and protein yield could occur if linkage disequilibria exist 

between mutations in the coding regions and in the regulatory sequences of casein genes 

(Lien et al 1995). Since casein loci are tightly linked (Feligini et al 2002), casein genes might 

be in linkage disequilibrium (Bovenhuis et al 1992). This condition was substantiated for 

example by the study of Caroli et al (2007) in west African goat breeds, Caroli et al (2006) 

for Italian goats and Sztankóová et al (2009) in Czech goats. Although recombination among 

the casein genes is essential in explaining the haplotype variability, strong linkage 

disequilibrium resulting in an unbalanced distribution of the haplotypes among breeds (Caroli 

et al 2006). Therefore, estimates of casein genotype effects obtained using the single-gene 

model might be affected by effects of linked casein genes (Bovenhuis et al 1992). This 

linkage might be resulted from selection of specific casein haplotypes for their nutritional 

importance (Caroli et al 2007). 
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3. Materials and Methods 

 

3.1.  The study populations 

 

The two goat populations used in our analysis were Norwegrian goats and their 50% French 

Alpine crosses kept at 9 farms. According to Helga Kvamsås (personal communication 2010), 

these farms are located in Stranda municipality, Møre og Romsdal County of the 

northernmost part of western Norway. The Norwegian goats were earlier divided into 

geographical groups, because mating mainly occurred within a region. However, due to 

extensive use of AI, most goats are now considered as one breed (Sæther 2002). Therefore, 

the Norwegian dairy goat breed is a landrace without the requirements for uniform colour 

(Finocchiaro et al 2008). There are 60000 Norwegian dairy goat population (Asheima and Eik 

1998), included in the main active breeding dairy goat population (Sæther 2002). The French 

Alpine (Alpine) goat is the oldest among dairy goat breeds in Europe. The Alpine is noted for 

its long and productive lactation and for its good flavour and fat rich milk (Bowling 1929).  

 

3.2. Breeding and feeding strategies 

 

In Norway, cooperative genetic improvement of goats through a buck-circle system was 

introduced in the 1960s and 1970s (Andonov et al 2007). In this system, about 15% of the 

goats are bred to elite bucks to get replacement goats (Bagnicka et al 2007). This was 

supported by progeny testing and selection with the main objectives of improving the dry 

matter content of the milk and ease of milking (Andonov et al 2007). Normally kidding in 

Norwegian goats takes place from January to March (Asheima and Eik 1998) and the genetic 

evaluation system classifies the kidding season into December to February, March to May, 

and June to November (Andonov et al 2007).  However, Bagnicka et al (2007) grouped the 

kidding season into two classes: October through March and April to September. According 

to Tormod Ådnøy (personal communication, 2010), the feeding strategy of goats in Norway 

can be broadly classified into two; the indoor feeding (October to April) and the outdoor 

feeding (May to September).  
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3.3. Genotyping 

 

Blood samples were collected from Norwegian goats and their French Alpine crosses by 

TINE1 for DNA isolation. SNP candidates in the casein region were found from the literatures 

and by sequencing the DNA of previously genotyped goats that showed polymorphism 

(Ådnøy et al 2006). Primers for resequencing of casein loci were designed for the promoters, 

selected exons, and introns of CSN1S1, CSN2, and CSN3, including exon 16 of CSN1S2 and 

exon 7 of CSN2 (Hayes et al 2006). SNPs were genotyped using Matrix Assisted Laser 

Desorption/Ionization Time-of-Flight Mass Spectrometry, MALDI-TOF-MS (Sequenom, San 

Diego, CA, USA) at CIGENE (Center for Integrative Genetics, Norwegian University of Life 

Sciences) laboratory. This sequencing has detected 39 SNPs showing polymorphism for the 

cluster of the four casein genes (Ådnøy et al 2006) and 38 of them were used in our analysis. 

These 38 SNPs; 14 at CSN1S1, 6 at CSN2, 4 at CSN1S2 and 14 at CSN3 were detected in the 

promoter, exons and introns regions of the casein loci.  

 

3.4. Phenotype recording 

 

Phenotypic recording on test day milk yield (kg) was done at farm level by the participating 

farmers and agents of TINE. Moreover, the lab analysis results for fat, lactose and protein 

percentage, somatic cell count, free fatty acid content, urea content and milk taste score were 

obtained from TINE. After keeping only those does with both phenotypic records and 

genotype information on test day milk yield, 376 does with 1670 records were left for 

analysis. 

 

3.5. The data structure and traits studied 

 

This study was based on the dataset of test day milk yield and milk component traits of 216 

lactating does of Norwegian goats and 160 crosses born between September 2007 and 

September 2008 and that are kept in 9 farms. Descriptive statistics summary for the flock 

structure is presented in Table 10. Eight milk production traits were considered in our 

analysis, namely, test day milk yield (kg), fat precentage, protein percentage, lactose 

                                                 
1 The main company involving in the production, distribution and export of dairy products in Norway. 
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percentage, somatic cell count (SCC, cell/ml), free fatty acids content (FFA), urea content 

(urea) and milk taste score (taste score).  

 

3.6. Data analysis 

 

Descriptive statistics of SAS (2002) was used to edit the dataset and to do the preliminary 

analysis. Outliers were checked and removed using univariate analysis of SAS (2002). 

Histograms indicating the distribution of observations after removal of outliers and the 

corresponding Q_Q plot as test of normality are presented in the Appendix Figures 38 through 

53. Somatic cell count and FFA were transformed into their logarithmic value to normalize 

their highly skewed distribution. For fixed effect variables other than SNP and haplotype 

effect, model effects were tested at p<0.05 significant level. However, some biologically 

important parameters were kept in the model even if they are not significant at p<0.05 (see 

Appendix Table 11 through 18). Type III sum of squrare of SAS (2002) was used to 

determine the significance level.  

 

3.6.1. Preliminary data analysis 

 

Preliminary data analysis were done using the following fixed effect model other than the 

fixed effect of SNP and haplotype. 

 

ijklmnopqrrqpnmlkjijklmnopqr etdkdfmbrlsfssnbrfmy +++++++++= *µ
(1)

      

 

where ijklmnopqry  is test day milk yield or somatic cell count or fat% or protein% or lactose% or 

urea content or free fatty acids content or milk test score for animal i  in farm j  (9 levels); for  

breed k (2 levels, Norwegian goat and the crosses); season l (3 levels, December to February, 

March to May and June to November); feeding strategy m (2 levels, indoor October through 

April and outdoor May to September); stage of lactation n (defined in 30 days interval into 6 

levels, 1 through 5 and ≥6); interaction of breed with farm p ; the covariate kidding date q

and test day r  (16 levels) for animal i , 
ijklmnopqr

e is the random residual term and µ  is the 

overall common mean. By using equation (1) systematic environmental effects were corrected 

for subsequent least square estimation of SNP or haplotype effect using univariate analysis of 
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linear mixed model in ASReml (Gilmour et al 2009). This model is, however, except test date 

(this explanatory variable was used for milk taste score analysis only) was fitted for test day 

milk yield analysis only; whereas different models were fitted for other response variables 

(see Appendix Tables 11 to 18). 

  

3.6.2. Haplotype construction 

 

Unlike the performance dataset analysis; for haplotype construction a total of 605 genotyped 

goats were used (including male goats and does having no phenotypic records). These include 

144 male crosses; 185 female crosses, 3 Norwegian male goats and 273 Norwegian female 

goats. PHASE program (Stephens et al 2001) was used to construct haplotypes using 38 SNPs 

obtained from genotypes of 605 goats. SNP haplotypes were predicted for each casein gene 

and for the complete segment of the casein loci. Best pairs summary of PHASE software 

(Stephens et al 2001) was used to pick up plausable haplotypes (to identify putative haplotype 

blocks) and these were fitted in our linear mixed model (equation 2) for haplotype effect 

analysis. 

 

3.6.3. Linkage disequilibrium analysis 

 

The level of linkage disequilibrium between all pairs of loci was estimated using the r2-

statistic (Hudson 1985) as implemeted in HaploView program, and the result was visualized 

using the HaploView program (Barret et al 2005). Positions of SNP markers for CSN1S1 

directly taken from the genotype data, whereas for othe casein gene positions of SNP markers 

were calculated by using bovine genome sequence information of NCBI 

(http://www.ncbi.nlm.nih.gov/). Observed and expected heterozygosity, minimum allelic 

frequency, deviations from Hardy-Weinberg and type of alleles at each marker presented in 

Table 19 and 20 were computed by HaploView software (Barret et al 2005). Moreover, to 

investigate the effect of crossbreeding on the extent of LD, separate analysis were done for 

the two goat populations using HaploView (Barret et al 2005).  
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3.6.4. SNP tagging 

 

The default of the tagger option (pair tagging only) of the HaploView software (Barret et al 

2005) was used to tag SNPs. Accordingly, all the 38 SNps were tested for their capacity of 

inferring about other SNPs. 

 

3.6.5. Mixed model with repeated records analysis 

 

3.6.5.1. The pedigree structure 

 

The additive genetic relationship matrix A includes 2733 animals including the tested ones. 

The pedigree was seven generations deep for dam line and for does having Norwegian goat 

buck, whereas the pedigree is two generations deep for crosses descended from Alpine goat 

sire line.  

 

3.6.5.2. The linear mixed model 

 

The mixed model fitted accounting for repeated records including the fixed effect of SNP and 

haplotype is:  

 eeeeZpeZpeZpeZpeZuZuZuZuXqXqXqXqXXXXββββyyyy ++++=                        (2)        

 

where y is a vector of phenotypic observations on the trait,  β is a vector of fixed effects 

comprising a general mean and other fixed effects shown in equation (1); q is a vector of 

fixed SNP or haplotype additive and dominance effects; u is a vector of additive polygenic 

effects other than SNP and haplotype effects, pe is a vector of permanent environmental 

effects and e is a vector of residual effects. The matrix X is the incidence matrix relating 

observations to fixed effects and Z is the incidence matrix relating observations to random 

animal effects.  

 

Model definitions: 

 

( )
qXXyE += β         ( ) 0=uE      ( ) 0=epE     ( ) 0=eE  
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The random terms are assumed to follow a normal distribution: 

 

u ~ )( 2,0 uAσ        ep ~ )( 2,0
epIσ           e ~ )( 2,0 eIσ  

1)var( Gu =           2)var( Gpe =          Re =)var(            '')var( 21 ZZGZZGy += R+  

 

The three random variables have the following distribution: 
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where u
2σ  is the direct additive genetic variance, pe

2σ  is the variance due to permanent 

environmental effects and 2
eσ  is the variance of the residual term.  

  

Based on equation 2 the following mixed repeatability model least square equation was fitted 

in ASReml (Gilmour et al 2009) to get the least square estimates of fixed and random effects for 

traits studied. 
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ue σσ=  and =λ

epe

22 σσ  

 

Variance component estimation using small datasets most likely leads into erranous results. 

Therefore, to overcome this problem we used the variance components estimated from large 

dataset for the six traits by the Norwegian association of sheep and goat farmers (Norsk Sau 

og Geit, NSG). However, because of lack of variance component estimates for milk taste 

score and urea content of milk from NSG, we used the variance components estimated from 

our small dataset. 
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3.6.5.2.1. SNP haplotypes effect analysis 

 

For both 37 bi-allelic markers and 1 multi-allelic marker, the linear model in equation 2 used  

in our analysis for all fixed effects assumes the following distribution: 

 

2,(~ eYqXy σβ + ) 

 

where β is a vector containing an overall mean (µ) and all fixed variables affecting the trait of 

interest (equation 1). The vector q  represents the additive and dominant fixed effect of a 

given SNP or haplotype. The incidence matrice X  connects the phenotypes to other fixed 

effects and the incidence matrice Y  connects the phenotypes to SNP or haplotype additive 

and dominance effects. For bi-allelic SNPs (for example; AA, AG, GG) these values equal 

(+1, 0,–1) for additive, and (0, 1, 0) for dominance effects; and allele A was taken as the 

common wild allele, despite high frequency of allele D. For multi-allelic marker SNP14 in 

exon12; 6 genotypes were observed (AA, GG, DD, AD, AG and GD, where D is point 

deletion), with additive effect (1, –1, –1, 0, 0, -1) for allele A, and dominance effect for SNP 

genotypes were (0, 0, 0, 1, 1, 1), respectively.  

 

For most common SNP haplotypes and individual SNP additive and dominance effect 

analysis the following model was fitted: 

 

e
e

pu
ij

n
j

n
i

nmy +++++++= µ         (3) 

 

Where y  is trait of interest; m  the effect of the other fixed factors (other than SNP and 

haplotype effect, equation 1); 
i

n  and 
j

n are maternal haplotype and paternal haplotype (either 

for the whole casein loci or for individual genes); 
ij

n  is the SNP or haplotypes dominance 

interaction, u  is the animal’s polygenic effect; ep  is permanent environment; e  is the error 

term and µ  is the overall mean. 
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3.6.5.2.2. αS1-casein exon 12 deletion effect analysis 

 

Due to multi-allelic nature of this locus its effect on milk yield and its component traits was 

treated separately in our analysis. Moreover, genotype effect of this locus was estimated 

besides its additive and dominance effects. According to Hayes et al (2006) sequences of the 

three polymorphisms detected in exon 12 harboring the deletion on which our analysis was 

based on are: 

 

Allele 1(D): GAACAGCTTCTCAGACTGAAAAATACAACGTGCCCCAGCTG  

Allele 3 (G): GAACAGCTTCTCAGACTGAAGAAATACAACGTGCCCCAGCTG  

Allele 6 (A): GAACAGCTTCTCAGACTGAAAAAATACAACGTGCCCCAGCTG  
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4. Results 

 

4.1.  Linkage disequilibrium and haplotype diversity 

 

4.1.1. Linkage disequilibrium among casein SNPs  

 

Seven SNPs were departed from Hardy-Weinberg equilibrium in the crosses; one at αS1- 

casein and six at κ-casein, whereas only two SNPs at αS1-casein were departed from Hardy-

Weinberg equilibrium in the Norwegian goats (data not shown). The SNP markers were not 

evenly distributed along the casein loci block. Some are found very close to each other 

whereas there are also some adjacent SNPs distantly located. The LD was less extensive in 

the crosses, especially for αS1-casein and κ-casein compared to the Norwegian goats (Figures 

3 & 4). These figures displayed the level of LD between markers measured by r2 showed that 

intra locus LD is stronger than inter loci LD. Moreover, as the distance between the loci is 

increased the LD get less extensive. However, the haplotypes display showed that except for 

β-casein and αS2-casein, the inter-loci LD between adjacent loci was stronger in the 

Norwegian goats than it was in the crosses (see Appendix Figures 54 & 55). Therefore, this 

showed that the amount of historical recombination between the two adjacent casein genes 

was weak, even though, the trend between CSN2 and CSN1S2 looks different especially in 

the Norwegian goats (Figure 54). 

 

. 
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Figure 3. The extent of LD observed across the four casein genes’ SNPs in Norwegian goats.  

 

Figure 4. The extent of LD observed across the four casein genes’ SNPs in the crosses.  
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4.1.2. Tagger and tagged SNPs 

 

There were less tagger SNPs in the Norwegian goats than the crosses (Table 1 vs 3), which 

showed the presence of strong LD in the Norwegian goats. For Norwegian goats, there were 

16 tagger SNPs (Table 1). These 16 tagger SNPs were tested in 16 tests that can predict all the 

38 SNPs at r2 ≥0.8 with mean maximum r2 of 0.971. Out of these 16 tagger SNPs, 7 can be 

used to inferred about one or more other SNP(s) (Table 2). 

 

Table 1.  List of tagger SNPs obtained in the Norwegian goats. 

Tagger SNP Tagger SNP Tagger SNP Tagger SNP 

CSN1S1Ex10_1067 CSN3prom_1499 CSN1S1prom_264 CSN1S1Ex12 

CSN2prom_1009 CSN3prom_942 CSN1S1Ex17_16860 CSN3prom_2134 

CSN3prom_1191 CSN2Ex7_11801 CSN2prom_1653 CSN1S1prom_866 

CSN3prom_1935 CSN1S2In15_273 CSN1S2Ex3_510 CSN3prom_852 

 

Table 2. List of tagger SNPs used to predict other SNPs in the Norwegian goats. 

Tagger SNP Tagged SNP(s) 

CSN1S1Ex10_10673 CSN1S1prom_1169,CSN1S1prom_1470,CSN1S1prom_1379,CS

N1S14Ex4_6091,CSN1S1prom_1105,CSN1S1In8_9918,CSN1S1

4Ex4_6075,CSN1S1prom_888 

CSN2prom_1009 CSN1S14Ex9_9889,CSN2prom_760,CSN2prom_862 

CSN3prom_1191 CSN3prom_1338,CSN3prom_1074,CSN3prom_677 

CSN3prom_1935 CSN1S2In15_987,CSN3prom_1550,CSN1S2In15_682 

CSN3prom_1499 CSN3prom_2136,CSN3Ex4_146 

CSN3prom_942 CSN3prom_1140,CSN3prom_833 

CSN2Ex7_11801 CSN2prom_2071 

 

Using HaploView pairwise tagging option; in the crosses 21 tagger SNPs in 21 tests, which 

can predict all the 38 SNPs at r2 ≥ 0.8 with mean maximum r2 of 0.955 were found (Table 3). 

Out of these 21 tagger SNPs, 6 can be used to predict about one or more other SNP(s) in the 

segment (Table 4). 
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Table 3. List of tagger SNPs obtained in the crosses. 

Tagger SNP Tagger SNP Tagger SNP Tagger SNP 

CSN1S1prom_1379 CSN1S2In15_273 CSN1S1Ex12 CSN3prom_2134 

CSN3prom_677 CSN3prom_852 CSN1S2Ex3_510 CSN3prom_1935 

CSN3Ex4_146 CSN1S1prom_866 CSN3prom_1338 CSN2prom_760 

CSN2prom_862 CSN3prom_1550 CSN1S1Ex17_16860 CSN2prom_1653 

CSN3prom_833 CSN1S1prom_264 CSN2Ex7_11801 CSN2prom_2071 

CSN1S2In15_987 

 

Table 4. List of tagger SNPs used to predict other SNPs in the crosses. 

Tagger SNP Tagged SNP(s) 

CSN1S1prom_1379 CSN1S1prom_1105,CSN1S14Ex4_6091,CSN1S1Ex10_10673,CS

N1S14Ex4_6075,CSN1S1In8_9918,CSN1S1prom_1470,CSN1S1p

rom_1169 and CSN1S1prom_888 

CSN3prom_677 CSN3prom_1191 and CSN3prom_1074 

 

There were no common tagger SNPs for the two populations, and therefore a SNP that was 

used as tagger in one population is tagged in the other (Table 2 & 4). 

 

4.1.3. Haplotype diversity  

 

4.1.3.1. Haplotypes diversity output from HaploView 

 

To see the variation in haplotype structure between the two populations separate analysis 

were made for haplotype construction using HaploView (Barret et al 2005). Our results in 

Table 5 & 6 showed remarkable variation in diversity and frequency of the four individual 

casein genes haplotypes between the two populations. Accordingly, 8, 3, 4 and 8 SNP 

haplotypes with frequencies of ≥0.01 were detected for αS1-, β-, αS2- and κ-casein, 

respectively for the Norwegian goats; whereas these numbers were, respectively 9, 6, 5 and 

11 in the crosses. This showed that there is considerable variation in the number of SNP 

haplotypes detected especially for β- and κ-casein. Variation in the individual SNP haplotypes 

frequency and haplotype frequency re-ranking were observed in the two populations.  
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Therefore, our results in Table 5 & 6 showed that, there were 17 haplotypes for αS1-casein in 

the two populations and 4 of them were shared by both populations. For β-casein’s 9 

haplotypes were detected in the two populations and 3 of them were shared by both 

populations. There were 9 haplotypes for the two populations’ αS2-casein and 4 of them were 

detected in both populations. There were 19 haplotypes for the two populations κ-casein and 7 

of them were shared by both populations. Therefore, the two population common haplotypes 

were larger for αS2-casein and followed by κ-, β-  and αS1-casein. 

 

Moreover, when the entire casein loci is considered as a block, there were only 12 haplotypes 

with a frequency of ≥0.01 in the Norwegian goats whereas there were 21 in the crosses (data 

not shown). Therefore, there were 33 SNP haplotypes for the two populations entire casein 

loci and none of them were shared between the two populations. 
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Table 5. SNP haplotypes of individual casein genes frequencies in the Norwegian goats. 

Block Haplotype Freq. 

αS1- casein 

ACGGGCGTCCACCC 0.635 

ACGGGCGTCCACAC 0.162 

GCAAATACGCGGAT 0.04 

ACAAATACGGGGAC 0.039 

ATAAATACGCGGAT 0.027 

ATAAATACGCGGCT 0.025 

ACAAGTACCGGGAC 0.014 

GCAAGTACCCGGAT 0.01 

β- casein 

TAGATC 0.858 

CGGATC 0.079 

TAGGAT 0.05 

αS2-casein 

GCCA 0.567 

GCTT 0.321 

ACCA 0.098 

GGCA 0.012 

Κ-casein 

AATACGGATGAGC 0.385 

GGATGTTACTAGC 0.302 

GGATGTTATGGGC 0.102 

GGATGTTGTGGAT 0.08 

GATTCTTATGAGC 0.05 

GGATGTTACGGGC 0.024 

AGTTCGGATGAGC 0.012 

GATTCTTATGGGC 0.011 

 

For αS1-casein SNP 13 position (exon 12 deletion); C represents the deletion and A 

represents A or G. For SNP 10 position (exon 9 deletion) G represents the deletion and A 

represents C. 
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Table 6. Haplotype blocks of individual casein genes and their frequencies in the crosses. 

Block Haplotype Freq. 

αS1- casein 

ACGGGCGTCCACAC 0.471 

ACGGGCGTCCACCC 0.243 

ACGGGCGTCCGGAT 0.06 

ACAAATACGGGGAC 0.037 

GCGGGCGTCCACAC 0.03 

GCAGATACGCGGAT 0.022 

ACAAATACGCGGAT 0.022 

ATAAATACGCACAT 0.017 

GCAAATACGCGGAT 0.017 

β- casein 

TAGATC 0.803 

CGGATC 0.056 

TAGATT 0.044 

TAGGAT 0.042 

CAGATC 0.027 

CAAATC 0.01 

αS2-casein 

GCCA 0.588 

GGCA 0.165 

GCTT 0.161 

ACCA 0.042 

AGCA 0.031 

Κ-casein 

GGATGTTATGGGC 0.22 

GGATGTTACTAGC 0.179 

AATACGGATGAGC 0.162 

GATTCTTATGAGC 0.156 

GGATGTTGTGGAT 0.062 

GATTCTGATGAGC 0.06 

GGATGTTACGAGC 0.06 

GGATGTTACGGGC 0.018 

GATTCTTATGGGC 0.014 

AGTACGGATGAGC 0.014 

GGTTCTTATGAGC 0.01 
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For αS1-casein SNP 13 position (exon 12 deletion); C represents the deletion and A 

represents A or G. For SNP 10 position (exon 9 deletion) G represents the deletion and A 

represents C. 

 

4.1.3.2. Haplotypes diversity from PHASE output 

 

Phase program (Stephens et al 2001) output showed that for the entire casein loci, 18 

haplotypes that have a frequency of ≥1% were obtained in the whole population (Table 7). 

For individual casein genes haplotypes having frequencies of  ≥1% were 12, 5, 4 and 10 for 

αS1- , β- , αS2- and κ-casein, respectively (Table 8). These haplotypes were used to estimate 

the additive and dominance effects of SNP or haplotypes on traits studied using linear mixed 

model that accounts for repeated records. 

 

Table 7. The entire casein loci block SNP haplotypes. 

№ Haplotypes Freq. 

1 ACGGGCGTCCAC 1 CTAGATCGCCAAAGTACGGATGAGC 0.19 

2 ACGGGCGTCCAC 1 CTAGATCGCCAGGGATGTTGTGGAT 0.04 

3 ACGGGCGTCCAC 1 CTAGATCGCTTGGGATGTTACTAGC 0.11 

4 ACGGGCGTCCAC 1 CTAGATCACCAGGGATGTTATGGGC 0.03 

5 ACGGGCGTCCAC 6 CTAGATCGCCAAAGTACGGATGAGC 0.01 

6 ACGGGCGTCCAC 6 CTAGATCGCCAGAGTTCTGATGAGC 0.01 

7 ACGGGCGTCCAC 6 CTAGATCGCCAGAGTTCTTATGAGC 0.10 

8 ACGGGCGTCCAC 6 CTAGATCGCCAGGGATGTTATGGGC 0.04 

9 ACGGGCGTCCAC 6 CTAGATCGCCAGGGATGTTGTGGAT 0.01 

10 ACGGGCGTCCAC 6 CTAGATCGCTTGGGATGTTACTAGC 0.06 

11 ACGGGCGTCCAC 6 CTAGATCGGCAGGGATGTTATGGGC 0.01 

12 ACGGGCGTCCAC 6 TTAGATCGCCAGAGTTCTGATGAGC 0.01 

13 ACGGGCGTCCGG 3 TCAGATCGGCAGGGATGTTACGAGC 0.01 

14 ACAAATACGDGG 6 CTAGGATACCAGGGATGTTATGGGC 0.02 

15 ATAAATACGCGG 3 TCGGATCGCCAAAGTACGGATGAGC 0.02 

16 GCGGGCGTCCAC 6 CTAGATTGGCAGGGATGTTATGGGC 0.01 

17 GCAGATACGCGG 3 TTAGATTGGCAGGGATGTTACTAGC 0.01 

18 GCAAATACGCGG 3 TTAGATCGCTTGGGATGTTACTAGC 0.02 
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Table 8. Individual casein genes SNP haplotypes. 

Block № Haplotypes Freq. 

αS1- casein 

 1 ACGGGCGTCCAC 1 C 0.41 

 2 ACGGGCGTCCAC 3 C 0.03 

  3 ACGGGCGTCCAC 6 C 0.28 

 4 ACGGGCGTCCAC 6 T 0.01 

 5 ACGGGCGTCCGG 3 T 0.02 

 6 ACAAATACGCGG 3 T 0.01 

 7 ACAAATACGDGG 6 C 0.04 

 8 ATAAATACGCGG 3 T 0.02 

 9 GCGGGCGTCCAC 6 C 0.03 

 10 GCAGATACGCGG 3 T 0.01 

 11 GCAAGTACCCGG 3 T 0.01 

 12 GCAAATACGCGG 3 T 0.04 

β- casein    

 1 TAGATC 0.84 

 2 TAGATT 0.02 

 3 TAGGAT 0.05 

 4 CAGATC 0.01 

 5 CGGATC 0.07 

αS2-casein    

 1 GCCA 0.65 

 2 GCTT 0.21 

 3 GGCA 0.06 

 4 ACCA 0.07 

Κ-casein    

 1 AAGTACGGATGAGC 0.27 

 2 AGGTACGGATGAGC 0.01 

  3 GAGTTCTGATGAGC 0.02 

 4 GAGTTCTTATGAGC 0.12 

 5 GAGTTCTTATGGGC 0.01 

 6 GGGATGTTATGGGC 0.16 

 7 GGGATGTTACGAGC 0.02 

 8 GGGATGTTACGGGC 0.02 

 9 GGGATGTTACTAGC 0.25 

 10 GGGATGTTGTGGAT 0.07 
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4.2. Haplotypes additive and dominance effects on traits studied 

 

Haplotypes additive and dominance effects were estimated using equation 3 for all traits 

considered.  

 

4.2.1. Haplotypes additive effect 

 

4.2.1.1. The entire casein loci haplotypes additive effect 

 

Least squre estimates results for the additive effect of the entire casein haplotypes on studied 

traits are presented in Figures 5 through 8. None of the haplotypes showed statistically 

significant effect on test day milk yield and lactose% at p≤0.1. However, haplotype 3 for 

fat%; haplotypes 6, 7, 10, 16 & 18 for FFA content; haplotypes 1 & 15 for protein percentage; 

haplotype 9 for SCC; haplotypes 1 & 10 for milk taste score, and haplotypes 4 & 18 for urea 

content showed signficant effect at p≤0.05. 

 

 

Figure 5. Additive fixed effects of the entire casein loci haplotypes on fat% and FFA content 
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Figure 6. Additive fixed effects of the entire casein loci haplotypes on lactose% and test day 

milk yield (kg). 

 

 

Figure 7. Additive fixed effects of the entire casein loci haplotypes on protein% and somatic 

cell count content (cell/ml). 
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Figure 8. Additive fixed effects of the entire casein loci haplotypes on taste score and urea 

content. 

 

4.2.1.2. Individual casein locus haplotypes additive effect 

 

4.2.1.2.1. αS1-casein gene haplotypes additive effect 

 

Our results for the effect of αS1-casein gene haplotypes presented in Figures 9 to 12. Our 

findings showed that for αS1-casein gene haplotype 7 has significant effect on fat%. 

Similarly, haplotypes 1, 10 and 12  on FFA (p≤0.05) and haplotypes 2 and 3 on test day milk 

yield have significant effect (p≤0.1). Moreover, haplotype 1 on protein%, haplotypes 3 and 8 

on taste score, and haplotype 1 on urea content showed significant effect (p≤0.05). However, 

none of the αS1-casein SNP haplotypes showed significant effect on lactose percentage. 
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Figure 9. Additive fixed effects of the alphas1 casein loci haplotypes on fat% and FFA 

content. 

 

 

Figure 10. Additive fixed effects of the alphas1 casein loci haplotypes on lactose% and test 

day milk yield (kg). 
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Figure 11. Additive fixed effects of the alphas1 casein loci haplotypes on protein% and 

somatic cell count. 

 

 

Figure 12. Additive fixed effects of the alphas1 casein loci haplotypes on taste score and urea 

content. 

 

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Le

a
st

 s
q

u
a

re
 e

st
im

a
te

s

Alphas1 casein haplotypes

Protein

SCC

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Le
a

st
 s

q
u

a
re

 e
st

im
a

te
s

Alphas1 casein haplotypes

Taste score

Urea 



European Master in Animal Breeding and Genetics 

 

32 
 

4.2.1.2.2. β-casein gene haplotypes additive effect 

 

Our results for the effect β-casein gene haplotypes presented in Figures 13 through 15. 

Accordingly, haplotype 2 on fat%, haplotype 4 on FFA, and haplotype 3 on test day milk 

yield showed significant effect at p≤0.05. 

 

 

Figure 13. Additive fixed effects of the beta casein loci haplotypes on fat% and FFA content. 

 

 

Figure 14. Additive fixed effects of the beta casein loci haplotypes on lactose%, test day milk 

yield (kg) and protein%. 
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Figure 15. Additive fixed effects of the beta casein loci haplotypes on somatic cell count, taste 

score and urea content. 

 

4.2.1.2.3. αS2-casein gene haplotypes additive effect 

 

Results from αS2-casein gene haplotypes additive effect on traits studied are presented in 

Figures 16 and 17. Haplotype 1 on fat percentage and haplotypes 1 and 3 on FFA showed 

significant effect at p≤0.05. None of the αS2-casein gene haplotypes showed significant 

additive effect for the rest of studied traits. 

 

 

Figure 16. Additive fixed effects of the alphas2 casein loci haplotypes on fat%, lactose%, test 

day milk yield (kg) and protein%. 
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Figure 17. Additive fixed effects of the alphas2 casein loci haplotypes on somatic cell count, 

FFA content, taste score and urea content. 
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Figure 18. Additive fixed effects of the kappa casein locus haplotypes on fat% and FFA 

content. 

 

 

Figure 19. Additive fixed effects of the kappa casein locus haplotypes on lactose% and test 

day milk yield (kg). 
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Figure 20. Additive fixed effects of the kappa casein locus haplotypes on protein% and 

somatic cell count. 

 

 

Figure 21. Additive fixed effects of the kappa casein locus haplotypes on taste score and urea 

content. 
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4.2.2. Haplotypes dominance effect 

 

4.2.2.1. Entire casein loci haplotypes dominance effect 

 

The entire casein block dominance effect on traits studied is presented in Figure 22. The 

dominance interaction between haplotypes 7 and 10 has significant effect on fat percentage. 

Moreover, the dominance interaction between haplotypes 1 and 2, and 1 and 3 on FFA 

content, and haplotypes 1 and 3, and 1 and 7 on urea content of the milk showed significant 

effect. However, none of the haplotypes dominance interaction showed significant effect at 

p≤0.05 on test day milk yield, protein%, lactose% and milk taste score.  

 

 

Figure 22. Least sqaure estimates for entire casein loci haplotypes dominance effect. 

  

4.2.2.2. Individual casein genes haplotypes dominance effect 

 

The casein loci haplotypes dominance effect on milk production traits were also estimated at 

individual genes level. 

 

4.2.2.2.1. αS1-casein gene haplotypes dominance effect 

 

Significant dominance effect of αS1-casein gene were found for haplotypes 1 and 8 on taste 

score, and haplotypes 1 and 3 on urea content only (Figure 23).  

 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Le
a

st
 s

q
u

a
re

 e
st

im
a

te
s

Traits studied

H1*H2

H1*H3

H1*H7

H7*H10



European Master in Animal Breeding and Genetics 

 

38 
 

 

Figure 23. Least sqaure estimates for αS1-casein haplotypes dominance interaction effect. 

 

4.2.2.2.2. β- casein gene haplotypes dominance effect 

 

For β-casein haplotype 1 and 2 dominant interaction has significant effect on SCC (Figure 

24). 

 

 

Figure 24. Least sqaure estimates for β-casein haplotypes dominance interaction effect. 
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4.2.2.2.3. αS2-casein gene haplotypes dominance effect 

 

Our results showed that αS2-casein gene haplotypes 1 and 2 on fat percentage; and haplotypes 

1 and 3 both on protein percentage and urea content showed significant effect  (Figure 25). 

 

 

Figure 25. Least sqaure estimates for αS2-casein haplotypes dominance interaction effect. 

 

4.2.2.2.4. κ-casein gene haplotypes dominance effect 

 

For κ-casein haplotype dominance effects were noted for haplotypes 1 and 6 on FFA, and 1 

and 4 on urea content (Figure 26). 

 

Figure 26. Least sqaure estimates for κ-casein haplotypes dominance interaction effect. 
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4.3. SNPs additive and dominance effects 

 

Casein SNPs additive and dominance effects were estimated using equation 3 for all studied 

traits.  

 

4.3.1. Bi-allelic SNPs additive and dominance effects 

 

The least square estimates for additive and dominance effects of casein genes SNPs on milk 

yield and its component traits shown in Figure 27 to 30 for the additive effect and from Figure 

31 through 34 for the dominance effect. 

 

4.3.1.1. Bi-allelic SNPs additive effect 

 

From our analysis; SNPs 1, 24, 25, 26, 29, 30, 31, 32,33, 35 and 36 showed significant 

additive effect on fat%. Similarily, SNPs 24, 25, 26, 30, 32, 33,34, 35, 36 showed significant 

additve effect on FFA content. Moreover, SNP18 on test day milk and SNP 8, 24, 25 and 35 

on SCC showed significant additive effect. However, for other traits the effect of most of the 

SNPs is not statistically significant at p≤0.05. Moreover, for some of the least square 

estimates the standard errors were large that makes the estimates of the SNP additive effect 

less reliable. 

 

 

Figure 27. Bi-allelic casein SNPs additive effect on fat% and FFA. 
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Figure 28. Bi-allelic casein SNPs additive effect on lactose% and test day milk yield (kg). 

 

 

Figure 29. Bi-allelic casein SNPs additive effect on protein% and somatic cell count. 

 

 

Figure 30. Bi-allelic casein SNPs additive effect on taste score and urea content. 
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4.3.1.2. Bi-allelic SNPs dominance effect 

 

The dominance effect of casein loci SNPs on milk production taraits is presented in Figure 31 

to 34. By and large, the dominace effect of the SNPs on the traits studied is not significant. 

However, SNPs 20, 27 and 35 showed significant dominance effect on fat%. The dominance 

effect of SNP 39 on lactose% was also significant. Moreover, the effect of SNP 39 on lactose 

percentage, SNP 24 on test day milk yield, and SNP 1, 21 and 39 on SCC were significant. 

 

 

Figure 31. Bi-allelic casein SNPs dominance effect on fat% and FFA. 

 

 

Figure 32. Bi-allelic casein SNPs dominance effect on lactose% and test day milk yield (kg). 
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Figure 33. Bi-allelic casein SNPs dominance effect on protein% and somatic cell count. 

 

 

Figure 34. Bi-allelic casein SNPs dominance effect on taste score and urea content. 

 

4.3.2. αS1-casein exon 12  SNP 14 additive and dominance effects 

 

4.3.2.1.  αS1-casein exon 12  SNP 14 genotypic effect 

 

Genotypic effect least square estimates for exon 12 deletion in αS1-casein shown in Figure 

35. Our findings showed that the least square estimates for genotypic effect of SNP 14 were 

significant for FFA and urea content only at p ≤0.05. 
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Figure 35. αS1-casein exon 12 SNP14 deletion genotype effects.  

 

4.3.2.2. αS1-casein exon 12 deletion additive and dominance effects 

 

Additive effect of SNP14 is presented in Figure 36. Exon 12 SNP 14 has significant additive 

genetic effect of allele A on FFA and allele D on FFA and urea content of the milk (p≤0.05). 

The AD on SCC, and AG on urea content showed significant dominance effect at p≤0.05 

(Figure 37).  

 

 

Figure 36. αS1-casein exon12 SNP14 additive effect on studied traits. 
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Figure 37. αS1-casein exon12 SNP14 dominance effect on traits studied. 

 

4.4. Allelic frequencies for exon12 deletion 

 

Allele frequencies for exon12 tri-allelic SNP: D (deletion), A and G were calculated for 

Norwegian goats and the crosses. These frequencies were 0.66, 0.22 and 0.13, and 0.24, 0.55 

and 0.22, for D, A and G alleles, in the Norwegian goats and the crosses, respectively. This 

frequeny was 0.48, 0.36 and 0.16 for D, A and G alleles, respectively for the entire 

population. Exon12 deletion frequency obtained in our analysis in the Norwegian goats is less 

than the previous reports (Ådnøy et al 2003; Hayes et al 2006). This is probably resulted due 

to the absence of αS1-casein exon12 deletion in the Alpine breed and due to selection against 

the homozygous deletion. 

 

4.5. Least square estimates of the studied traits for the two study populations 

 

Least square estimates computed by fitting the model in equation 2 without SNP and 

haplotype effect are presented in Table 9. The only least square estimate significantly differ at 

p≤ 0.05 between the Norwegian goats and the crosses was lactose percentage, for which the 

crosses were superior. For other traits, even though, the numerical values were larger for the 

crosses, the two poulations were not significantly different, because most of the estimates 

have large standard errors. 
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Table 9. Least square estimates for studied traits in the Norwegian goats and the crosses. 

Breed Fat% logFFA Lactose% Milk Protein% logSCC Taste score Urea 

Norwegian goats 4.023  –0.159 4.524  2.995 2.903 9.692  0.988 10.38 

Crosses 4.424  –0.627  4.620  3.278 3.015  8.430  0.919 9.034 
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5. Discussions 

 

The extensive linkage disequilibrium (LD) observed in our finding especially for αS1-casein 

is consistent with previous work on Norwegian goats (Hayes et al 2006). However, the extent 

of LD between pairs of SNP markers showed remarkable variation; from complete to nearly 

zero LD and similar findings were reported (Hayes et al 2006; Nilsen et al 2009). Moreover, 

consistent to Hayes et al (2006), regions of high LD were not evenly distributed across the 

chromosome segment (Figures 3 & 4). We found that the LD was much higher between 

CSN1S1 and CSN2  SNPs  and between SNPs in CSN1S2 and CSN3 than between SNPs in 

CSN2 and CSN1S2 in Norwegian goats (Figure 54), which is similar to the findings of Hayes 

et al (2006). However, the trend observed in the crosses is slightly different. The LD between 

CSN2 and CSN1S2 is higher in the crosses than it was for the Norwegian goats (Figure 55). 

The LD extent is relatively stronger within locus than across loci and is in agreement with 

previous findings (Liu et al 2004; Hayes et al 2006; Finocchiaro et al 2008). Therefore, even 

if casein genes are found in cluster, they might not be in a strong LD (Finocchiaro et al 2008). 

Crossbreeding is a source of LD (Goddard 1991); however, our findings showed that the level 

of overall LD is less in the crosses. This might be partly resulted from the effect of within 

breed artificial selection in the Norwegian goats, which probably increases the LD level than 

the LD introduced by crossbreeding in the crosses.  

 

Generally, the number of haplotypes found from our analysis is much lower than the expected 

number and this indicates the presence of extensive LD (Hayes et al 2006; Finocchiaro et al 

2008). More haplotypes were found for the crosses, this is indeed true; because the 

patrilineally inherited Alpine gene in the crosses has introduced additional Alpine specific 

haplotypes in the crossbred population. On the other hand, the high level of LD observed in 

the Norwegian goats (Figure 3) has resulted in low haplotype diversity. This is due to the 

inverse relationship between the extent of LD and the amount of haplotype diversity. The 

number of haplotypes obtained in our analysis for individual casein genes is comparable with 

the previous report for the Norwegian goats (Hayes et al 2006).  

 

The two populations shared low number of haplotypes in common for the high polymorphic 

locus αS1-casein (Table 5 & 6). This is due to high polymorphic nature of this locus (Neveu 

et al 2002; Moatsou et al 2004). However, despite the extensive polymorphism in κ-casein 
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(Sacchi et al 2005), the common haplotypes in the two populations for the κ-casein showed 

the second highest percentage (37%) next to αS2-casein (44%). Despite β-casein’s 

characterstic feature of sequence conservation (Rijnkels 2002), few number of common 

haplotypes were found for the two populations. 

 

Haplotype diversity within each block can be well explained by a finite of SNPs, called tag 

SNPs (Liu et al 2004). Our results showed much variation in the number of tagging SNPs 

between the two populations. Fewer tagger SNPs can be used for prediction of other SNPs 

that are in LD within the casein locus haplotype block for the Norwegian goats than for the 

crosses. This is due to the high level of LD in the Norwegian goats. The number of tag SNPs 

obtained in our analysis for Norwegian goats casein SNPs is higher than the report of Hayes 

et al (2006). Therefore, the level of LD detected in our analysis for the Norwegian goats 

population is less extensive than the findings of Hayes et al (2006). 

 

The frequency of SNP haplotype 1 was higher than other haplotypes frequencies obsereved 

for individual casein genes and the entire casein block (Table 7 & 8). Therefore, it represents 

the most commonly segregating haplotype in the population. This is most likely happened due 

to the influence of continious artificial selection in favor of this haplotype. This is indeed true; 

because haplotypes that provide better protein and casein contents favored by selection 

(Sztankóová et al 2009). However, both in our analysis (see Figures for additive effect of 

SNP haplotypes in the Result section) and in the work of Hayes et al (2006), the commonly 

found haplotype has rather negative effect on dry matter constituents of milk, which is quite 

surprising and is against the objectives of the breeding program (Hayes et al 2006; Andonov 

et al 2007). Haplotype diversity from our study was higher for CSN1S1 and CSN3 genes and 

low for CSN1S2 and CSN2 genes (Table 8). This is due to high polymorphic nature of 

CSN1S1 and CSN3 genes (Martin et al., 2002; Moioli et al., 2007). This was also proved upon 

SNP detection, because more SNP markers were found for CSN1S1 and CSN3 genes in the 

genotype data used in our analysis. 

 

Significant entire casein block SNP haplotypes additive effect was observed to a varying 

degree in our study for the traits studied. This includes the effect of the entire casein block 

some haplotypes on fat%, and a similar finding was reported by Hayes et al (2006) for 

individual casein genes. For FFA, a reasonable number of haplotypes constructed from the 

entire casein loci SNP showed significant effect. Protein% is also affected by the casein block 
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haplotype and a similar finding was reported by Hayes et al (2006) for individual casein 

genes haplotypes and Nilsen et al (2009) for Ca-sensitive casein loci block haplotypes in the 

Norwegian Red cattle. Similarily, SCC and milk taste score were affected by casein block 

haplotypes. Signficant effect of the entire casein SNP haplotypes dominance interaction was 

found for fat%, FFA and urea content of the milk. However, none of the haplotypes 

constructed from the casein loci block were showed significant additive and dominance effect 

on test day milk yield and lactose percentage.  

 

Haplotypes from individual casein genes also showed significant effect on some milk 

production traits and a similar findings were reported by Hayes et al (2006) for the 

Norwegian goats. Among the casein genes, αS1-casein is the most studied locus for its effect 

on milk production traits. Therefore, there are a number of poven evidences for notable effect 

of this locus on milk production traits (Neveu et al. 2002; Trujillo et al 2000; Martin et al 

2002; Feligini et al 2005; Chiatti et al 2007; Marletta et al 2007; Sztankóová et al 2007), 

which  substantiates our results for additive effect of αS1-casein haplotypes (Figures 9 to 12). 

However, Caravaca et al (2009) reported absence of significant associations between αS1- 

casein genotype and total protein, fat, and casein contents. This partly agreed with our 

findings, for example, the effect of αS1-casein SNP haplotypes found from our analysis was 

less compared to κ-casein haplotypes. 

 

Most of the studied traits (except protein and lactose percentage) were also significantly 

affected especially by the additive effect of β-casein gene SNP haplotypes. However, the 

dominance interaction effect of the most commonly segregating haplotypes was found 

significant for SCC only. This makes sense, because the function of this locus is to determine 

certain structural properties of the casein micelle (Rijnkels 2002). Moreover, notable 

addditive effects of αS2-casein haplotypes were found in our analysis on milk production 

traits and similar findings were reported (Ramunno et al 2001; Marletta et al 2004; Chessa et 

al 2007; Vacca et al 2009). Rijnkels (2002) reported the function of κ-casein gene haplotypes 

in casein genes organization, which supports the significant effect found in our analysis for κ-

casein gene haplotypes on mik production traits. Similarliy, Hayes et al (2006) also reported 

the significant effect of κ-casein polymorphisms on goat milk quality. Therefore, the variation 

observed in the effect of casein genes genetic polymorphism on milk production traits can be 

used in selection and genetic improvement programs. As a result, future selection programs 
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should exploit both the genetic variations that exist among the entire casein cluster (Sacchi et 

al 2005) and within individual casein genes.  

 

The dominance effect of SNP haplotypes constructed from the entire casein loci and 

individual casein genes on milk production traits was estimated. Significant effect of 

dominance interaction casein haplotypes was found for some traits. We also noted that, the 

additive effect of SNP haplotypes on studied traits is more evident than the dominance effect. 

Therefore, the variation observed in the additive effect of SNP haplotypes on milk production 

traits can be utilized through haplotype assisted selection (Hayes et al 2006).  

 

Our finding for entire casein block versus individual casein gene SNP haplotypes effect on 

milk production traits is not in line with literature recommendations (Caroli et al 2006; Hayes 

et al 2006; Gigli et al 2008). The individual casein genes SNP haplotypes effect was observed 

for most of studied traits than the effect found by fitting the entire casein segment SNP 

haplotypes. Therefore, our finding showed that the study of individual casein genes effect on 

milk production traits for which much has been done at protein variant level has to be a focus 

of study besides entire casein SNP haplotyes. This less effect obtained by fitting the entire 

casein loci haplotypes might be due to simultaneous action of up-regulation and down-

regulation of different casein genes. If this is the case, when expression of one casein gene is 

down-regulated, the others can be up-regulated to compensate and this will result into 

insignificant total sum effect (Hayes et al 2006). 

 

Individual SNP additive and dominance effect were estimated for traits studied. The additive 

effect of one or more individual SNP was found for some of the studied traits. Similar trend 

was observed for dominance effect, however, the number of SNPs that showed dominance 

effect was less. The effect of individual SNP found in our analysis varies across casein loci. 

For example, most of the SNPs that showed significant effect on milk production traits 

localized in αS2-casein and κ-casein. Even within these loci the effect was further localized 

among adjacent SNPs. For example, signifcant effect of κ-casein SNP 24 and 25 was found 

for most of the traits in question. A similar trend about localization of SNP effect was also 

reported by Hayes et al (2006). Nilsen et al (2009) also reported a number of SNPs that 

showed significant effect on milk production traits from αS2-casein in the Norwegian red 

cattle. Therefore, relatively less effect found from αS1-casein SNPs in our analysis is in 

agreement with the findings of Nilsen et al (2009). Moreover, the effect of few individual 
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SNP on milk production traits was reported by Hayes et al (2006) in the Norwegian goats. 

Additional polymorphism introduced in the crosses that are included in our analysis most 

likely resulted in large number of SNPs showing significant effect compared to the findings of 

Hayes et al (2006) that based on the study of Norwegian goats only. 

 

The αS1-casein exon 12 deletion is unique for the Norwegian goat population (Hayes et al 

2006) and hence it becomes interesting area of research in this population. The αS1-casein 

exon 12 deletion effect on the dry matter content of milk was reported in the Norwegian goats 

(Hayes et al 2006). Our results obtained by fitting SNP 14 genotypes that harbors exon 12 

deletion as class explanatory variable showed significant effect on FFA and urea content of 

milk. As it was noted by Hayes et al (2006) the genotypic effect that harbour the deletion 

showed negative effect on dry matter content of the milk. Similarly, the additive genetic effect 

of this deletion was significant for FFA content and urea content at p≤ 0.05, and protein 

percentage at p≤ 0.1 (Figure 36), which agrees partly with previous report (Hayes et al 2006). 

However, unlike the report of Hayes et al (2006) positive trend (it is not statistically 

siginificant) was obsereved (Figure 36) for the additive effect of D allele on milk dry matter 

contents and this disagrees from our result obtained by fitting genotypic effect. However, the 

dominance interaction of the two mutant alleles DG showed negative but insignificant effect 

on protein percentage, lactose percentage and FFA content of the milk. This inconsistency in 

SNP14 additive effect might be arosed from low proportion of D allele (0.48) for the entire 

goat population used in our analysis compared to the Hayes et al (2006) finding that was 

based on relatively high frequency of D allele (0.745) in the Norwegian goats population. 

Significant dominant interaction effect of this unique deletion for AD allelic combination was 

detected on SCC at p≤ 0.05 and milk taste score at p≤ 0.1, and DG allelic combination 

showed significant effect on FFA  at p≤ 0.1 (Figure 37).  

 

For all traits studied, the LSD-test was used to compare the least square estimates for 

Norwegian goats and the crosses. Our results showed that the estimates were not signficantly 

different except for the lactose percentage of milk. This would be interesting for institutions 

that involve in the genetic improvement of Norwegian goats, because increasing the lactose 

percentage of the milk is one of the objectives of the breeding program (Andonov et al 2007). 

Therefore, the effect of this crossbreeding program in creating superior crossbred population 

for other traits considered is not signficantly high. However, the crosses are at least as good as 

the Norwegian goats in other traits. This crossbreeding program can be also used as a source 
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of additional genetic variation which inturn would create a wide genetic pool on which 

selection and genetic improvement programs can rely. Since the national breeding program is 

also aimed at increasing lactose content of the milk (Andonov et al 2007), the superiority of 

the crosses in lactose percentage can be exploited through crossbreeding program. However, 

this might be resulted due to heterotic effect in the F1 population. Therefore, this requires 

comparative study of Norwegian goats and French Alpine under similar production 

environment to reach at safe conclusion.  
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6. Conclusion and Recommendation 

 

6.1. Conclusion 

 

From our results, the level of LD was less extensive in the crosses, which in turn resulted in 

high haplotype diversity in the crosses. This showed the advantage of this crossbreeding 

program in creating additional genetic variation. There is noticable additive and dominance 

effects of some casein loci SNPs and SNP haplotypes for most of the traits studied. Therefore, 

these variations in haplotypes effect can be used in genetic improvement programs through 

haplotype assisted selection. However, very stringent  results were obtained in our analysis 

showing signficant negative effect of the commonly segregating SNP haplotypes on the dry 

matter contents of the milk, which are against the objectives of the breeding program. 

Significant additive and dominance effect of exon 12 deletion was observed on FFA, urea 

content and SCC. Therefore, compared to previous reports (Hayes et al 2006), the effect of 

exon 12 deletion was less pronounced in our findings. This is due to the absence of this 

unique deletion in the haplotypes inherited from Alpine goats in the crosses. There is 

significant difference in the lactose percentage between the two study populations, which 

shows the importance of this crossbreeding program. However, further comparative studies of 

the two breeds under comparable environment is required to substantiate whether this 

difference is due to heterotic effect or due to real genetic difference between two breeds.  

 

6.2. Recommendations 

 

This piece of work tried to address research questions that limited to its very nature, however, 

we would like to recommend researchable problems for future works:  

 

� Studying the effect of tightly linked loci haplotypes effect in CSN1S1 and CSN2 

block vs in CSN1S2 and CSN3 block on milk production traits. 

� Due to their evolutional variation, comparative study of Ca-sensitive casein loci block 

vs CSN3 effect on milk production traits is an interesting area of research.  

� The negative effect of commonly segregating SNP haplotypes on dry matter contents 

of milk needs to be further investigated.  
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� Having variance components estimated from relatively large dataset for milk taste 

score and milk urea content would help to reach at more reliable results. 

� There might be variation among the judges in milk taste scoring. This can be seen 

from small R2 value obtained from SAS output in Table 18, which could be partly due 

absence of judges effect in the fitted model.  

� The crosses showed significantly higher estimate for lactose percentage. Therefore, 

further research is needed to differentiate hetrosis from true genetic difference 

between two breeds. 
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8. Appendices 

 

Table 10. Summary of flock structure of the two goat populations. 
Parent Breed N Number of offsprings 

Mean  Std.dev Min  Max  
Sire Norwagian 29 7.45 5.94 1 18 

 Crosses 15 10.67 3.37 6 16 
Dam Norwagian 318 1.27 0.45 1 2 

 
Table 11. GLM output for fixed effects on test day milk yield.  
                                                 Sum of 
         Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
         Model                       32     276.0603228       8.6268851      35.12    <.0001 
 
         Error                     1617     397.2068530       0.2456443 
 
         Corrected Total           1649     673.2671758 
 
 
                          R–Square     Coeff Var      Root MSE     milk Mean 
 
                          0.410031      20.75377      0.495625      2.388121 
 
 
         Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
         farm                         8      69.2620523       8.6577565      35.25    <.0001 
         breed                        1      18.6092925      18.6092925      75.76    <.0001 
         lactstg                      9     129.9205386      14.4356154      58.77    <.0001 
         season                       2       3.9302630       1.9651315       8.00    0.0003 
         kids number                  2       3.0234253       1.5117127       6.15    0.0022 
         fdstr                        1      13.1672587      13.1672587      53.60    <.0001 
         farm*breed                   8      11.3420704       1.4177588       5.77    <.0001 
         kidding date                 1       8.7201229       8.7201229      35.50    <.0001 
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Table 12. GLM output for fixed effects on somatic cell count. 
                                                 Sum of 
         Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
         Model                       55      98011555.4       1782028.3       3.19    <.0001 
 
         Error                     1478     826319209.9        559079.3 
 
         Corrected Total           1533     924330765.3 
 
 
                        R–Square     Coeff Var      Root MSE    somtic cell count Mean 
 
                        0.106035      117.1815      747.7161         638.0834 
 
 
         Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
         farm                         8      7918615.29      1979653.82       3.54    0.0070 
         breed                        1      2779457.67      2779457.67       4.97    0.0259 
         lactstg                      9      5627465.27       625273.92       1.12    0.3460 
         season                       2       197163.58        98581.79       0.18    0.8384 
         dkontroll                   33     35949833.99      1089388.91       1.95    0.0011 
         kids number                  2      3587467.60      1793733.80       3.21    0.0407 

                                          
 

Table 13. GLM output for fixed effects on fat percentage. 
                                                 Sum of 
         Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
         Model                       22      535.850717       24.356851      41.99    <.0001 
 
         Error                     1546      896.839070        0.580103 
 
         Corrected Total           1568     1432.689787 
 
 
                          R–Square     Coeff Var      Root MSE      fat Mean 
 
                          0.374017      17.84300      0.761645      4.268591 
 
 
          
         Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
         farm                         8     225.8865499      28.2358187      48.67    <.0001 
         breed                        1      21.2535119      21.2535119      36.64    <.0001 
         lactstg                      9      74.8151885       8.3127987      14.33    <.0001 
         season                       2       1.1943591       0.5971796       1.03    0.3575 
         fdstr                        1      17.2717364      17.2717364      29.77    <.0001 
         kidding date                 1       2.9584700       2.9584700       5.10    0.0241 
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Table 14. GLM output for fixed effects on lactose percentage. 
                                                 Sum of 
         Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
         Model                       29      63.0373016       2.1737001      57.13    <.0001 
 
         Error                     1547      58.8557281       0.0380451 
 
         Corrected Total           1576     121.8930297 
 
 
                          R–Square     Coeff Var      Root MSE     lact Mean 
 
                          0.517153      4.430249      0.195051      4.402720 
 
         Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
         farm                         8      8.60802588      1.07600323      28.28    <.0001 
         breed                        1      1.34142734      1.34142734      35.26    <.0001 
         lactstg                      9     37.30507195      4.14500799     108.95    <.0001 
         season                       2      1.64248365      0.82124182      21.59    <.0001 
         fdstr                        1      0.70461549      0.70461549      18.52    <.0001 
         farm*breed                   8      0.61915790      0.07739474       2.03    0.0393 

 
 
 

Table 15. GLM output for fixed effects on protein percentage. 
                                                 Sum of 
         Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
         Model                       30      57.7371381       1.9245713      43.09    <.0001 
 
         Error                     1529      68.2930196       0.0446652 
 
         Corrected Total           1559     126.0301577 
 
 
                          R–Square     Coeff Var      Root MSE     prot Mean 
 
                          0.458122      6.808592      0.211341      3.104038 
 
         Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
         farm                         8      8.31894171      1.03986771      23.28    <.0001 
         breed                        1      2.76824435      2.76824435      61.98    <.0001 
         lactstg                      9     31.00174443      3.44463827      77.12    <.0001 
         season                       2      0.57514554      0.28757277       6.44    0.0016 
         fdstr                        1     10.74545404     10.74545404     240.58    <.0001 
         farm*breed                   8      1.53341310      0.19167664       4.29    <.0001 
         kidding date                 1      2.23191059      2.23191059      49.97    <.0001 
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Table 16. GLM output for fixed effects on urea content. 
                                                 Sum of 
         Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
         Model                       21     3739.288576      178.061361      61.44    <.0001 
 
         Error                     1507     4367.541980        2.898170 
 
         Corrected Total           1528     8106.830556 
 
 
                          R–Square     Coeff Var      Root MSE     urea Mean 
 
                          0.461252      17.72876      1.702401      9.602485 
 
 
         Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
         farm                         8     1012.352770      126.544096      43.66    <.0001 
         breed                        1      144.845893      144.845893      49.98    <.0001 
         lactstg                      9      635.362140       70.595793      24.36    <.0001 
         season                       2        6.645652        3.322826       1.15    0.3180 
         fdstr                        1     1156.075947     1156.075947     398.90    <.0001 
 

 
 
 
 
 

Table 17. GLM output for fixed effects on free fatty acids content. 
                                                 Sum of 
         Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
         Model                       30     119.6234168       3.9874472      12.54    <.0001 
 
         Error                     1498     476.3756283       0.3180078 
 
         Corrected Total           1528     595.9990451 
 
 
                          R–Square     Coeff Var      Root MSE      ffa Mean 
 
                          0.200711      59.76547      0.563922      0.943558 
 
 
          
         Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
         farm                         8     35.23943257      4.40492907      13.85    <.0001 
         breed                        1     34.13333245     34.13333245     107.33    <.0001 
         lactstg                      9      7.68136157      0.85348462       2.68    0.0043 
         season                       2      1.78896583      0.89448291       2.81    0.0604 
         fdstr                        1      5.31350389      5.31350389      16.71    <.0001 
         farm*breed                   8      9.93331569      1.24166446       3.90    0.0001 
         kidding date                 1      4.26534011      4.26534011      13.41    0.0003 
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Table 18. GLM output for fixed effects on milk taste score. 
                                                 Sum of 
         Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
         Model                       41      33.1203865       0.8078143       3.46    <.0001 
 
         Error                     1345     314.0259726       0.2334766 
 
         Corrected Total           1386     347.1463590 
 
 
                        R–Square     Coeff Var      Root MSE    testscor Mean 
 
                        0.095408      41.62672      0.483194         1.160779 
 
 
         Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
         farm                         6      1.63283250      0.27213875       1.17    0.3222 
         breed                        1      5.75937317      5.75937317      24.67    <.0001 
         lactstg                      9      2.08532478      0.23170275       0.99    0.4442 
         season                       2      0.55899119      0.27949560       1.20    0.3024 
         fdstr                        1      0.00031776      0.00031776       0.00    0.9706 
         testdate                    14      8.45693040      0.60406646       2.59    0.0011 
         farm*breed                   7      5.05606934      0.72229562       3.09    0.0031 

 

 
Figure 38. Histogram showing the distribution of test day milk yield records. 
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Figure 39. The Q_Q plot for test day milk yield. 
 

 
Figure 40. Histogram showing the distribution of somatic cell count (log-transformed). 
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Figure 41. The Q_Q plot for somatic cell count (log-transformed). 
 

 
Figure 42. Histogram showing the distribution of fat percentage of test day milk.  
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Figure 43. The Q_Q plot for test day milk fat percentage. 
 

 
Figure 44. Histogram showing the distribution of lactose percentage of test day milk yield.  
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Figure 45. The Q_Q plot for test day milk lactose percentage. 
 

 
Figure 46. Histogram showing the distribution of protein percentage of the test day milk.  
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Figure 47. The Q_Q plot for test day milk protein percentage. 
 

 
Figure 48. Histogram showing the distribution of urea content  of the test day milk.  
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Figure 49. The Q_Q plot for test day milk urea content. 
 

 
Figure 50. Histogram showing the distribution of free fatty acids content of test day milk.  
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Figure 51. The Q_Q plot for test day milk free fatty acids content. 
 

 
Figure 52. Histogram showing the distribution of taste score of the  test day milk.  
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Figure 53. The Q_Q plot for test day milk taste score. 
 
 

 
Figure 54. Individual casein genes haplotypes display for the Norwegian goats. 
 
Casein loci SNP haplotype combinations; CSN1S1 (marker 1 to 14), CSN2 (marker 15 to 20), 
CSN1S2 (marker 21 to 24) and CSN3 (marker 25 to 38), and the grey numbers indicate the 
frequency of each haplotype. 
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Figure 55. Individual casein genes haplotypes display for the crosses. 
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Table 19. Marker information for the Norwegian goats. 
SNP  Name ObsHET PredHET HWpval MAF Alleles 

1 CSN1S1prom_264 0.121 0.113 0.764 0.06 A:G 

2 CSN1S1prom_866 0.116 0.117 1 0.062 C:T 

4 CSN1S1prom_888 0.244 0.286 0.0365 0.173 G:A 

5 CSN1S1prom_1105 0.255 0.291 0.0883 0.177 G:A 

6 CSN1S1prom_1169 0.176 0.214 0.033 0.122 G:A 

7 CSN1S1prom_1379 0.247 0.286 0.0606 0.173 C:T 

8 CSN1S1prom_1470 0.28 0.309 0.1944 0.191 G:A 

9 CSN1S14Ex4_6075 0.263 0.311 0.0308 0.192 T :C 

10 CSN1S14Ex4_6091 0.147 0.206 3.00E–04 0.117 C:G 

11 CSN1S14Ex9_9889 0.107 0.108 1 0.057 C:D 

12 CSN1S1In8_9918 0.268 0.316 0.0423 0.196 A:G 

13 CSN1S1Ex10_10673 0.262 0.279 0.5695 0.168 C :G 

14 CSN1S1Ex12 0.244 0.448 3.45E–11 0.339 1:3 6 

15 CSN1S1Ex17_16860 0.216 0.228 0.528 0.131 C:T 

16 CSN2Ex7_11801 0.136 0.146 0.4091 0.079 T:C 

17 CSN2prom_2071 0.104 0.12 0.1349 0.064 A:G 

18 CSN2prom_1653 0.005 0.005 1 0.003 G:A 

19 CSN2prom_1009 0.113 0.114 1 0.061 A:G 

20 CSN2prom_862 0.103 0.105 1 0.056 T:A 

21 CSN2prom_760 0.091 0.094 0.9305 0.05 C:T 

22 CSN1S2Ex3_510 0.175 0.179 0.9057 0.1 G:A 

23 CSN1S2In15_273 0.025 0.024 1 0.012 C:G 

24 CSN1S2In15_682 0.435 0.432 1 0.315 C:T 

25 CSN1S2In15_987 0.439 0.435 1 0.32 A:T 

26 CSN3prom_677 0.5 0.483 0.6829 0.408 G:A 

27 CSN3prom_833 0.455 0.495 0.3262 0.448 G:A 

28 CSN3prom_852 0.016 0.016 1 0.008 G:A 

29 CSN3prom_942 0.54 0.5 0.245 0.485 A:T 

30 CSN3prom_1074 0.451 0.476 0.475 0.391 T:A 

31 CSN3prom_1140 0.541 0.5 0.2447 0.486 G:C 

32 CSN3prom_1191 0.494 0.485 0.8963 0.414 T:G 

33 CSN3prom_1338 0.41 0.483 0.0634 0.408 T:G 

34 CSN3prom_1499 0.105 0.13 0.0351 0.07 A:G 

35 CSN3prom_1550 0.369 0.436 0.0225 0.321 T:C 

36 CSN3prom_1935 0.44 0.426 0.8096 0.308 G:T 

37 CSN3prom_2134 0.284 0.332 0.0387 0.21 A:G 

38 CSN3prom_2136 0.134 0.151 0.1622 0.082 G:A 

39 CSN3Ex4_146 0.136 0.153 0.168 0.083 C:T 
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Table 20. Marker information for the crosses. 
SNP  Name ObsHET PredHET HWpval MAF Alleles 

1 CSN1S1prom_264 0.183 0.189 0.7877 0.106 A:G 

2 CSN1S1prom_866 0.07 0.093 0.0048 0.049 C:T 

4 CSN1S1prom_888 0.3 0.269 0.078 0.16 G:A 

5 CSN1S1prom_1105 0.266 0.247 0.3211 0.144 G:A 

6 CSN1S1prom_1169 0.221 0.204 0.4015 0.115 G:A 

7 CSN1S1prom_1379 0.306 0.274 0.0631 0.164 C:T 

8 CSN1S1prom_1470 0.314 0.279 0.0409 0.167 G:A 

9 CSN1S14Ex4_6075 0.325 0.296 0.1411 0.18 T:C 

10 CSN1S14Ex4_6091 0.195 0.189 0.8724 0.105 C:G 

11 CSN1S14Ex9_9889 0.1 0.095 0.9327 0.05 C:D 

12 CSN1S1In8_9918 0.356 0.341 0.6833 0.218 A:G 

13 CSN1S1Ex10_10673 0.369 0.315 0.0314 0.196 C:G 

14 CSN1S1Ex12 0.418 0.369 0.0481 0.244 1:3:6 

15 CSN1S1Ex17_16860 0.187 0.304 2.24E–09 0.187 C:T 

16 CSN2Ex7_11801 0.198 0.178 0.0921 0.099 T:C 

17 CSN2prom_2071 0.109 0.103 0.8172 0.055 A:G 

18 CSN2prom_1653 0.036 0.035 1 0.018 G:A 

19 CSN2prom_1009 0.107 0.107 1 0.057 A:G 

20 CSN2prom_862 0.11 0.111 1 0.059 T:A 

21 CSN2prom_760 0.137 0.169 0.0106 0.093 C:T 

22 CSN1S2Ex3_510 0.15 0.139 0.3491 0.075 G:A 

23 CSN1S2In15_273 0.321 0.317 1 0.198 C:G 

24 CSN1S2In15_682 0.281 0.271 0.7297 0.161 C:T 

25 CSN1S2In15_987 0.279 0.28 1 0.168 A:T 

26 CSN3prom_677 0.376 0.305 5.27E–06 0.188 G:A 

27 CSN3prom_833 0.369 0.478 0.0013 0.395 G:A 

28 CSN3prom_852 0 0 1 0 G:G 

29 CSN3prom_942 0.458 0.495 0.231 0.45 A:T 

30 CSN3prom_1074 0.332 0.277 4.00E–04 0.166 T:A 

31 CSN3prom_1140 0.463 0.494 0.317 0.446 G:C 

32 CSN3prom_1191 0.379 0.307 7.38E–06 0.19 T:G 

33 CSN3prom_1338 0.21 0.335 1.20E–05 0.213 T:G 

34 CSN3prom_1499 0.112 0.112 1 0.06 A:G 

35 CSN3prom_1550 0.237 0.377 6.29E–09 0.252 T:C 

36 CSN3prom_1935 0.302 0.283 0.5242 0.171 G:T 

37 CSN3prom_2134 0.282 0.436 4.81E–08 0.322 A:G 

38 CSN3prom_2136 0.104 0.134 0.0038 0.072 G:A 

39 CSN3Ex4_146 0.127 0.119 0.592 0.063 C:T 
 


